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EXISTENCE, UNIQUENESS AND REGULARITY OF

STATIONARY SOLUTIONS TO INHOMOGENEOUS

NAVIER-STOKES EQUATIONS IN R
n

R. Farwig, Darmstadt, and H. Sohr, Paderborn

(Received September 28, 2006)

Abstract. For a bounded domain Ω ⊂ Rn , n > 3, we use the notion of very weak solutions
to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes
system −∆u+ u · ∇u+∇p = f , div u = k, u|∂Ω

= g with u ∈ Lq , q > n, and very general
data classes for f , k, g such that u may have no differentiability property. For smooth data
we get a large class of unique and regular solutions extending well known classical solution
classes, and generalizing regularity results. Moreover, our results are closely related to those
of a series of papers by Frehse & Růžička, see e.g. Existence of regular solutions to the
stationary Navier-Stokes equations, Math.Ann. 302 (1995), 669–717, where the existence of
a weak solution which is locally regular is proved.

Keywords: stationary Stokes and Navier-Stokes system, very weak solutions, existence
and uniqueness in higher dimensions, regularity classes in higher dimensions
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1. Introduction and main result

We consider the stationary Navier-Stokes system

(1.1) −∆u + u · ∇u + ∇p = f, div u = k, u|∂Ω
= g

in a bounded domain Ω ⊆ R
n, n > 3, with boundary ∂Ω of class C2,1 and with data

f = div F , k, g satisfying

F = (Fi,j)
n
i,j=1 ∈ Lr(Ω), k ∈ Lr(Ω), g ∈ W−1/q,q(∂Ω),(1.2)

∫

Ω

k dx =

∫

∂Ω

N · g dS where n 6 q < ∞, q′ < r 6 q,
1

n
+

1

q
>

1

r
.
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Here N = N(x) = (N1(x), . . . , Nn(x)) denotes the outer normal at x = (x1, . . . ,

xn) ∈ ∂Ω, the surface integral is well defined in the generalized sense

∫

∂Ω

N · g dS = 〈g, N〉∂Ω = 〈N · g, 1〉∂Ω

of a boundary distribution, and q′ = q/(q − 1).

The aim of this paper is to prove existence, uniqueness and regularity of solutions

u ∈ Lq(Ω) to the system (1.1) for the general data class (1.2) with very low regularity.

Note that u need not be differentiable excepting div u = k; in particular u need not

have a finite Dirichlet integral. Thus this solution class is different from the usual

class of weak solutions which have more differentiability properties but no uniqueness

in general. A scaling argument shows that the data class (1.2) is optimal for the

solution class Lq(Ω). In particular, (1.2) extends the class introduced in [20] for

n = 3 where k ∈ Lq(Ω), q > r, is supposed.

Our largest solution class is obtained for q = n by u ∈ Ln(Ω). We cannot expect

that there is any larger solution class Lq(Ω) with 1 < q < n, keeping the regularity

property. Note in this context that the condition q = n corresponds to Serrin’s

regularity condition 2/∞ + n/q = 1 in the nonstationary case.

Our first result, Theorem 1.3 below, shows the existence of a unique solution

u ∈ Lq(Ω), q > n, with data (1.2) under the smallness condition

(1.3) ‖F‖Lr(Ω) + ‖k‖Lr(Ω) + ‖g‖W−1/q,q(∂Ω) 6 K

with some constant K = K(Ω, q, r) > 0. The next result, Theorem 1.4, states the

uniqueness of any solution u ∈ Lq(Ω) with data (1.2), if the smallness condition

(1.4) ‖u‖Lq(Ω) + ‖k‖Lr(Ω) 6 K

is satisfied with some constant K = K(Ω, q, r) > 0. Finally, Theorem 1.5 shows the

regularity of such a solution u ∈ Lq(Ω), q > n, if the data (1.2) are correspondingly

smooth.

These results extend classical results, see [19], essentially in two directions. First

we obtain a new existence and uniqueness class u ∈ Lq(Ω) without any differentia-

bility property. Further, since the norms in (1.3), (1.4) are weaker than those in

the usual conditions, we obtain a new uniqueness class even for regular solutions.

In particular, we extend in this way regularity results of Galdi [19], Ch. VIII, Ger-

hardt [21] and von Wahl [34], where finite Dirichlet integrals are supposed. Note

that the objective of this paper is different from that in a series of papers by Frehse

& Růžička [10]–[15]; those authors prove for large data f and k = 0, g = 0 the
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existence of at least one weak L2-solution satisfying the maximum type estimate

sup
Ω0

1
2 |u|

2 + p 6 c(Ω0) for every subdomain Ω0 ⊂⊂ Ω and being a strong solution.

For a result on local regularity of solutions with finite Dirichlet integral we refer to

Frehse & Růžička [16].

The notion of very weak solutions, introduced in principle by Amann [2], [3] for

the 3D-nonstationary case with k = 0, and generalized in [9], [20] to k 6= 0, rests on

the use of test functions in the space

(1.5) C2
0,σ(Ω) := {v = (v1, . . . , vn) ∈ C2(Ω); div v = 0, v|∂Ω

= 0}.

When we apply a test function w ∈ C2
0,σ(Ω) formally to (1.1) we obtain the following

relation well defined for u ∈ Lq, q > n, and data as in (1.2):

−〈u, ∆w〉Ω + 〈g, N · ∇w〉∂Ω − 〈uu,∇w〉Ω − 〈ku, w〉Ω(1.6)

= −〈F,∇w〉Ω, w ∈ C2
0,σ(Ω).

Here 〈·, ·〉Ω means the usual L
q-Lq′

-pairing in Ω, 〈g, N · ∇w〉∂Ω denotes the value of

the distribution g = (g1, . . . , gn) ∈ W−1/q,q(∂Ω) at the normal derivative N · ∇w|∂Ω
,

and uu = (uiuj)
n
i,j=1. Further we use the relation u · ∇u = (u · ∇)u = div(uu)− ku,

and the notation f = div F :=
( n∑

i=1

DiFij

)n

j=1
, Di = ∂/∂xi, i = 1, . . . , n.

