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Abstract. Let h, k be fixed positive integers, and let A be any set of positive integers.
Let hA := {a1+ a2+ . . .+ ar : ai ∈ A, r 6 h} denote the set of all integers representable as
a sum of no more than h elements of A, and let n(h, A) denote the largest integer n such
that {1, 2, . . . , n} ⊆ hA. Let n(h, k) := max

A
: n(h, A), where the maximum is taken over

all sets A with k elements. We determine n(h, A) when the elements of A are in geometric
progression. In particular, this results in the evaluation of n(h, 2) and yields surprisingly
sharp lower bounds for n(h, k), particularly for k = 3.
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The Postage Stamp Problem derives its name from the situation when we require

the largest integer n = n(h, k) such that all stamp values from 1 to n may be made

up from a collection of k integer-valued stamp denominations with the restriction

that there are no more than h stamps, repetitions being allowed. The problem of

determining n(h, k) is apparently due to Rohrbach [3], and has been studied often

ever since. A large and extensive bibliography can be found in a paper of Alter and

Barnett [1].

Let h, k be fixed positive integers, and let A be any set of positive integers. Let

hA := {a1 + a2 + . . . + ar : ai ∈ A, r 6 h} denote the set of all integers representable

as a sum of no more than h elements of A, and let n(h, A) denote the largest integer n

such that {1, 2, . . . , n} ⊆ hA. Observe that in order for this to happen, it is necessary

that a1 = 1. Thus, n(h, k) := max
A

n(h, A), where the maximum is taken over all

sets A with k elements. Any set A with k elements for which n(h, A) = n(h, k) is

called an extremal h-basis for {1, 2, . . . , n(h, k)}, and it is natural to ask for all such

extremal h-bases for a given k.
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It is easy to see that n(1, k) = k with unique extremal basis {1, 2, . . . , k} and that

n(h, 1) = h with unique extremal basis {1}. The result n(h, 2) = ⌊ 1

4
(h2 + 6h + 1)⌋

with unique extremal basis {1, 1

2
(h+3)} for odd h and {1, 1

2
(h+2)} and {1, 1

2
(h+4)}

for even h has been rediscovered several times, for instance by Stöhr in [5, 6] and

by Stanton, Bate and Mullin in [4]. No other closed-form formula is known for any

other pair (h, k) where one of h, k is fixed.

The purpose of this note is to determine n(h, A) when the elements of A are in

geometric progression. In particular, this easily gives the value of n(h, 2). The study

of this case naturally leads to the representation of positive integers in a fixed basis

r > 1. Suppose h, k, r are fixed positive integers, and let A = {1, r, r2, . . . , rk−1}

be a k-term geometric progression. Since each positive integer n can are uniquely

expressed in the form

n = d0 + d1r + d2r
2 . . . + dk−1r

k−1,

where 0 6 di 6 r − 1 for each i, 0 6 i 6 k − 1, it follows that

(1) n ∈ hA if and only if d0 + d1 + . . . + dk−1 6 h.

The determination of n(h, A) in this case, and subsequently of n(h, 2), is an easy

consequence of (1).

Theorem. Let h, k, r be positive integers. Then

n(h, {1, r, r2, . . . , rk−1})

=























h if h 6 r − 2;

ri(t + 1) + (ri − 2) if h = i(r − 1) + t, 1 6 i 6 k − 2,

0 6 t 6 r − 2;

rk−1(t + 1) + (rk−1 − 2) if h = (k − 1)(r − 1) + t, t > 0.

P r o o f. We write A = {1, r, r2, . . . , rk−1}. The case h 6 r − 2 is easily dealt

with. Henceforth, we assume h > r − 1 and write h = i(r − 1) + t with i > 1 and

0 6 t 6 r − 2.

We first show that N = ri(t + 1) + (ri − 1) = ri(t + 2) − 1 /∈ hA. Observe that

N < ri+1, and in base r it equals di di−1 . . . d0, where di = t + 1 and dj = r − 1 for

0 6 j 6 i − 1, since N − ri(t + 1) = ri − 1 = (r − 1)(ri−1 + ri−2 + . . . + r + 1). By

(1), N /∈ hA since d0 + d1 + . . . + dk−1 = i(r − 1) + (t + 1) = h + 1.

It remains to show that every positive integer less than or equal to ri(t + 1) +

(ri − 2) = ri(t + 2) − 2 is an element of hA. We employ the notation (ak, ak−1, . . . ,
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a1, a0)r to denote the number akrk + ak−1r
k−1 + . . . + a1r + a0. Since the base r

representation of N is (t + 1, r − 1, r − 1, . . . , r − 1)r (i occurrences of r − 1), each

positive integer less than N must be in hA by (1) since at least one digit in base r

representation of such an integer must be less than the corresponding one for N and

none can be greater. This completes the proof. �

Corollary 1 is a special case of the theorem, which we single out in order to

prove the result stated in Corollary 2, due to Stöhr in [5]. Our proof of the result in

Corollary 2 is therefore a consequence of a more general result, whereas Stöhr proved

his result directly.

Corollary 1. For h > 1,

n(h, {1, r}) =

{

h if h 6 r − 2;

r(h − r + 3) − 2 if h > r − 1.

Corollary 2 (Stöhr, [5]). For h > 1,

n(h, 2) =

⌊

h2 + 6h + 1

4

⌋

.

Moreover, the only extremal basis is {1, 1

2
(h + 3)} if h is odd, and {1, 1

2
(h + 2)} and

{1, 1

2
(h + 4)} if h is even.

P r o o f. From Corollary 1,

n(h, 2) = max
26r6h+2

r(h − r + 3) − 2 =

⌊

(h + 3)2

4

⌋

− 2 =

⌊

h2 + 6h + 1

4

⌋

.

Since the maximum product of two positive real numbers x and y with a fixed sum

x + y = c is attained at x = y, the maximum in the displayed equation above is

achieved at r = 1

2
(h + 3). Thus, there is only one extremal basis if h is odd and two

such bases if h is even. �

We close this paper with a remark on the lower bound on n(h, k) provided by the

theorem when k > 3. By the theorem, substituting t = (k − 1)(r − 1) − h, we get

(2) n(h, k) > max
r

rk−1(h − (k − 1)(r − 1) + 2) − 2.

If we now maximize f(r) := rk−1(h − (k − 1)(r − 1) + 2) in the interval [2,∞), a

simple computation shows that it attains its maximum at r = (h+k +1)/k. Further
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computation shows that f(h, k) at r = (h + k + 1)/k equals (h + k + 1)k/kk. Note

that this is the best possible when k = 2, as seen in Corollary 2, but gives a lower

bound in the general case

(3) n(h, k) >

(

h + k + 1

k

)k

,

which is surprisingly close to the best known lower bounds for n(h, k) for k > 3,

obtained by Hofmeister [2]. For instance, for k = 3, (3) gives the lower bound

n(h, 3) > 1

27
(h + 4)3 = 1

27
h3 + 4

9
h2 + 16

9
h + 64

27

against the lower bound

n(h, 3) > 4

81
h3 + 2

3
h2 + 66

27
h

obtained in [2].
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