
Czechoslovak Mathematical Journal

Valentin Skvortsov; Francesco Tulone
Kurzweil-Henstock type integral on zero-dimensional group and some of its applications

Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 4, 1167–1183

Persistent URL: http://dml.cz/dmlcz/140448

Terms of use:
© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/140448
http://dml.cz


Czechoslovak Mathematical Journal, 58 (133) (2008), 1167–1183

KURZWEIL-HENSTOCK TYPE INTEGRAL ON

ZERO-DIMENSIONAL GROUP AND SOME OF ITS APPLICATIONS

Valentin Skvortsov, Moscow, and Francesco Tulone, Palermo

(Received March 24, 2007)

Abstract. A Kurzweil-Henstock type integral on a zero-dimensional abelian group is used
to recover by generalized Fourier formulas the coefficients of the series with respect to the
characters of such groups, in the compact case, and to obtain an inversion formula for
multiplicative integral transforms, in the locally compact case.
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1. Introduction

In this paper we introduce a Kurzweil-Henstock type integral on compact subsets

of a locally compact zero-dimensional abelian group and use this integral to recover

by generalized Fourier formulas the coefficients of the series with respect to the

characters of such groups, in the compact case, and to obtain an inversion formula

for multiplicative integral transforms, in the locally compact case.

The present results are generalizations of our previous ones obtained in [6] and [7].

In comparison with those papers a Kurzweil-Henstock type integral is defined here

directly on the group instead of using a mapping of this group on the real line and

defining an integral on intervals. That mapping was connected with the introduction

of a certain ordering in this group.

An advantage of the present new approach is that it permits to obtain some more

general results on the coefficient problem and on the inversion formula which do not
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depend on a particular numeration (the so called Vilenkin-Palley numeration) or,

respectively, on ordering of characters, as was the case in the previous papers.

In Section 2 we present some known facts from the theory of Kurzweil-Henstock

integral with respect to a general basis and prove some sufficient conditions for inte-

grability of a function in the sense of this integral. In Section 3 we define a differen-

tial basis on the zero-dimensional group and consider some properties of Kurzweil-

Henstock type integral with respect to this basis. Section 4 is devoted to the problem

of recovering the coefficients of the series with respect to the characters of a com-

pact zero-dimensional abelian group. In Section 5 we consider a generalization of

this problem to the case of a locally compact zero-dimensional abelian group obtain-

ing an inversion formula for integral transforms with kernel expressed in terms of

characters of this group.

2. Preliminaries

We start with the general definition of a derivation basis (see [5] and [8]). A

derivation basis (or simply a basis) B in a measure space (X,M, µ) is a filter base

on the product space I × X , where I is a family of measurable subsets of X having

positive measure µ and called generalized intervals or B-intervals. That is, B is a

nonempty collection of subsets of I × X such that each β ∈ B is a set of pairs

(I, x), where I ∈ I, x ∈ X , and B has the filter base property: ∅ /∈ B and for every

β1, β2 ∈ B there exists β ∈ B such that β ⊂ β1 ∩ β2. So each basis is a directed set

with the order given by “reversed” inclusion. We shall refer to the elements β of B

as basis sets. In this paper we suppose that µ(I) > 0 for each I ∈ I and all the pairs

(I, x) constituting each β ∈ B are such that x ∈ I, although it is not the case in the

general theory (see [4], [5]). For a set E ⊂ X and β ∈ B we write

β(E) := {(I, x) ∈ β : I ⊂ E} and β[E] := {(I, x) ∈ β : x ∈ E}.

We suppose that the basis B ignores no point, i.e., β[{x}] 6= ∅ for any point x ∈ X

and for any β ∈ B. We assume also that the basis B has a local character by which

we mean that for any family of basis sets {βτ}, βτ ∈ B and for any pairwise disjoint

sets Eτ there exists β ∈ B such that β
[

⋃

τ

Eτ

]

⊂
⋃

τ

βτ [Eτ ].

