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1. Introduction

In 1960, D.D.Wall published a well-known paper [6] concerning the modular peri-

odicity of a Fibonacci sequence. In this paper an interesting problem was formulated,

often referred to as Wall’s question (see [6, p. 528]), which has remained unsolved up

to the present. Let us outline this problem.

Let (Fn)∞n=0 denote the Fibonacci sequence defined by Fn+2 = Fn+1 + Fn with

F0 = 0, F1 = 1. Let m > 0 be an arbitrary integer. Reducing Fn modulo m and

taking the least nonnegative residues, we obtain the sequence (Fn mod m)∞n=0, which

is periodic. A positive integer k(m) is called the period of the Fibonacci sequence

modulo m if it is the smallest positive integer for which Fk(m) ≡ 0 (mod m) and

Fk(m)+1 ≡ 1 (mod m). For a fixed prime p, Wall proved that, if k(p) = k(ps) 6=

k(ps+1), then k(pt) = pt−sk(p) for t > s > 0. Wall asked whether k(p) = k(p2) is

possible. This is still an open question.

In [6] Wall noted that for p < 104, a counterexample of k(p) 6= k(p2) does not exist.

According to [7], k(p) 6= k(p2) for p < 109. Using extensive search by computer, in

[2] this result was extended to p < 1014. Finally, according to the last report from

2007 (see [4]) there exists no such prime p < 2 × 1014. Finding the answer to Wall’s

question can be extremely difficult. In 1992, Zhi-Hong Sun and Zhi-Wei Sun [5]
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showed that, if p ∤ xyz and xp + yp = zp, then k(p) = k(p2). Consequently, an

affirmative answer to Wall’s question implies the first case of Fermat’s last theorem.

It is well known that k(p) = k(p2) if and only if Fp−(5|p) ≡ 0 (mod p2) where (a|b)

denotes the Legendre symbol of a and b. Crandall, Dilcher, and Pomerance [1] called

primes p > 5 satisfying Fp−(5|p) ≡ 0 (mod p2) the Wall-Sun-Sun primes. These are

sometimes also called Fibonacci-Wieferich primes. See [4] for example. It has been

conjectured that there are infinitely many Wall-Sun-Sun primes, but the conjecture

remains unproven.

2. Wall’s question and its equivalent formulations

It is well known that Fn can be computed by taking the powers of a matrix.

Namely, if

(2.1) F =

[

F0 F1

F1 F2

]

=

[

0 1

1 1

]

, then Fn =

[

Fn−1 Fn

Fn Fn+1

]

.

Consequently, k(p) is the period of (Fn mod p)∞n=0 if and only if k(p) is the smallest

positive integer k for which F k ≡ E(mod p) and k(p2) is the period of (Fn mod p2)∞n=0

if and only if k(p2) is the smallest positive integer l satisfying F l ≡ E (mod p2), where

E is the 2× 2 identity matrix. For any prime p, let us now define the integer matrix

Ap = [aij ] such that

(2.2) Ap =
1

p
(F k(p) − E).

From (2.1) it follows that

(2.3) Ap =

[

a11 a21

a21 a11 + a21

]

.

Lemma 2.1. For any prime p we have k(p) 6= k(p2) if and only if Ap 6≡ 0 (mod p).

P r o o f. This follows from (2.2). �

Lemma 2.2. Let p 6= 5. Then Ap ≡ 0 (mod p) if and only if detAp ≡ 0 (mod p).

P r o o f. Let p 6= 2. Put k = k(p). From (2.2) and (2.3) it follows that

(2.4) detF k = 1 + p(2a11 + a21) + p2 detAp where det Ap = a2
11 + a11a21 − a2

21.

Since detF = −1, (2.4) implies 2a11+a21 ≡ 0 (mod p) and detAp ≡ −5a2
11 (mod p).

Consequently, we have a11 ≡ 0 (mod p) if and only if a21 ≡ 0 (mod p), and thus,

detAp ≡ 0 (mod p) implies Ap ≡ 0 (mod p). The validity of the converse implication

is evident. On the other hand, for p = 2 we can easily verify that A2 6≡ 0 (mod 2)

and det A2 6≡ 0 (mod 2). �
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Remark 2.3. For p = 5 we have A5 6≡ 0 (mod 5) and detA5 ≡ 0 (mod 5).