To clarify the meaning of all terms in (1.6) let τ = τ(x) = (τ1(x), . . . , τn−1(x))

be a system of unit tangential vectors at x ∈ ∂Ω such that (τ(x), N(x)) =

(τ1(x), . . . , τn−1(x), N(x)) defines a Cartesian basis at x. Then g(x) has the form

g(x) = Lg(τ(x)) + (N · g)N(x)

where Lg(τ(x)) ∈ R
n means a suitable linear combination of τ1(x), . . . , τn−1(x)

contained in the tangential plane at x, and N · g = N1g1 + . . . + Nngn denotes the

normal component of g(x). An elementary calculation, using div w = 0 and assuming

without loss of generality that (τ(x), N(x)) is the standard basis of Rn, shows that

N · ∇w|∂Ω
is contained in the tangential plane. Thus we obtain that

〈g, N · ∇w〉∂Ω = 〈Lg(τ1, . . . , τn−1), N · ∇w〉∂Ω;

hence (1.6) contains only the tangential components of g.

For the normal componentN ·g of g we have to require the additional (well defined)

conditions

(1.7) div u = k in Ω, N · u = N · g on ∂Ω.
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Thus, if (1.6) is satisfied for some vector field u ∈ Lq(Ω), we say that

Lu|∂Ω

(τ1, . . . , τn−1) := Lg(τ1, . . . , τn−1) ∈ W−1/q,q(∂Ω)

is the tangential trace of u at ∂Ω in the sense of boundary distributions. Since the

trace N · u|∂Ω
∈ W−1/q,q(∂Ω) is well defined in the usual sense we get a precise

meaning of the trace u|∂Ω
= g in (1.1).

Definition 1.1. Let data f , k, g be given as in (1.2). Then a vector field

u ∈ Lq(Ω) is called a very weak solution of (1.1) if and only if the relation (1.6) and

the conditions (1.7) are satisfied.

For the linearized system

(1.8) −∆u + ∇p = f, div u = k, u|∂Ω
= g

we may omit the condition q′ < r in (1.2), caused by the nonlinear term u · ∇u, and

suppose that the data f = div F , k, g satisfy

F ∈ Lr(Ω), k ∈ Lr(Ω), g ∈ W−1/q,q(∂Ω),(1.9) ∫

Ω

k dx =

∫

∂Ω

N · g dS with n 6 q < ∞, 1 < r 6 q,
1

n
+

1

q
>

1

r
.

Definition 1.2. Let data f , k, g be given as in (1.9). Then a vector field

u ∈ Lq(Ω) is called a very weak solution of (1.8) if and only if the relation

(1.10) −〈u, ∆w〉Ω + 〈g, N · ∇w〉∂Ω = −〈F,∇w〉Ω for all w ∈ C2
0,σ(Ω)

and the conditions div u = k, N · u|∂Ω
= N · g are satisfied.

Our main result reads as follows.

Theorem 1.3 (Existence for small data). Suppose the data f = div F , k, g

satisfy (1.2). Then there exists a constant K = K(Ω, q, r) > 0 such that in the case

(1.11) ‖F‖Lr(Ω) + ‖k‖Lr(Ω) + ‖g‖W−1/q,q(∂Ω) 6 K

there is a unique very weak solution u ∈ Lq(Ω) of (1.1) satisfying the estimate

(1.12) ‖u‖Lq(Ω) 6 C(‖F‖Lr(Ω) + ‖k‖Lr(Ω) + ‖g‖W−1/q,q(∂Ω))

with C = C(Ω, q, r) > 0. Moreover, there exists a pressure p ∈ W−1,q(Ω) such that

−∆u + u · ∇u + ∇p = f is satisfied in the sense of distributions.

Our uniqueness and regularity results are described in the following two theorems.

64



Theorem 1.4 (Uniqueness of small solutions). Suppose the data f = div F, k, g

satisfy (1.2), and let u ∈ Lq(Ω) be a very weak solution of (1.1). Then there exists

a constant K = K(Ω, q, r) > 0 such that under the condition

(1.13) ‖u‖q + ‖k‖r 6 K

there is no other very weak solution v ∈ Lq(Ω) of (1.1) for the same data f , k, g.

Theorem 1.5 (Regularity for smooth data). Let u ∈ Lq(Ω) be a very weak solu-

tion of the Navier-Stokes system (1.1) with data f = div F and k, g as in (1.2).

(i) Assume that the data f , k, g satisfy the additional conditions

F ∈ Lq(Ω), k ∈ Lq(Ω) and g ∈ W 1−1/q,q(∂Ω).

Then u ∈ W 1,q(Ω), the equation −∆u + u · ∇u + ∇p = f holds in the sense of

distributions with some pressure function p ∈ Lq(Ω), and u|∂Ω
= g holds in the

sense of the usual trace theorem.

(ii) Assume that the data f = div F , k, g satisfy the additional conditions

f ∈ Lq(Ω), k ∈ W 1,q(Ω) and g ∈ W 2−1/q,q(∂Ω).

Then u ∈ W 2,q(Ω), the equation −∆u+u ·∇u+∇p = f holds strongly in Lq(Ω)

with some pressure function p ∈ W 1,q(Ω) and u|∂Ω
= g holds in the sense of

traces.

Remark 1.6. The regularity result in Theorem 1.5 (ii) can be slightly extended

as follows: Assume u ∈ Lq(Ω) is a very weak solution of (1.1) with data f = div F ,

k, g satisfying (1.2) and additionally

f ∈ Ls(Ω), F ∈ Lq(Ω), k ∈ W 1,q(Ω) and g ∈ W 2−1/q,q(∂Ω)

where 1
2n 6 s < ∞. Then u ∈ D(As)+W 2,q(Ω), where D(As) denotes the domain of

the Stokes operator, see §2 below, the equation −∆u+u ·∇u+∇p = f holds strongly

in Lq̃(Ω), q̃ = min(q, s), with some pressure function p ∈ W 1,q̃(Ω) and u|∂Ω
= g holds

in the sense of traces.
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2. Preliminaries

Let 1 < q < ∞ and q′ = q/(q − 1). We need the usual function spaces Lq(Ω),

Lq(∂Ω),Wα,q(Ω),Wα,q
0 (Ω),W−α,q(Ω) = (Wα,q′

0 (Ω))′, Wα,q(∂Ω), andW−α,q(∂Ω) =

(Wα,q′

(∂Ω))′, 0 6 α 6 2. The corresponding pairings are denoted by 〈·, ·〉Ω or 〈·, ·〉∂Ω,

resp., and the corresponding norms are denoted by ‖·‖q = ‖·‖q,Ω, ‖·‖±α;q,Ω = ‖·‖±α;q,

‖·‖q,∂Ω, and ‖·‖±α;q,∂Ω, respectively.