Assuming that X is a topological space we shall suppose that the measure µ

is regular from above by which we mean that for any measurable set E we have

µ(E) = inf µ(G), where infimum is taken over all open sets G such that E ⊂ G. We

shall also suppose that B is a Vitali basis by which we mean that for any x and for

any neighborhood U(x) of x there exists βx ∈ B such that I ⊂ U(x) for each pair

(I, x) ∈ βx.
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A β-partition is a finite collection π of elements of β, where the distinct elements

(I ′, x′) and (I ′′, x′′) in π have I ′ and I ′′ nonoverlapping, i.e., µ(I ′ ∩ I ′′) = 0. Let

L ∈ I. If π ⊂ β(L) then π is called a β-partition in L, if
⋃

(I,x)∈π

I = L then π is

called a β-partition of L.

We say that a basis B has the partitioning property if the following conditions

hold: (i) for each finite collection I0, I1, . . . , In of B-intervals with I1, . . . , In ⊂ I0 the

difference I0 \
n
⋃

i=1

Ii can be expressed as a finite union of pairwise nonoverlapping

B-intervals; (ii) for each B-interval I and for any β ∈ B there exists a β-partition

of I.

Definition 2.1 (see [5]). Let B be a basis having the partitioning property and

L ∈ I. A complex-valued function f on L is said to be Kurzweil-Henstock integrable

with respect to the basis B (or HB-integrable) on L, with HB-integral A, if for every

ε > 0 there exists β ∈ B such that for any β-partition π of L we have:

∣

∣

∣

∣

∑

(I,x)∈π

f(x)µ(I) − A

∣

∣

∣

∣

< ε.

We denote the integral value A by (HB)
∫

L
f.

It is clear that a complex-valued function is HB-integrable if and only if both its

real and imaginary parts are HB-integrable.

It is easy to check, with B being a Vitali basis, that a function which is equal

to zero almost everywhere on L ∈ I, is HB-integrable on L with value zero. This

justifies the following extension of Definition 2.1 to the case of functions defined only

almost everywhere on L.

Definition 2.2. A complex valued function f defined almost everywhere on

L ∈ I is said to be HB-integrable on L, with integral value A, if the function

f1(g) :=

{

f(g), where f is defined,

0, otherwise

is HB-integrable on L to A in the sense of Definition 2.1.

We note that if f is HB-integrable on L then it is HB-integrable also on any

B-interval J ⊂ L. It can be easily proved that the B-interval function F : J 7→

(HB)
∫

J
f is additive and we call it the indefinite HB-integral of f .

An essential part of the theory of the Kurzweil-Henstock integral is based on the

following proposition known as Henstock lemma (see a version of it in [5, Theo-

rem 1.6.1]).

1169



Lemma 2.1. If a function f is HB-integrable on L, with F being its indefinite

HB-integral, then for every ε > 0 there exists β ∈ B such that for any β-partition π

in L we have
∑

(I,x)∈π

|f(x)µ(I) − F (I)| < ε.

Let F be an additive set function on I and E an arbitrary subset of X . For a

fixed β ∈ B, we set

Var(E, F, β) := sup
π⊂β[E]

∑

|F (I)|.

We put also

VF (E) = V (E, F,B) := inf
β∈B

Var(E, F, β).

The extended real-valued set function VF (·) is called the variational measure gen-

erated by F , with respect to the basis B. Following the proof given in [9] for the

interval bases in R it is possible to show that VF (·) is an outer measure and a metric

outer measure in the case of a metric space X (in the last case the definition of Vitali

basis should be used).

Given a set function F : I → R we define the upper and the lower B-derivative at

a point x, with respect to the basis B and measure µ, as

(2.1) DBF (x) := inf
β∈B

sup
(I,x)∈β

F (I)

µ(I)
and DBF (x) := sup

β∈B
inf

(I,x)∈β

F (I)

µ(I)
,

respectively. As we have assumed that B ignores no point, it is always true that

DBF (x) > DBF (x). If DBF (x) = DBF (x) we call this common value the B-

derivative DBF (x). For a complex-valued set function F = Re F + i ImF we define

the B-derivative at a point x as DBF (x) = DB Re F (x) + DB Im F (x).

We say that a set function F , real- or complex-valued, is B-continuous at a point

x with respect to the basis B, if VF ({x}) = 0.

It is easy to check that for any HB-integrable function the indefinite HB-integral

is B-continuous at each point.

