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CLEAN MATRICES OVER COMMUTATIVE RINGS

Huanyin Chen, Hangzhou
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Abstract. A matrix A ∈ Mn(R) is e-clean provided there exists an idempotent E ∈

Mn(R) such that A−E ∈ GLn(R) and detE = e. We get a general criterion of e-cleanness
for the matrix [[a1, a2, . . . , an+1]]. Under the n-stable range condition, it is shown that
[[a1, a2, . . . , an+1]] is 0-clean iff (a1, a2, . . . , an+1) = 1. As an application, we prove that
the 0-cleanness and unit-regularity for such n× n matrix over a Dedekind domain coincide
for all n > 3. The analogous for (s, 2) property is also obtained.
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1. Introduction

An element in a ring is clean (unit-regular) provided it is the sum (product) of an

idempotent and an invertible element. A ring R is unit-regular provided every ele-

ment in R is unit-regular. In [1, Theorem 1], Camillo and Khurana proved that every

element in a unit-regular ring is clean. In [9, Theorem], Nicholson and Varadarjan

proved that every countable linear transformation over a division ring is clean. This

shows that clean elements may not be unit-regular even in a regular ring. In fact,

the relationship between cleanness and unit-regularity is rather subtle (cf. [4] and

[10]).

Recall that A ∈ Mn(R) is e-clean provided there exists an idempotent E ∈ Mn(R)

such that A − E ∈ GLn(R) and detE = e. We get a general criterion of e-cleanness

for the matrix [[a1, a2, . . . , an+1]]. We use (a1, . . . , an) = 1 to stand for the condition

a1R + . . . + anR = R. A ring R is said to satisfy the n-stable range condition

provided (a1, . . . , an, an+1) = 1 in R implies that there exist c1, . . . , cn ∈ R such that

(a1 + an+1c1, . . . , an + an+1cn) = 1 in R (see [8]). Let a1, a2, . . . , an+1 ∈ R (n ∈ N).

If R satisfies the n-stable range condition, we will prove that [[a1, a2, . . . , an+1]] is
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0-clean iff (a1, a2, . . . , an+1) = 1. In [7], Khurana and Lam proved that there are

many matrices [[a, b]] ∈ M2(Z) which are unit-regular while they are not 0-clean,

e.g., [[12, 5]], [[13, 5]], [[12, 7]], etc. As an application, we prove that the 0-cleanness

and unit-regularity for such n × n matrix over a Dedekind domain coincide for all

n > 3. We say that a ∈ R is (s, 2) provided a is the sum of two units. An analog of

the (s, 2) property is also obtained.

Throughout the paper, all rings are commutative rings with an identity. Mn(R)

denotes the set of all n × n matrices over R, GLn(R) denotes the n-dimensional

general linear group of R and U(R) = GL1(R). N stands for the set of all natural

numbers. We write [[a1, a2, . . . , an]] for the matrix whose first row is (a1, a2, . . . , an)

and other entries are zeros.

2. Cleanness

In this section we get a general criterion for an n× n matrix [[a1, a2, . . . , an]] over

a commutative ring to be e-clean. This gives a generalization of [7, Theorem 3.2] as

well.

Theorem 2.1. Let a1, . . . , an ∈ R, and let e ∈ R be an idempotent. Then

[[a1, a2, . . . , an]] is e-clean if and only if the following conditions hold:

(1) There exist x1, . . . , xn ∈ R such that a1x1 + . . . + anxn ∈ R is e-clean.

(2) ex2 = . . . = exn = 0.

(3) x1 ≡ 1 (mod x2R + . . . + xnR).

P r o o f. Suppose that [[a1, a2, . . . , an]] is e-clean. Then we have an idempotent

matrix E = (eij) ∈ Mn(R) and a U = (uij) ∈ GLn(R) such that [[a1, a2, . . . , an]] =

E + U and det E = e. Thus,











a1 − e11 a2 − e12 . . . an − e1n

−e21 −e22 . . . −e2n

...
...

. . .
...

−en1 −en2 . . . −enn











= U.

This implies that

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 . . . an

−e21 −e22 . . . −e2n

...
...

. . .
...