The spaces of smooth functions on Ω are denoted by Cj(Ω), Cj
0(Ω), Cj(Ω) for

j = 0, 1, 2, . . . and j = ∞. We set

Cj
0(Ω) := {v ∈ Cj(Ω); v|∂Ω

= 0},

Cj
0,σ(Ω) := {v = (v1, . . . , vn) ∈ Cj

0(Ω); div v = 0},

and Cj
0,σ(Ω) := {v ∈ Cj

0(Ω); div v = 0}. The space of distributions C∞
0 (Ω)′ is the

dual space of C∞
0 (Ω) in the usual topology, the duality pairing of which is again

denoted by 〈·, ·〉Ω. Correspondingly, we use the test function space Cj(∂Ω), j = 1, 2,

on the boundary ∂Ω, and the corresponding distribution spaces Cj(∂Ω)′ with pairing

〈·, ·〉∂Ω.

Let Lq
σ(Ω) be the closure of C∞

0,σ(Ω) in the norm ‖·‖Lq(Ω). The dual space Lq
σ(Ω)′

of Lq
σ(Ω) is identified with Lq′

σ (Ω) by the pairing 〈f, v〉Ω =
∫
Ω

f · v dx. By analogy,

we identify Lq(∂Ω)′ = Lq′

(∂Ω) with pairing 〈f, v〉∂Ω =
∫

∂Ω f · v dS.

We need some trace and extension properties for α = 1, 2. The trace map f 7→ f|∂Ω

is a well defined bounded linear operator from Wα,q(Ω) onto Wα−1/q,q(∂Ω). Con-

versely, there exists a bounded linear operator E1 : W 1−1/q,q(∂Ω) → W 1,q(Ω) with

E1(h)|∂Ω
= h, and a bounded linear operator E2 : W 2−1/q,q(∂Ω)×W 1−1/q,q(∂Ω) →

W 2,q(Ω) satisfying E2(h1, h2)|∂Ω
= h1, N · ∇E2(h1, h2)|∂Ω

= h2; see [28], Theo-

rem 5.8, [33], 5.4.4.

Let 1 < r 6 q, 1/n + 1/q > 1/r, and let f = (f1, . . . , fn) ∈ Lq(Ω), div f ∈ Lr(Ω).

Then, using E1 with q replaced by q′, from the embedding estimate

‖E1(h)‖r′,Ω 6 C(‖E1(h)‖q′,Ω + ‖∇E1(h)‖q′,Ω), C = C(Ω, q, r) > 0,

and Green’s identity 〈div f, E1(h)〉Ω = 〈N · f, h〉∂Ω − 〈f , ∇E1(h)〉Ω for h ∈

W 1/q,q′

(∂Ω), we get N · f|∂Ω
∈ W−1/q,q(∂Ω) and the estimate

(2.1) ‖N · f‖− 1

q ;q,∂Ω 6 C(‖f‖q,Ω + ‖ div f‖r,Ω)

with C = C(Ω, q, r) > 0.
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Conversely, there is a linear operator Ê : W−1/q,q(∂Ω) → Lq(Ω) satisfying

div Ê(h) ∈ Lr(Ω), N · Ê(h)|∂Ω
= h and the estimate

(2.2) ‖Ê(h)‖q,Ω + ‖ div Ê(h)‖r,Ω 6 C‖h‖−1/q;q,∂Ω, h ∈ W−1/q,q(∂Ω),

with C = C(Ω, q, r) > 0; see [29], Corollary 4.6, (4.10).

As an application we consider some gradient ∇H = (D1H, . . . , DnH) ∈ Lq(Ω)

with ∆H ∈ Lr(Ω), and apply (2.1) to ∇H and to the vector fields f i,j =

(f i,j
1 , . . . , f i,j

n ), 1 6 i < j 6 n, satisfying f i,j
i := DjH , f i,j

j := −DiH but f ij
k = 0

if i 6= k 6= j. Obviously div f i,j = DiDjH − DjDiH = 0 in the sense of distribu-

tions. Then N · ∇H|∂Ω
and N · f i,j

|∂Ω

∈ W−1/q,q(∂Ω) are well defined by (2.1), and

a calculation shows that each DkH , k = 1, . . . , n, at ∂Ω is a linear combination of

N · ∇H|∂Ω
and N · f i,j

|∂Ω

with 1 6 i < j 6 n. Therefore we conclude from (2.1) that

∇H|∂Ω
∈ W−1/q,q(∂Ω) is well defined and satisfies the estimate

(2.3) ‖∇H‖−1/q;q,∂Ω 6 C(‖∇H‖q,Ω + ‖∆H‖r,Ω)

with C = C(Ω, q, r) > 0.