We shall need the following (see [5, Proposition 1.6.4])

Proposition 2.1. Let an additive complex-valued function F defined on I be

B-differentiable on L ∈ I outside a set E ⊂ L such that VF (E) = 0. Then the

function

f(x) :=

{

DBF (x) if it exists,

0 if x ∈ E

is HB-integrable on L and F is its indefinite HB-integral.

We get the next theorem as a corollary of the above proposition.
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Theorem 2.1. Let an additive function F : I → R be B-differentiable everywhere

on L ∈ I outside of a set E with µ(E) = 0 and let −∞ < DBF (x) < DBF (x) < +∞

everywhere on E except on a countable set M ⊂ E where F is B-continuous. Then

the function

f(x) :=

{

DBF (x) if it exists,

0 if x ∈ E

is HB-integrable on L and F is its indefinite HB-integral.

P r o o f. To apply Proposition 2.1 we need to prove only that VF (E) = 0.

We note first that B-continuity of F at each point of M and the fact that VF (·) is

an outer measure imply VF (M) = 0.

Now let

H := E \ M =
⋃

m∈N

Hm

where

Hm := {ξ ∈ E \ M : −m < DBF (ξ) < DBF (ξ) < +m}.

As µ(Hm) = 0 and the measure µ is assumed to be regular from above, there exists

for any ε > 0 an open set Gm ⊃ Hm such that µ(Gm) < ε/m. Then, the definition

of the upper and the lower B-derivatives and the definition of the Vitali basis imply

that for any x ∈ Hm there exists βx such that for any pair (I, x) ∈ βx we have

(2.2) I ⊂ Gm, and |F (I)| 6 mµ(I).

Now choose β such that β[Hm] ⊂
⋃

x∈Hm

βx[{x}] and take any β-partition π ⊂ β[Hm].

Using (2.2) we compute

∑

(I,x)∈π

|F (I)| 6 m
∑

(I,x)∈π

µ(I) 6 mµ(Gm) 6 m ·
ε

m
= ε.

Since ε is arbitrary we get VF (Hm) = 0. Then, once again using the property of the

outer measure, we obtain

VF (E) 6 VF (M) +
∑

m

VF (Hm) = 0.

�
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3. Derivation basis in zero dimensional group and

the corresponding Kurzweil-Henstock integral

Let G be a zero-dimensional locally compact abelian group G which satisfies the

second countability axiom. We suppose also that the group G is periodic. It is known

(see [1]) that a topology in such a group can be given by a chain of subgroups

(3.1) . . . ⊃ G−n ⊃ . . . ⊃ G−2 ⊃ G−1 ⊃ G0 ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gn ⊃ . . .

with G =
+∞
⋃

n=−∞
Gn and {0} =

+∞
⋂

n=−∞
Gn. The subgroups Gn are clopen sets with

respect to this topology. As G is periodic, the factor group Gn/Gn+1 is finite for

each n and this implies that Gn (and so also all its cosets) is compact. Note that

the factor group Gn/G0 is also finite for any n < 0 and so the factor group G/G0 is

countable. We denote by Kn any coset of the subgroup Gn and by Kn(g) the coset

of the subgroup Gn which contains the element g, i.e.,

(3.2) Kn(g) = g + Gn.

For each g ∈ G the sequence {Kn(g)} is decreasing and {g} =
⋂

n

Kn(g).

Now for each coset Kn of Gn we choose and fix for the rest of the paper an element

gKn
. Then for each n ∈ Z we can represent any element g ∈ G in the form

(3.3) g = gKn
+ {g}n

where {g}n ∈ Gn. We agree to put gGn
= 0, so that g = {g}n if g ∈ Gn.

Let Γ denote the dual group of G, i.e., the group of characters of the group

G. It is known (see [1]) that under the assumption imposed on G the group Γ is

also a periodic locally compact zero-dimensional abelian group (with respect to the

pointwise multiplication of characters) and we can represent it as a sum of increasing

sequence of subgroups

(3.4) . . . ⊃ Γ−n ⊃ . . . ⊃ Γ−2 ⊃ Γ−1 ⊃ Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . . ⊃ Γn ⊃ . . .

introducing a topology in Γ. Then Γ =
+∞
⋃

i=−∞

Γi and
+∞
⋂

i=−∞

Γi = {γ(0)} where

(g, γ(0)) = 1 for all g ∈ G (here and below (g, γ) denotes the value of a charac-

ter γ at a point g). For each n ∈ Z the group Γ−n is the annulator of Gn, i.e.,

Γ−n = G⊥
n := {γ ∈ Γ: (g, γ) = 1 for all g ∈ Gn}.
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Lemma 3.1. If γ ∈ Γ−n then γ is constant on each coset Kn of Gn.