Our next considerations will take place in the following framework. Let Lp be the

splitting field of the Fibonacci characteristic polynomial f(x) = x2 − x − 1 over the

field of p-adic numbers Qp and let α, β be the roots of f(x) in Lp. Denote by Op

the ring of integers of Lp. Clearly α, β ∈ Op. Since the discriminant of f(x) is equal

to 5, it follows that, for p 6= 5, Lp/Qp does not ramify and so the maximal ideal of

Op is generated by p. Moreover, if Lp = Qp, then α, β ∈ Zp, where Zp is the ring of

p-adic integers.

For a unit ε ∈ Op we denote by ordpt(ε) the least positive rational integer h such

that εh ≡ 1 (mod pt). Since εh ≡ 1 (mod p) implies εph ≡ 1 (mod p2), we have

(2.5) either ordp2(ε) = ordp(ε) or ordp2(ε) = p · ordp(ε).

Furthermore, it is not difficult to prove that if p > 2 and ordp(ε) 6= ordp2(ε), then

for any t ∈ N we have ordpt(ε) = pt−1 ordp(ε). More generally, if ε 6= ±1 and s ∈ N

is the largest integer such that ordps(ε) = ordp(ε), then for any t > s, we have

ordpt(ε) = pt−s ordp(ε).

Lemma 2.4. Let p 6= 5. We have either ordpt(α) = ordpt(β) or ordpt(α) =

2 ordpt(β) or 2 ordpt(α) = ordpt(β).

P r o o f. From Viète’s equation αβ = −1 in Lp it follows that α = ±1 if and

only if β = ±1. Hence, if αr = 1, then βr = ±1, and consequently, β2r = 1. This

implies ordpt(β) | 2 ordpt(α). By analogy, we can obtain ordpt(α) | 2 ordpt(β). �

Corollary 2.5. For any prime p 6= 5 we have

(2.6) ordp2(α) ≡ 0 (mod p) if and only if ordp2(β) ≡ 0 (mod p).

P r o o f. This is a consequence of Lemma 2.4 if p 6= 2. For p = 2, the polynomial

f(x) is irreducible over Q2 and so ord2t(α) = ord2t(β). �

In Theorem 2.6 we generalize [3, Lemma 2.4] also to the case of f(x) being irre-

ducible over Qp.
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Theorem 2.6. Let p 6= 5. Then k(pt) = lcm(ordpt(α), ordpt(β)) for any t ∈ N.

P r o o f. Over Lp we can write Fn = Aαn + Bβn for suitable A, B ∈ Lp.

The coefficients A, B are uniquely determined by the equations A + B = 0 and

Aα + Bβ = 1 over Lp. The determinant of the matrix of this system is equal to

β − α. As α 6≡ β (mod p), the Cramer rule gives A = −(β − α)−1, B = (β − α)−1.

Moreover, A, B are units in Op. Let k = k(pt). Then [Aαk +Bβk, Aαk+1 +Bβk+1] ≡

[A + B, Aα + Bβ](mod pt). This system can be reduced to an equivalent form

(2.7)

[

1 1

α β

] [

A(αk − 1)

B(βk − 1)

]

≡

[

0

0

]

(mod pt).

As the determinant of the matrix in (2.7) is not divisible by p, (2.7) has only one

solution

A(αk − 1) ≡ 0 (mod pt), B(βk − 1) ≡ 0 (mod pt).

This implies αk ≡ 1 (mod pt) and βk ≡ 1 (mod pt). Thus, we have ordpt(α) |

k and ordpt(β) | k, which implies lcm(ordpt(α), ordpt(β)) | k. As A, B are not

divisible by p, the periods of the sequences (Aαn mod pt)∞n=0 and (Bβn mod pt)∞n=0

are ordpt(α) and ordpt(β). Consequently, the period k of (Aαn + Bβn mod pt)∞n=0

divides lcm(ordpt(α), ordpt(β)) and the theorem follows. �

Theorem 2.7. Let p 6= 5. Then k(p) 6= k(p2) if and only if

(2.8) ordp2(α) ≡ 0 (mod p) and ordp2(β) ≡ 0 (mod p).

P r o o f. It follows from (2.8) that lcm(ordp2(α), ordp2(β)) ≡ 0 (mod p) and, by

Theorem 2.6, we have k(p2) ≡ 0 (mod p). Using Theorem 2.6 for t = 1 and recalling

that (p) is the maximal ideal of Op, we have k(p) 6≡ 0 (mod p), which together with

k(p2) ≡ 0 (mod p), gives k(p) 6= k(p2).