Consider the data f = div F , k, g as in (1.9), and the weak Neumann problem

(2.4) ∆H = k, N · ∇H|∂Ω
= N · g

where ∇H ∈ Lq(Ω) is considered as a solution. Then we use Ê(h) with h = N · g ∈

W−1/q,q(∂Ω), and choose a solution b(h) ∈ W 1,r
0 (Ω) of the equation div b(h) =

div Ê(h) − k ∈ Lr(Ω). Since

∫

Ω

(div Ê(h) − k) dx =

∫

∂Ω

N · g dS −

∫

Ω

k dx = 0,

such a solution exists, see [18], Theorem III, 3.2, or [31], II, Lemma 2.1.1, and satisfies

(2.5) ‖b(h)‖q,Ω 6 C1‖∇b(h)‖r,Ω 6 C2(‖ div Ê(h)‖r,Ω + ‖k‖r,Ω)

with Cj = Cj(Ω, q, r) > 0, j = 1, 2. Writing (2.4) in the form

(2.6) ∆H = div(Ê(h) − b(h)), N · (∇H − Ê(h) − b(h))|∂Ω
= 0,

we find, see [17], [29], a unique solution ∇H ∈ Lq(Ω) satisfying

(2.7) ‖∇H‖q,Ω 6 C1(‖Ê(h)‖q,Ω + ‖b(h)‖q,Ω) 6 C2(‖N · g‖−1/q;q,∂Ω + ‖k‖r,Ω),
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and therefore

(2.8) ‖∇H‖−1/q;q,∂Ω 6 C(‖N · g‖−1/q;q,∂Ω + ‖k‖r,Ω)

with C = C(Ω, q, r) > 0, Cj = Cj(Ω, q, r) > 0, j = 1, 2.

For the proof of the identity (2.9) below we will approximate the data k, g in (2.4)

by smooth functions kj , gj, j ∈ N, such that

lim
j→∞

‖k − kj‖r,Ω = 0, lim
j→∞

‖N · (g − gj)‖−1/q;q,∂Ω = 0, and

∫

Ω

kj dx =

∫

∂Ω

N · gj dS.

To prove their existence we use (2.6), F = Ê(h) − b(h) ∈ Lr(Ω), and construct by a

standard mollification procedure smooth functions Fj , j ∈ N, satisfying

lim
j→∞

‖Fj − F‖q,Ω = 0 and lim
j→∞

‖div(Fj − F )‖r,Ω = 0.

Setting kj = div Fj , gj = Fj|∂Ω
and using (2.1) with f replaced by F − Fj we get

the desired properties. Let ∇Hj ∈ Lq(Ω) be the corresponding smooth solutions of

(2.4). Using (2.7), (2.8) with ∇H, g, k replaced by ∇H −∇Hj , g − gj , k − kj we see

that lim
j→∞

‖∇H −∇Hj‖q,Ω = 0 and lim
j→∞

‖∇H −∇Hj‖−1/q;q,∂Ω = 0. Then, using the

Stokes operator Aq′ and its inverse A−1
q′ , see below, we get the important identity

〈∇H, ∆A−1
q′ v〉Ω = lim

j→∞
〈∇Hj , ∆A−1

q′ v〉Ω(2.9)

= lim
j→∞

(〈∇Hj , N · ∇A−1
q′ v〉∂Ω + 〈∇∆Hj , A

−1
q′ v〉Ω)

= 〈∇H, N · ∇A−1
q′ v〉∂Ω

for all v ∈ Lq′

σ (Ω) since div A−1
q′ v = 0 and A−1

q′ v|∂Ω
= 0.

Let f = (f1, . . . , fn) ∈ Lq(Ω). Then as in (2.6) the weak Neumann problem

∆H = div f, N · (∇H − f)|∂Ω
= 0

has a unique solution ∇H ∈ Lq(Ω), see [17], [29], satisfying

(2.10) ‖∇H‖q,Ω 6 C‖f‖q,Ω

with C = C(Ω, q) > 0. Setting Pqf := f −∇H we get the Helmholtz projection as

a bounded linear operator from Lq(Ω) onto Lq
σ(Ω) satisfying P 2

q = Pq and P ′
q = Pq′

where P ′
q means the dual operator.

The Stokes operator Aq with domain D(Aq) = Lq
σ(Ω) ∩ W 1,q

0 (Ω) ∩ W 2,q(Ω) and

range R(Aq) = Lq
σ(Ω) defined by Aqu := −Pq∆u, u ∈ D(Aq), is a densely defined
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closed operator satisfying 〈Aqu, v〉Ω = 〈u, Aq′v〉Ω for u ∈ D(Aq), v ∈ D(Aq′ ), and

Aqu = Aγu for 1 < q, γ < ∞, u ∈ D(Aq) ∩ D(Aγ). The fractional power Aβ
q :

D(Aβ
q ) → Lq

σ(Ω), 0 6 β 6 1, with D(Aq) ⊆ D(Aβ
q ) ⊆ Lq

σ(Ω), is well defined and

bijective; its inverse A−β
q = (Aβ

q )−1 is bounded from Lq
σ(Ω) onto R(A−β

q ) = D(Aβ
q ).

Moreover, it holds (Aβ
q )′ = Aβ

q′ . We note that the norms ‖u‖2;q,Ω and ‖Aqu‖q,Ω

are equivalent for u ∈ D(Aq), as well as the norms ‖u‖1;q,Ω and ‖A
1/2
q u‖q,Ω are

equivalent for u ∈ D(A
1/2
q ). Further the embedding estimate

(2.11) ‖u‖q,Ω 6 C‖Aβ
γu‖γ,Ω, u ∈ D(Aβ

γ ), 1 < γ 6 q < ∞, 2β +
n

q
=

n

γ
,

holds with C = C(Ω, q, γ) > 0. Using A
1/2
q we define the Yosida operators Jm =

(I +m−1A
1/2
q )−1 for m ∈ N. It is well known that there exists C = C(Ω, q) > 0 such

that

(2.12) ‖Jm‖ + ‖m−1A1/2
q Jm‖ 6 C, m ∈ N,

in the operator norm on Lq
σ(Ω) and that Jmu → u in Lq

σ(Ω) as m → ∞. See [4],

[22], [23], [24], [27], [31], [33], concerning the Stokes operator.

Using (2.11) we get for f = div F , f ∈ Lq(Ω), F ∈ Lr(Ω), and arbitrary v ∈ Lq′

σ (Ω)

the estimate

|〈f, A−1
q′ v〉Ω| = |〈F,∇A−1

q′ v〉Ω| = |〈F,∇A
−1/2
r′ A

−1/2
r′ v〉Ω|(2.13)

6 C1‖F‖r,Ω ‖A
−1/2
r′ v‖r′,Ω 6 C2‖F‖r,Ω ‖v‖q′,Ω

with Cj = Cj(Ω, q, r) > 0, j = 1, 2. This proves the existence of a unique f̂ ∈ Lq
σ(Ω)

satisfying 〈f, A−1
q′ v〉Ω = 〈f̂ , v〉Ω for all v ∈ Lq′

σ (Ω), and the estimate

(2.14) ‖f̂‖q,Ω 6 C‖F‖r,Ω, C = C(Ω, q, r) > 0.