P r o o f. The representation (3.3), the properties of a character and the definition

of the annulator imply

(g, γ) = (gKn
, γ)({g}n, γ) = (gKn

, γ).

So with a fixed element gKn
, the value (g, γ) is constant for all g ∈ Kn. �

The factor groups Γ−n−1/Γ−n = G⊥
n+1/G⊥

n and Gn/Gn+1 are isomorphic (see [1])

and so they are of finite order for each n ∈ Z. This implies that the group Γ−n/Γ0

is also finite for any n > 0 and Γ/Γ0 is countable.

Now, as we have done above for the group G, for each coset J of Γ0 we choose

and fix an element γ
J
. Then we can represent any element γ ∈ Γ in the form

(3.5) γ = γ
J
· {γ}

where {γ} ∈ Γ0. We agree to put γ
Γ0

= γ(0), so that γ = {γ} if γ ∈ Γ0.

We denote by µG and µΓ the Haar measures on the groups G and Γ, respectively,

and normalize them so that µG(G0) = µΓ(Γ0) = 1. We can make these measures

complete by including all subsets of the sets of measure zero into the respective class

M of measurable sets.

The functions γ have also the following property.

Lemma 3.2. If γ ∈ Γ \ Γ−n then
∫

Kn
(g, γ) dµG = 0 for each coset Kn.

P r o o f. The above integral is understood in the sense of the Lebesgue integral

with respect to the measure µG. As γ does not belong to the annulator of the

subgroup Gn there exists an element g0 ∈ Gn such that (g0, γ) 6= 1. If g ∈ Kn then

g + g0 ∈ Kn. Due to the invariance with respect to translation of the Haar measure

µG and also of the integral we have the equality

∫

Kn

(g, γ) dµG =

∫

Kn

(g + g0, γ) dµG = (g0, γ)

∫

Kn

(g, γ) dµG

which implies
∫

Kn

(g, γ) dµG = 0.

�
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It follows from this lemma that if γ1 and γ2 are not equal identically on Kn, then

they are orthogonal on Kn, i.e.,

∫

Kn

(g, γ1γ2) dµG = 0.

Now we define a derivation basis BG on the measure space (G,M, µG). Take any

function ν : G → Z and define a basis set by

βν = {(I, g) : g ∈ G, I = Kn(g), n > ν(g)}.

So our basis BG in G is the family {βν}ν where ν runs over the set of all integer-

valued functions on G. This basis has all the properties described in Section 2 for the

general derivation basis, in particular it is a Vitali basis. Note that in our case the

set IG of all BG-intervals is composed by all the cosets Kn, n ∈ Z. The partitioning

property of BG follows easily from compactness of any BG-interval and from the fact

that any two BG-intervals K ′ and K ′′ are either disjoint or one of them is contained

in the other.

Definition 2.1 of the HB-integral can be rewritten in our particular case in the

following form:

Definition 3.1. Let L ∈ IG. A complex-valued function f on L is said to be

Kurzweil-Henstock integrable with respect to basis BG (or HG-integrable) on L, with

HG-integral A, if for every ε > 0 there exists a function ν : L 7→ Z such that for any

βν-partition π of L we have

∣

∣

∣

∣

∑

(I,g)∈π

f(g)µG(I) − A

∣

∣

∣

∣

< ε.

We denote the integral value A by (HG)
∫

L
f.

Remark 3.1. We note that all the above definitions depend on the structure of

the sequence of subgroups (3.1). So if we consider for the group Γ the definitions

of the BΓ-basis and the HΓ-integral, then we should use the sequence (3.4) in our

construction.

Remark 3.2. It is easy to check that the HG-integral is invariant under transla-

tion given by some element g ∈ G.

The upper and the lower BG-derivative of a set function F : IG → R at a point g

can be rewritten, in the case of the basis BG and measure µG, as

(3.6) DGF (g) := lim sup
n→∞

F (Kn(g))

µG(Kn(g))
, DGF (g) := lim inf

n→∞

F (Kn(g))

µG(Kn(g))
.
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The BG-derivative at g is

(3.7) DGF (g) := lim
n→∞

F (Kn(g))

µG(Kn(g))
.