Conversely, if k(p) 6= k(p2), then k(p2) = p ·k(p). From Theorem 2.6 it now follows

that lcm(ordp2(α), ordp2(β)) ≡ 0 (mod p). This implies that ordp2(α) ≡ 0 (mod p)

or ordp2(β) ≡ 0 (mod p), which together with (2.6) proves (2.8). �

Remark 2.8. If p = 5, then k(p) 6= k(p2) and k(5t) = 4 ·5t for any t ∈ N. See [6].

Our results can be summarized in the following theorem.
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Theorem 2.9. Let p 6= 5 and let s be the number of roots α, β of f(x) in Op

whose order modulo p2 is divisible by p. Then there are the following possibilities:

Case s = 0: k(p) = k(p2), or equivalently Ap ≡ 0 (mod p).

Case s = 1: This case is impossible.

Case s = 2: k(p) 6= k(p2), or equivalently detAp 6≡ 0 (mod p).

P r o o f. By Theorem 2.6 we have that s = 0 if and only if k(p) = k(p2).

Lemma 2.1 states that k(p) = k(p2) if and only if Ap ≡ 0 (mod p), which is equivalent

to detAp ≡ 0 (mod p) by Lemma 2.2. By Corollary 2.5 we see that the case of k = 1

is impossible. The proof is complete. �

Our results reduce Wall’s question to solving the following equivalent problem. Is

there at least one root α ∈ Op of f(x) for which ordp2(α) 6≡ 0 (mod p) or is this

never possible?

Now we derive two interesting criteria that can be used, without computing the

roots of f(x) in Op, to decide whether k(p) = k(p2) or not. Let p 6= 5. Put

q = |Op/(p)|. Then q = pt where t = [Lp : Qp] ∈ {1, 2}. If f(x) is irreducible over

Qp, then Op/(p) is a field with p2 elements. If f(x) is not irreducible over Qp, then

f(x) has both roots in the ring Zp and Op/(p) is a field with p elements. For the

proof of our criteria, we shall need the following lemma.

Lemma 2.10. We have ordp2(α) 6≡ 0 (mod p) if and only if αq−1 ≡ 1 (mod p2).

P r o o f. Put s = ordp2(α). Clearly, [Op/(p2)]× has q(q − 1) elements and so

s | q(q − 1). Let p ∤ s. As q = pt, we have s | q − 1, and αq−1 ≡ 1 (mod p2) follows.

On the other hand, let αq−1 ≡ 1 (mod p2). Then s | q − 1. As p ∤ q − 1, we have

ordp2 (α) 6≡ 0 (mod p). �

Theorem 2.11. Let p 6= 5, u ∈ Op be such that f(u) ≡ 0 (mod p). Then

k(p) = k(p2) if and only if

(2.9) u2q − uq − 1 ≡ 0 (mod p2),

or equivalently

(2.10) f(u) + (uq − u)f ′(u) ≡ 0 (mod p2),

where f ′ is the derivative of the Fibonacci characteristic polynomial f .

P r o o f. Let u ∈ Op, u2 − u − 1 ≡ 0 (mod p). Then we have u ≡ α (mod p)

or u ≡ β (mod p). We can assume u ≡ α (mod p). Then uq ≡ αq (mod p2). If

k(p) = k(p2), then uq ≡ αq ≡ α (mod p2) and u2q −uq−1 ≡ α2−α−1 = 0 (mod p2).
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On the other hand, assume u2q − uq − 1 ≡ 0 (mod p2). Let uq = α + pv. Then

(α + pv)2 − (α + pv) − 1 ≡ pv(2α − 1) ≡ 0 (mod p2). Now p 6= 5 implies 2α − 1 6≡

0 (mod p) and so v ≡ 0 (mod p). Consequently, uq ≡ α (mod p2) and αq−1 ≡

uq(q−1) ≡ 1 (mod p2). This, together with Lemma 2.10, yields ordp2(α) 6≡ 0 (mod p)

and k(p) = k(p2) follows by Theorem 2.7 and Corollary 2.5.

Furthermore, let u = α + pw. Then (2.10) is equivalent to

(2.11) (αq − α)(2α + 2pw − 1) ≡ 0 (mod p2).

If k(p) = k(p2), then αq ≡ α (mod p2) and (2.11) follows.

Conversely, assume (2.11). As p 6= 5, we have 2α + 2pw − 1 ≡ 2u − 1 ≡ f ′(α) 6≡

0 (mod p). Consequently, (2.11) gives αq − α ≡ 0 (mod p2). This, together with

Lemma 2.10, implies k(p) = k(p2) as required. �
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