Similarly as in the theory of distributions, we set, by definition, f̂ = A−1
q Pqf ∈ Lq

σ(Ω)

giving this expression a generalizing meaning. Then A−1
q Pqf is well defined by the

relation

(2.15) 〈A−1
q Pqf, v〉Ω = 〈f, A−1

q′ v〉Ω, v ∈ Lq′

σ (Ω).

More generally, let f ∈ C∞
0 (Ω)′ be any distribution such that 〈f, w〉Ω is well defined

(by any continuous extension) for all test functions w ∈ D(Aβ
q′ ), 0 6 β 6 1, and

satisfies the estimate

(2.16) |〈f, A−β
q′ v〉Ω| 6 Cf‖v‖q′,Ω, v ∈ Lq′

σ (Ω).
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Then A−β
q Pqf ∈ Lq

σ(Ω) is well defined by the relation

(2.17) 〈A−β
q Pqf, v〉Ω = 〈f, A−β

q′ v〉Ω, v ∈ Lq′

σ (Ω),

giving A−β
q Pqf a generalized meaning, and it holds

(2.18) ‖A−β
q Pqf‖q 6 Cf .

As an example we mention the estimate

(2.19) ‖A−1/2
q Pq div w‖q 6 C‖w‖q, w ∈ Lq(Ω), 1 < q < ∞,

with C = C(Ω, q) > 0. See [31], III, 2.5, 2.6, for similar definitions.

Let w ∈ C2
0,σ(Ω) and v = Aq′w. Then, using (2.11) and the trace estimates, we

obtain that

|〈g, N · ∇A−1
q′ v〉∂Ω| 6 C1‖g‖−1/q;q,∂Ω‖∇A−1

q′ v‖1/q;q′,∂Ω(2.20)

6 C2‖g‖−1/q;q,∂Ω‖∇A−1
q′ v‖1;q′,Ω

6 C3‖g‖−1/q;q,∂Ω‖v‖q′,Ω

with Cj = Cj(Ω, q) > 0, j = 1, 2, 3. Since Lq
σ(Ω) = (Lq′

σ (Ω))′, there is a unique

G ∈ Lq
σ(Ω) satisfying

〈G, v〉Ω = 〈g, N · ∇A−1
q′ v〉∂Ω for all v ∈ Lq′

σ (Ω),(2.21)

‖G‖q,Ω 6 C‖g‖−1/q;q,∂Ω

with C = C(Ω, q) > 0.

Finally we need the density property

(2.22) AqC2
0,σ(Ω)

‖·‖q,Ω

= Lq
σ(Ω).

Indeed, consider f ∈ Lq
σ(Ω), choose fj ∈ C∞

0,σ(Ω), j ∈ N, with lim
j→∞

‖f − fj‖q,Ω = 0

and let uj = A−1
q fj . The regularity property in [30], p. 518, (9.13) shows that

uj ∈ C2
0,σ(Ω) for j ∈ N, and we see that Aquj = fj → f in Lq

σ(Ω) as j → ∞. This

proves (2.22). Moreover, this proof shows that C2
0,σ(Ω) ⊆ D(Aq) is a core of D(Aq).
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3. Proof of theorems

Given data f = div F , k, g as in (1.9) we derive a representation formula for the

solution u ∈ Lq(Ω) of the linearized system (1.8).

Consider the solution ∇H ∈ Lq(Ω) of the system (2.4). From (2.8) we know

that ĝ := ∇H|∂Ω
∈ W−1/q,q(∂Ω) is well defined, and from (2.9) we conclude that

−〈∇H, ∆w〉Ω + 〈ĝ, N · ∇w〉∂Ω = 0 for all w ∈ C2
0,σ(Ω), v = Aq′w, w = A−1

q′ v. This

shows, see (1.10), that u1 := ∇H is a very weak solution of the linear system

(3.1) −∆u1 + ∇p1 = 0, div u1 = k, u1|∂Ω
= ĝ.

Next set g̃ := g − ĝ ∈ W−1/q,q(∂Ω) and choose G̃ ∈ Lq
σ(Ω), using (2.21) with g

replaced by g̃, such that 〈g̃, N · ∇A−1
q′ v〉∂Ω = 〈G̃, v〉Ω, v ∈ Lq′

σ (Ω). Setting w = A−1
q′ v

we get

〈G̃, ∆w〉Ω = −〈G̃,−Pq′∆w〉Ω = −〈G̃, v〉Ω = −〈g̃, N · ∇w〉∂Ω

which shows that u2 := −G̃ is a very weak solution of the linear system

(3.2) −∆u2 + ∇p2 = 0, div u2 = 0, u2|∂Ω
= g̃.

Finally, we set u3 := A−1
q Pqf , see (2.15), and conclude that u3 is a very weak solution

of the linear system

(3.3) −∆u3 + ∇p3 = f, div u3 = 0, u3|∂Ω
= 0.

Combining (3.1), (3.2), (3.3) and using div(u1+u2+u3) = k andN ·(u1+u2+u3)|∂Ω
=

N · g we see that u ∈ Lq(Ω) defined by

(3.4) u := u1 + u2 + u3 = ∇H − G̃ + A−1
q Pqf

is a very weak solution of the linearized system (1.8). Using (2.7), (2.14) and (2.21)

with G, g replaced by G̃, g̃, we obtain the estimate

(3.5) ‖u‖q,Ω 6 C(‖F‖r,Ω + ‖k‖r,Ω + ‖g‖−1/q;q,∂Ω)

with C = C(Ω, q, r) > 0.