Note that in the case of our basis BG, given a point g, any βν-partition contains

only one pair (I, g) with this point g. Because of this we can reformulate the definition

of B-continuity in a simpler way, saying that a set function F is BG-continuous at a

point g with respect to the basis BG if lim
n→∞

F (Kn(g)) = 0.

As in the general case considered in Section 2, the indefiniteHG-integral on L ∈ IG

is an additive BG-continuous function on the set of all BG-subintervals of L.

The property of differentiation of the indefinite HB-integral almost everywhere is

not true in the general case (even for some basis in the plane, see for example [3]),

but in our case of the HG-integral it can be proved if we use the following version of

a covering lemma.

Lemma 3.3. Let E be an arbitrary subset of L ∈ IG and for each g ∈ E

let there exist an increasing sequence of natural numbers {ni} = {ni(g)}. Put

α := {(Kni(g)(g), g) : g ∈ E, Kni(g)(g) ⊂ L}. Then there exists a countable family

of pairs {(Ij , gj)}∞j=1 such that (Ij , gj) ∈ α for each j = 1, 2, . . ., with Ij being

pairwise disjoint and E ⊂
∞
⋃

j=1

Ij .

P r o o f. Let L = Kn0 for some n0. If for some g ∈ E we get (Kn0 , g) ∈ α, we are

done. If not, we shall proceed by induction having in mind that for each n > n0 the

family of all cosets Kn ⊂ L is finite and that any two Ks and Kr are either disjoint

or one of them is contained in the other. In the n-th step, n > n0, we consider all

Kn ⊂ L which are not covered by any Ij chosen in the previous steps and for which

(Kn, g) ∈ α with some g ∈ E. We include into our sequence of pairs all such Kn

combined with one of the admissible g. In this way each point g ∈ E will be covered

in a certain step because otherwise we should get a contradiction with the fact that

(Kni(g)(g), g) ∈ α for each ni(g) sufficiently great and this Kni(g)(g) should have

been chosen in the ni-th step if it was not already covered earlier. �

Theorem 3.1. If a function f is HG-integrable on L ∈ IG then the indefinite HG-

integral F (K) = (HG)
∫

K
f as an additive function on the set of all BG-subintervals

of L, is BG-differentiable almost everywhere on L and

(3.8) DGF (g) = f(g) a.e. on L.
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P r o o f. Having got the previous lemma we can prove this theorem by standard

argument, similar to the one used for the usual Kurzweil-Henstock integral on the

interval (see [4, Theorem 8.2]).

Let E be the set where F is not differentiable or (3.8) does not hold. Then

E =
∞
⋃

m=1
Em where Em stands for the set of all g ∈ E for each of which there exists

a sequence {ni(g)} of natural numbers such that

(3.9)
∣

∣f(g)µG(Kni(g)(g)) − F (Kni(g)(g))
∣

∣ >
1

m
µG(Kni(g)(g)).

So it is enough to show that µG(Em) = 0 for each m. Having fixed m, we apply

Lemma 2.1 to our basis BG to find for every ε > 0 a function ν : L → Z such that

for any βν-partition π in L we have

(3.10)
∑

(I,g)∈π

|f(g)µG(I) − F (I)| <
ε

2m
.

Without loss of generality we can assume that ni(g) > ν(g) for each g ∈ Em and

each natural i. Now we apply Lemma 3.3 to the set Em and to the above sequence

{ni(g)}. We obtain a sequence of pairs {(Ij , gj)}∞j=1 such that, according to (3.9),

for each j = 1, 2, . . .

(3.11) |f(gj)µG(Ij) − F (Ij)| >
1

m
µG(Ij),

(Ij , gj) ∈ βν [Em], sets Ij are pairwise disjoint and Em ⊂
∞
⋃

j=1

Ij . Having chosen k

such that
k
∑

j=1

µG(Ij) > µG(Em)/2 we obtain a βν-partition {(Ij , gj)}k
j=1 for which

the inequality (3.10) holds. Using (3.11) we finally get an estimate

1

2m
µG(Em) <

1

m

k
∑

j=1

µG(Ij) <
k

∑

j=1

|f(gj)µG(Ij) − F (Ij)| <
ε

2m

which implies that µG(Em) < ε. As ε is arbitrary this completes the proof. �
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4. Application to the series with respect to the characters

We consider here the case when the group G is compact and so the chain (3.1) is

reduced to the one-sided sequence

(4.1) G = G0 ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gn ⊃ . . . .

In this case the HG-integral is defined on the whole group G. Moreover, the group

Γ of characters of the group G is discrete now (see [1]) and can be represented as a

sum of an increasing chain of finite subgroups

(4.2) Γ0 ⊂ Γ−1 ⊂ Γ−2 ⊂ . . . ⊂ Γ−n ⊂ . . .

where Γ0 = {γ(0)} with (g, γ(0)) = 1 for all g ∈ G.

So the characters γ constitute a countable orthogonal system on G with respect

to the normalized measure µG and we can consider a series

(4.3)
∑

γ∈Γ

aγγ

with respect to this system. We define a convergence of this series at a point g as

the convergence of its partial sums

(4.4) Sn(g) :=
∑

γ∈Γ
−n

aγ(g, γ)

when n tends to infinity.

With the series (4.3) we associate a function F defined on each coset Kn by

(4.5) F (Kn) :=

∫

Kn

Sn(g) dµG.

It follows easily from Lemma 3.2 that F is an additive function on the family of

all BG-intervals.

By Lemma 3.1 the sum Sn, defined by (4.4), is constant on each Kn. Then (4.5)

implies

(4.6) Sn(g) =
F (Kn(g))

µG(Kn(g))
.
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Theorem 4.1. The series (4.3) is the HG-Fourier series of an HG-integrable

function f if and only if the function F associated with this series by expression

(4.5) coincides on each BG-interval I with the indefinite integral (HG)
∫

I
f .

P r o o f. This can be easily proved by the argument used in [2, Theorem 2.8.1]

for the Lebesgue integral and the Vilenkin-Price system. �

The following two lemmas are immediate consequences of the equality (4.6).

Lemma 4.1. If the series (4.3) converges at a point g ∈ G to a value f(g) then

the associated function F (see (4.5)) is BG-differentiable at g and DGF (g) = f(g).

Moreover, if the series (4.3) satisfies at a point g the conditions

−∞ < lim inf
n→∞

Re Sn(g) 6 lim sup
n→∞

Re Sn(g) < +∞(4.7)

−∞ < lim inf
n→∞

Im Sn(g) 6 lim sup
n→∞

Im Sn(g) < +∞(4.8)

then the associated function F satisfies the inequalities

−∞ < DG ReF (g) 6 DG Re F (g) < +∞,(4.9)

−∞ < DG Im F (g) 6 DG Im F (g) < +∞.(4.10)

Lemma 4.2. If the partial sums (4.4) satisfy at a point g the condition

(4.11) Sn(g) = o
( 1

µG(Kn(g))

)

then the associated function F is BG-continuous at the point g.

The next lemma gives a sufficient condition for the assumption (4.11) of the pre-

vious lemma to hold.

Lemma 4.3. Suppose that the coefficients {aγ} of a series (4.3) satisfy the con-

dition

(4.12) max
γ∈Γ

−(n+1)\Γ−n

|aγ | → 0 if n → ∞.

Then (4.11) holds for partial sums Sn(g) at each point g ∈ G.

P r o o f. We start with denoting the order of the factor group Gn/Gn+1 by pn.

Then the order of G0/G1 is p0, the order of G0/G2 is p0 · p1 and by induction the

order of G0/Gn, n = 1, 2, . . . , is mn := p0 · p1 · . . . · pn−1, with pi > 2 for all i (we
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agree that m0 := 1). Due to the isomorphism between G0/Gn and Γ−n/Γ0 the order

of the subgroup Γ−n is mn.

Since µG(G0) = 1 and µG is translation invariant we have

(4.13) µG(Gn) = µG(Kn) =
1

mn

for all cosets Kn, n > 0.

Fix a point g ∈ G0 and let {Kn(g)} be a sequence of cosets convergent to g. In

view of (4.12) for any ε > 0 there exists k such that for any j > k we have

(4.14) max
γ∈Γ

−(j+1)\Γ−j

|aγ | < ε.