To prove uniqueness let v ∈ Lq(Ω) be another very weak solution of (1.8) for

the same data (1.9). Then u − v is a very weak solution of (1.8) with data f = 0,

k = 0, g = 0. From (1.10) we obtain that −〈u − v, ∆w〉Ω = 〈u − v, Aq′w〉Ω for all

w ∈ C2
0,σ(Ω), and using (2.22) we get that u − v = 0, u = v. Therefore, each very

weak solution of (1.8) with data (1.9) has the representation (3.4).
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Observe that in the proof of (3.4) we only used that A−1
q Pqf ∈ Lq

σ(Ω) is well

defined in the sense of (2.17) with β = 1. Thus instead of f = div F with F ∈ Lr(Ω)

we only need to assume that f is a distribution such that A−1
q Pqf ∈ Lq

σ(Ω) is well

defined with (2.16)–(2.18) for β = 1. In this case we may define a very weak solution

u ∈ Lq(Ω) of (1.8) replacing the term −〈F,∇w〉Ω in (1.10) by 〈f, w〉Ω, and obtaining

for u the formula (3.4) and the estimate

(3.6) ‖u‖q,Ω 6 C(‖A−1
q Pqf‖q,Ω + ‖k‖r,Ω + ‖g‖−1/q;q,∂Ω)

with C = C(Ω, q, r) > 0. This generalizes slightly the notion of a very weak solution

u in Definition 1.2. The same extension is allowed in Definition 1.1.

Proof of Theorem 1.3. Considering the nonlinear case we suppose that the

data f = div F , k, g satisfy the conditions (1.2). First assume that u ∈ Lq(Ω) is

a given very weak solution of (1.1). Setting f̂ := f − div(uu) + ku we obtain that

A−1
q Pq f̂ ∈ Lq

σ(Ω) is well defined in the general sense (2.17), see (3.9), (3.10) below.

Therefore, u is a very weak solution of the linear system

(3.7) −∆u + ∇p = f̂ , div u = k, u|∂Ω
= g,

and, using (3.4), we get the representation

(3.8) u = F (u) := ∇H − G̃ + A−1
q Pqf − A−1

q Pq div(uu) + A−1
q Pq(ku).

Next we show that u = F (u) has a solution u ∈ Lq(Ω) using Banach’s fixed point

principle in a standard way.

Indeed, using (2.15) and (2.11) we obtain similarly as in (2.13) that

|〈A−1
q Pq div(uu), v〉Ω| = |〈uu,∇A−1

q′ v〉Ω|(3.9)

6 C1‖uu‖q/2,Ω‖∇A−1
q′ v‖(q/2)′,Ω

6 C2‖u‖
2
q‖A

−1/2
(q/2)′v‖(q/2)′,Ω

6 C3‖u‖
2
q,Ω‖v‖q′,Ω

and that

|〈A−1
q Pq(ku), v〉Ω| = |〈ku, A−1

q′ v〉Ω|(3.10)

6 C1‖ku‖(1/r+1/q)−1,Ω‖A
−1
q′ v‖(1−1/r−1/q)−1,Ω

6 C2‖k‖r,Ω‖u‖q,Ω‖v‖q′,Ω
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for v ∈ Lq′

σ (Ω) and with C1, C2, C3 depending on Ω, q, r. Here we need that

q′ < r 6 q yielding 1/r + 1/q < 1, and q > n, 1/n + 1/q > 1/r. This shows that

−A−1
q Pq div(uu) + A−1

q Pq(ku) ∈ Lq
σ(Ω) is well defined for u ∈ Lq(Ω); moreover, we

get from (3.6), (3.9), (3.10) and (2.14) the estimate

(3.11) ‖F (u)‖q,Ω 6 C(‖u‖2
q,Ω + ‖k‖r,Ω‖u‖q,Ω + ‖F‖r,Ω + ‖k‖r,Ω + ‖g‖−1/q;q,∂Ω),

with C = C(Ω, q, r) > 0, which can be written in the form

‖F (u)‖q,Ω 6 a‖u‖2
q,Ω + b‖u‖q,Ω + c

with a := C, b := C‖k‖r,Ω, c := C(‖F‖r,Ω + ‖k‖r,Ω + ‖g‖−1/q;q,∂Ω). In the same way

we obtain that

(3.12) ‖F (u) − F (v)‖q,Ω 6 (a(‖u‖q,Ω + ‖v‖q,Ω) + b)‖u − v‖q,Ω

for u, v ∈ Lq(Ω).

Up to now u ∈ Lq(Ω) was a given very weak solution of (1.1). To prove existence,

we have to solve the fixed point problem u = F (u). For this purpose assume that

(3.13) 4ac + 2b < 1,

and consider the closed ball B := {u ∈ Lq(Ω); ‖u‖q,Ω 6 y1} where y1 = 2c(1 − b +√
1 + b2 − (4ac + 2b))−1 > 0 is the smallest root of the equation y = ay2 + by + c.

Setting K = K(Ω, q, r) := (4C2 + 3C)−1 with C from (3.11) we see that (1.11) is

sufficient for (3.13) to be satisfied. If u ∈ B, we obtain that ‖F (u)‖q,Ω 6 ay2
1 +

by1 + c = y1 6 2c and that F (u) ∈ B. Thus Banach’s fixed point principle yields a

unique u ∈ B with u = F (u). This u is a very weak solution of (3.7) and therefore

also of (1.1). Further we see that ‖u‖q,Ω 6 y1 6 2c which proves (1.12).

This completes the existence proof. The uniqueness of the solution u is a con-

sequence of Theorem 1.4 when we use the estimate (1.12). Note that the constant

K = (4C2 +3C)−1 with C from (3.11) is only sufficient for the existence; in general,

the uniqueness requires another constant. The assertion concerning p follows by de

Rham’s argument. Now Theorem 1.3 is completely proved. �

Proof of Theorem 1.4. Given very weak solutions u, v ∈ Lq(Ω) where u satisfies

(1.13) a calculation shows that w = u − v ∈ Lq
σ(Ω) is a very weak solution of the

linear system

−∆w + ∇p = f̂ , div w = 0 in Ω, w|∂Ω
= 0,
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with f̂ = − div(vw + wu) + kw. Then the representation formula (3.4) yields the

well defined relation

(3.14) w = −A−1
q Pq div(vw + wu) + A−1

q Pq(kw).