Fixing this k we choose n such that |Sk(g)| · (mn)−1 < ε. Since |(g, γ)| = 1, we

get for any j > k

Sj+1(g) − Sj(g) 6
∑

γ∈Γ
−(j+1)\Γ−j

|aγ | < mj+1 · ε.

Then for any n > k we obtain

|Sn(g)|µG(Kn(g)) 6
1

mn

(

|Sk(g)| +
n−1
∑

j=k

|Sj+1(g) − Sj(g)|

)

6 ε + ε

n−1
∑

j=k

mj+1

mn

6 ε + ε
(

1 +
1

pn−1
+

1

pn−2pn−1
+ . . . +

1

pk+1 · . . . · pn−1

)

6 ε + ε
(

1 +
1

2
+

1

22
+ . . . +

1

2n−k−1

)

6 2ε.

This inequality implies (4.11). �

Theorem 4.2. Suppose that the partial sums (4.4) of the series (4.3) converge

almost everywhere on G to a function f and satisfy the conditions (4.7) and (4.8)

everywhere on G except on a countable set M where (4.11) holds. Then f is HG-

integrable in the sense of Definition 2.2 (applied to the basis BG) and (4.3) is the

HG-Fourier series of f .

P r o o f. Applying (4.6) we get that for any point g at which the series (4.3)

converges to f(g), the function F defined by (4.5) is BG-differentiable at g with

DGF (g) = f(g).
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According to Lemma 4.1, (4.7) and (4.8) imply inequalities (4.9) and (4.10) ev-

erywhere on G except on the set M where by Lemma 4.2 F , together with Re F and

Im F , is BG-continuous.

Therefore, by Theorem 2.1 (used for the basis BG), Re f and Im f are HG-

integrable and ReF and Im F are their HG-integrals. Hence f is HG-integrable,

with F being its indefinite HG-integral. Finally, using Theorem 4.1 we complete the

proof. �

Remark 4.1. In view of Lemma 4.3 we can replace the condition (4.11) by the

condition (4.12) in the assumption of the above theorem.

The following theorem is a particular case of Theorem 4.2.

Theorem 4.3. Suppose that the partial sums (4.4) of the series (4.3) converge

to a function f everywhere on G. Then f is HG-integrable on G and the series (4.3)

is the HG-Fourier series of f .

Let f : G → C be HG-integrable on G. Then the partial sums Sn(f, g) of the

HG-Fourier series of f with respect to the system of characters can be represented,

according to Theorem 4.1 and formula (4.6), as

Sn(f, g) =
1

µG(Kn(g))
(HG)

∫

Kn(g)

f.

This equality together with the differentiability property of the indefinite HG-integral

(see Theorem 3.1) yields

Theorem 4.4. The partial sums Sn(f, g) of the HG-Fourier series of an HG-

integrable on G function f are convergent to f almost everywhere on G.

5. Inversion formula for the transform in the locally compact case

To simplify our notation we shall put in this section K = K0, [g] := gK , {g} :=

{g}0, so that the representation (3.3) with n = 0 for any element g of a coset K

of G0 can be rewritten in the form g = [g] + {g} where [g] is a fixed element of K

and {g} ∈ G0. Similarly we shall use sometimes the notation [γ] := γ
J
to underline

duality, so the representation (3.5) for any element γ of a coset J of Γ0 can be

rewritten in the form γ = [γ] · {γ} where [γ] is a fixed element of J and {γ} ∈ Γ0.

Using this notation and the properties of a character γ we can write

(5.1) (g, γ) = ({g}, [γ]) · ([g], [γ]) · ({g}, {γ}) · ([g], {γ}).
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Now we observe:

1) {g} ∈ G0 and {γ} ∈ Γ0 = G⊥
0 . So ({g}, {γ}) = 1 and we can eliminate ({g}, {γ})

from the representation (5.1) getting

(5.2) (g, γ) = ({g}, [γ]) · ([g], [γ]) · ([g], {γ}).

2) [γ] ∈ Γ−m(γ) = G⊥
m(γ) where m(γ) > 0 and [γ] ↾G0 is a character of the

subgroup G0.

3) ([g], [γ]) is constant if g belongs to a fixed coset of G0 and γ belongs to a fixed

coset of Γ0.

4) Using the duality between G and Γ we can state that g represents a character

of Γ and, similarly to the property 2), [g] ↾Γ0 is a character of Γ0. So ([g], {γ}) is a

value of this character at the point {γ}.

Therefore, according to (5.2), if g belongs to a fixed coset of G0 and γ belongs to

a fixed coset of Γ0, we can represent (g, γ), up to a constant multiplier ([g], [γ]), as a

product of ({g}, [γ]) considered as the value of the character [γ] at {g}, and ([g], {γ})

considered as the value of the character [g] at {γ}.

Now we obtain a generalization of Theorem 4.3 in the locally compact case.

Theorem 5.1. If the limit

lim
n→∞

(HΓ)

∫

Γ
−n

a(γ)(g, γ) dµΓ

exists at each g ∈ G and its value is f(g), where a(γ) is a locally HΓ-integrable

function, then f is HG-integrable on G−n for each n and

(5.3) a(γ) = lim
n→∞

(HG)

∫

G
−n

f(g)(g, γ) dµG a.e. on Γ.

P r o o f. We follow the lines of the proof in [6, Theorem 9] using the present

definition of the HG- and HΓ-integral and having in mind the convergence of a series

as it is understood in Section 4 (see (4.4)). Suppose that g ∈ K and J denotes any

coset of Γ0. Then by (5.2)

f(g) = lim
n→∞

(HΓ)

∫

Γ
−n

a(γ)(g, γ) dµΓ

= lim
n→∞

∑

J⊂Γ
−n

(HΓ)

∫

J

a(γ)({g}, [γ]) · ([g], [γ]) · ([g], {γ}) dµΓ

= lim
n→∞

∑

J⊂Γ
−n

({g}, γJ) · (HΓ)

∫

J

a(γ)([g], [γ]) · ([g], {γ}) dµΓ.
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So if g ∈ K, the function f(g) is the sum of series, with respect to the system of

characters γJ , at the point {g}, with coefficients

b
(K)
J = (HΓ)

∫

J

a(γ)([g], [γ])(gK , {γ}) dµΓ,

and this series is convergent everywhere on K. Then by Theorem 4.3 the function

p(t) = f(gK + t) with t = {g} ∈ G0 is HG-integrable on G0 and the coefficients b
(K)
J

are the HG-Fourier coefficients of p(t), i.e.,

b
(K)
J = (HΓ)

∫

J

a(γ)([g], [γ])(gK , {γ}) dµΓ(5.4)

= (HG)

∫

G0

p(t)({g}, γJ) dµG = (HG)

∫

K

f(g)({g}, γJ) dµG

(the last equality is justified by Remark 3.2). By observation 3), ([g], [γ]) is constant

when g ∈ K and γ ∈ J . Hence (5.4) implies

(5.5) (HΓ)

∫

J

a(γ)(gK , {γ}) dµΓ = (HG)

∫

K

f(g)([g], [γ])({g}, γJ) dµG.

We notice now that for each fixed J the value

(HΓ)

∫

J

a(γ)(gK , {γ}) dµΓ

is the Fourier coefficient, with respect to the character gK , of the HΓ-integrable

function a(γ) = a([γ]+{γ}) considered as a function of {γ} ∈ Γ0. Applying Theorem

4.4 to this HΓ-Fourier series, we get

lim
n→∞

∑

K⊂G
−n

(HΓ)

∫

J

a(γ)(gK , {γ}) dµΓ · (gK , {γ}) = a(γ) a.e. on J.

Now using (5.5) and (5.2) we compute

lim
n→∞

∑

K⊂G
−n

(HΓ)

∫

J

a(γ)(gK , {γ}) dµΓ · (gK , {γ})

= lim
n→∞

∑

K⊂G
−n

(HG)

∫

K

f(g)([g], [γ])({g}, γJ) dµG · (gK , {γ})

= lim
n→∞

(HG)

∫

G
−n

f(g)({g}, γJ) · (gK , {γ}) · ([g], [γ]) dµG

= lim
n→∞

(HG)

∫

G
−n

f(g)(g, γ) dµG = a(γ) a.e. on J.

The last equality is true for any J , so we get (5.3), completing the proof. �
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