First let q > n. Then we conclude using estimates as in the previous proof that

(3.15) −A−1/2
q Pq div(vw + wu) + A−1/2

q Pq(kw) ∈ Lq/2
σ (Ω).

In view of (3.14) we see that w ∈ D(A
1/2
q/2), yielding w ∈ Lq1(Ω) where 1/n + 1/q1 =

2/q, see (2.11). Since q > n and consequently q1 > q, we may repeat this argument

and obtain in a finite number of steps that w ∈ D(A
1/2
2 ). Then take in (3.14) the

scalar product with A2w, write vw = uw−ww and use that 〈div(ww), w〉 = 0. Now

the smallness assumption (1.13) and an absorption argument show that ‖A
1/2
2 w‖2 6

0 yielding w = 0 and u = v.

If q = n we need an additional smoothing step using the Yosida operators Jm =

(I + m−1A
1/2
q )−1, m ∈ N, see [31], p. 298, concerning a similar procedure. Fur-

thermore, we choose C∞
0 -functions kj , vj and uj , j ∈ N, satisfying ‖k − kj‖r → 0,

and ‖v − vj‖n + ‖u − uj‖n → 0 as j → ∞. Then (3.14) will be rewritten, using

w = Jmw + m−1A
1/2
q Jmw on the right-hand side, in the form

A1/2
q Jmw = − JmA−1/2

q Pq div((v − vj)Jmw + (Jmw)(u − uj))(3.16)

−
1

m
JmA−1/2

q Pq div((v − vj)A
1/2
q Jmw + (A1/2

q Jmw)(u − uj))

− JmA−1/2
q Pq div(vjw + wuj) + JmA−1/2

q Pq((k − kj)Jmw)

+
1

m
JmA−1/2

q Pq((k − kj)A
1/2
q Jmw) + JmA−1/2

q Pq(kjw)

=: h1 + h2 + h3 + h4 + h5 + h6;

see [31], V.1.8, p. 298 concerning this smoothing procedure.

Next choose q1 > q = n and α ∈ [0, 1] such that (2 + α)/n + 1/q1 < 1 and

(1 + α)/n > 1/r. If n > 3, then α = 1 is possible. In the case q = n = 3 and

consequently r > q′ = 3
2 we find α ∈ [0, 1) to fulfill both conditions. Further observe

that q1 > n can be chosen so large that ̺ :=
(
1/n + 1/q1

)−1
> 2. Using (2.12),

(2.13), and (2.19), h1 in (3.16) is estimated by

‖h1‖̺ 6 C1‖(v − vj)Jmw + (Jmw)(u − uj)‖̺

6 C2(‖v − vj‖n + ‖u − uj‖n)‖Jmw‖q1

6 C3(‖v − vj‖n + ‖u − uj‖n)‖A1/2
̺ Jmw‖̺.
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Concerning h2 let ̺1 ∈ (1, n) be defined by 1/n+1/̺ = 1/̺1. Then by (2.12), (2.13),

(2.19),

‖h2‖̺ 6 C1‖A
1/2
̺ h2‖̺1

6 C2‖(v − vj)A
1/2
q Jmw + (A1/2

q Jmw)(u − uj)‖̺1

6 C2(‖v − vj‖n + ‖u − uj‖n)‖A1/2
̺ Jmw‖̺.

Moreover,

‖h3‖̺ 6 C‖vjw + wuj‖̺ 6 C(‖vj‖q1
+ ‖uj‖q1

)‖w‖n.

Next, since r > 1
2n,

‖h4‖̺ 6 C1‖(k − kj)Jmw‖̺1
6 C1‖k − kj‖n/2‖Jmw‖q1

6 C2‖k − kj‖r‖A
1/2
̺ Jmw‖̺.

Looking at the estimate of h2 and (2.13), we get for h5 with ̺2 > 1 defined by

1/̺2 = α/n + 1/̺1, that

‖h5‖̺ 6 C1‖A
−1/2
q Pq((k − kj)A

1/2
q Jmw)‖̺1

6 C2‖A
α/2−1/2
q (Pq(k − kj)A

1/2
q Jmw)‖̺2

6 C3‖(k − kj)A
1/2
q Jmw‖̺2

6 C3‖k − kj‖n/(1+α)‖A
1/2
̺ Jmw‖̺

6 C4‖k − kj‖r‖A
1/2
̺ Jmw‖̺.

Finally,

‖h6‖̺ 6 C1‖kjw‖̺1
6 C1‖kj‖̺‖w‖n 6 C2‖kj‖q1

‖w‖n.

Summarizing the L̺-estimates of hj , 1 6 j 6 6, we get from (3.16) the estimate

‖A1/2
̺ Jmw‖̺ 6 C5(‖v − vj‖n + ‖u − uj‖n + ‖k − kj‖r)‖A

1/2
̺ Jmw‖̺(3.17)

+ C6(‖vj‖q1
+ ‖uj‖q1

+ ‖kj‖q1
)‖w‖n

with constants C, C1, . . . , C6 > 0 independent of m ∈ N. Now choose j ∈ N suffi-

ciently large such that ‖v − vj‖n + ‖u− uj‖n + ‖k− kj‖r 6 1/(2C5). Hence, for this

fixed j and for every m ∈ N

‖A1/2
̺ Jmw‖̺ 6 M := 2C6(‖vj‖q1

+ ‖uj‖q1
+ ‖kj‖q1

)‖w‖n.

Since the graph of A
1/2
̺ is weakly closed and since Jmw → w in L̺

σ(Ω), we conclude

that w ∈ D(A
1/2
̺ ). Hence w ∈ Lq1

σ (Ω) where q1 > n. Since ̺ > 2, we conclude that

w ∈ D(A
1/2
2 ), and the same argument as in the first part of the proof shows that

w = 0. This completes the proof. �
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Proof of Theorem 1.5. (i) We use the vector-valued version of E1(g) ∈ W 1,q(Ω)

satisfying E1(g)|∂Ω
= g and the solution b(g) ∈ W 1,q

0 (Ω) of the equation div b(g) =

div(u − E1(g)) = k − div E1(g), see §2; note that
∫
Ω
(k − div E1(g)) dx = 0. Setting

û = u − Ê, Ê = E1(g) + b(g),

we see that û is a very weak solution of the linear system

−∆û + ∇p = f̂ , div û = 0 in Ω, û|∂Ω
= 0,

where f̂ = f +div∇Ê−div(uu)+ku. The linear representation formula (3.4) yields

(3.18) û = A−1
q Pq div(F + ∇Ê − uu) + A−1

q Pq(ku).

We argue as in the proof of Theorem 1.4. If q > n, we obtain in a finite number of

steps that û ∈ D(A
1/2
q ) ⊂ W 1,q(Ω) and consequently also u ∈ W 1,q(Ω).

If q = n, we use the same smoothing procedure as in the proof of Theorem 1.4.

First write (3.18) in the form

(3.19) û = A−1
q Pq div(F + ∇Ê) − A−1

q Pq div(u(û + Ê)) + A−1
q Pq(k(û + Ê))

and choose uj ∈ C∞
0 (Ω), j ∈ N, satisfying ‖u − uj‖n → ∞ as j → ∞. Then using

the Yosida operators Jm = (I + m−1A
1/2
q )−1 we get from (3.19) that

A1/2
q Jmû = −JmA−1/2

q Pq div((u − uj)Jmû)(3.20)

−
1

m
JmA−1/2

q Pq div((u − uj)A
1/2
q Jmû)

− JmA−1/2
q Pq div(uj û)

+ JmA−1/2
q Pq div(F + ∇Ê) − JmA−1/2

q Pq div(uÊ)

+ JmA−1/2
q Pqk(û + Ê)

= h1 + h2 + h3 + h4 + h5 + h6.

Choose q1 > q = n and define ̺ ∈ (1, n) by 1/̺ = 1/n + 1/q1. The functions h1, h2

and h3 are estimated similarly as h1, h2, h3 in the proof of Theorem 1.4; we get that

‖hi‖̺ 6 C1‖u − uj‖n‖A
1/2
̺ Jmû‖̺ + C2‖uj‖q1

‖û‖n, i = 1, 2, 3.

The last three functions hi are easily seen to satisfy the estimate

‖h4‖̺ + ‖h5‖̺ + ‖h6‖̺ 6 C((‖û‖n + ‖Ê‖n)‖k‖n + ‖u‖n‖Ê‖W 1,n + ‖F + ∇Ê‖n).
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Choosing j ∈ N sufficiently large, the absorption principle and (3.20) show that

‖A1/2
̺ Jmû‖̺ 6 M for all m ∈ N,

where M = M(‖uj‖q1
, ‖û‖n, ‖k‖n, ‖Ê‖W 1,n , ‖F‖n) > 0 is independent of m ∈ N.

Hence û ∈ D(A
1/2
̺ ) ⊂ Lq1(Ω) and also u ∈ Lq1(Ω) where q1 > q = n. Now we choose

q1 = 2q and obtain from (3.19) that A
1/2
q ũ ∈ Lq(Ω) and consequently u ∈ W 1,q(Ω).

(ii) A functional analytic argument shows the existence of some F ∈ Lq(Ω) with

f = div F . Then we conclude by part (i) that u ∈ W 1,q(Ω). Further we use the

vector-valued version of the extension operator E2(g, h2) ∈ W 2,q(Ω) with a suitably

chosen function h2 ∈ W 1−1/q,q(∂Ω) such that div E2(g, h2)|∂Ω
= −k|∂Ω

. Since

∫

Ω

(k − div E2(g, h2)) dx = 0 and (k − div E2(g, h2))|∂Ω
= 0,

we find a solution b ∈ W 2,q
0 (Ω) of the equation div b = div(u − E2(g, h2)) = k −

div E2(g, h2), see [18], Theorem III, 3.2, with m = 1, or [31], II, Lemma 2.3.1, with

k = 1. Setting û = u − E2(g, h2) − b, we see that û is a very weak solution of the

linear system

−∆û + ∇p = f̃ , div û = 0 in Ω, û|∂Ω
= 0,

where f̃ = f + ∆E2(g, h2) + ∆b − div(uu) + ku.

If q > n, standard estimates directly show that div(uu) − ku = u · ∇u ∈ Lq(Ω).

Hence the solution û has the representation

(3.21) û = A−1
q Pqf + A−1

q Pq(∆E2(g, h2) + ∆b) − A−1
q Pq(div(uu) − ku)

yielding û ∈ D(Aq) and consequently u ∈ W 2,q(Ω).

If q = n, we find some q∗ > n and F ∗ ∈ Lq∗

(Ω) with f = div F ∗; the exponent

q∗ > n can be chosen such that k ∈ Lq∗

, g ∈ W 1−1/q∗,q∗

(∂Ω). By part (i) we get

u ∈ W 1,q∗

(Ω). Now we conclude that u · ∇u ∈ Lq(Ω) which leads to û ∈ W 2,q(Ω) as

in the case q > n. This proves Theorem 1.5. �

Proof of Remark 1.6. First let q > n. Then div(uu)−k u = u ·∇u ∈ Lq(Ω), and

using (3.21) with A−1
q Pqf replaced by A−1

s Psf we see that û ∈ D(As) + W 2,q(Ω). If

q = n and s > n/2, we find—using Sobolev embedding theorems—some q∗ > n and

F ∗ ∈ Lq∗

(Ω) such that f = div F ∗, k ∈ Lq∗

, g ∈ W 1−1/q∗,q∗

(∂Ω). This shows that

u ∈ W 1,q∗

(Ω), u · ∇u ∈ Lq(Ω), and therefore that û ∈ D(As) + W 2,q(Ω). Finally,

in the limit case q = n, s = n/2, we obtain directly that u · ∇u ∈ Lq1(Ω) for every

1 < q1 < n, and (3.21) holds with the last term replaced by A−1
q1

Pq1
(div(uu) − ku).

Choosing s < q1 < n we get that û ∈ D(As) + D(Aq1
) ⊂ D(As). This completes the

proof. �
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