−en1 −en2 . . . −enn

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ (−1)n detE = detU.
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Hence, a1A11 + a2A12 + . . . + anA1n = (−1)n+1e + u, where u = detU ∈ U(R)

and each A1i is the algebraic complement corresponding to ai (1 6 i 6 n). Let

x1 = (−1)n+1A11, x2 = (−1)n+1A12, . . . , xn = (−1)n+1A1n. Then a1x1+a2x2+. . .+

anxn = e + (−1)n+1u is e-clean. As E ∈ Mn(R) is an idempotent with detE = e,

in view of [7, Proposition 2.7] we get eeii = e, eeij = 0 (1 6 i 6= j 6 n). This implies

that eA12 = . . . = eA1n = 0; hence, ex2 = . . . = exn = 0.

Clearly, we have (−e21)A11 + (−e22)A12 + . . . + (−e2n)A1n = 0, and thus,

(−e21)A11 ≡ 0 (mod x2R + . . . + xnR).

On the other hand, u11A11 + u12A12 + . . . + u1nA1n = u, and thus,

u11A11 ≡ u (mod x2R + . . . + xnR).

As u ∈ U(R), we deduce that

−e21 ≡ 0 (mod x2R + . . . + xnR).

Similarly, we show that

−e31, . . . ,−en1 ≡ 0 (mod x2R + . . . + xnR).

Since (−E)(−E) = E, we see that











−e11 −e12 . . . −e1n

0 −e22 . . . −e2n

...
...

. . .
...

0 −en2 . . . −enn





















−e11 −e12 . . . −e1n

0 −e22 . . . −e2n

...
...

. . .
...

0 −en2 . . . −enn











≡











e11 e12 . . . e1n

0 e22 . . . e2n

...
...
. . .

...

0 en2 . . . enn











(mod x2R + . . . + xnR).

This implies that







−e22 . . . −e2n

...
. . .

...

−en2 . . . −enn













−e22 . . . −e2n

...
. . .

...

−en2 . . . −enn







≡







e22 . . . e2n

...
. . .

...

en2 . . . enn






(mod x2R + . . . + xnR).
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As a result we have

A2
11 = (−1)n+1A11(mod x2R + . . . + xnR).

Hence,

u11A
2
11 ≡ (−1)n+1u11A11(mod x2R + . . . + xnR).

Therefore we get

A11 ≡ (−1)n+1 (mod x2R + . . . + xnR),

that is,

x1 ≡ 1(modx2R + . . . + xnR).

Conversely, assume that (1), (2) and (3) hold. By (1), we can find x1, . . . , xn ∈ R

such that a1x1 + . . . + aixi + . . . + anxn is e-clean. Let c1 = x1 and ci = −xi

(2 6 i 6 n). Then a1c1 − . . . − aici − . . . − ancn is e-clean. By (3), we can find

k2, . . . , kn ∈ R such that c1 = 1 + k2c2 + . . . + kncn. Let

E = (eij) =











1 −k2 . . . −kn

1
. . .

1





















e

c2 1
...

. . .

cn 1





















1 k2 . . . kn

1
. . .

1











.

By (2), it is easy to verify that E = E2 ∈ Mn(R) and detE = e. Let

U = (uij) =











a1 . . . an

0 . . . 0
...
. . .

...

0 . . . 0











− E.

Then

det U =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 − e11 a2 − e12 . . . an − e1n

−e21 −e22 . . . −e2n

...
...

. . .
...

−en1 −en2 . . . −enn

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 . . . an

−e21 −e22 . . . −e2n

...
...

. . .
...

−en1 −en2 . . . −enn

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ (−1)n detE

= (−1)n−1(a1A11 + . . . + anA1n) + (−1)ne,
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where A11, . . . , A1n are algebraic complements of E corresponding to e11, . . . , e1n

respectively. Obviously,

E =















1 + (e − c1) (e − c1)k2 (e − c1)k3 . . . (e − c1)kn

c2 1 + k2c2 k3c2 . . . knc2

c3 k2c3 1 + k3c3 . . . knc3

...
...

...
. . .

...

cn k2cn k3cn . . . 1 + kncn.















It is easy to see that A11 = 1+k2c2 + . . .+kncn = c1. Furthermore, we see that each

A1i = −ci (2 6 i 6 n). Clearly, there is a u ∈ U(R) such that a1A11+ . . .+a1nA1n =

a1c1 − . . . − aici − . . . − ancn = e + u. Thus, detU = (−1)n−1(e + u) + (−1)ne =

(−1)n−1u ∈ U(R), and then U ∈ GLn(R). Therefore A is e-clean, as asserted. �

Corollary 2.2. Let a1, . . . , an ∈ R (n ∈ N). If [[a1, a2, . . . , an]] is 0-clean, then so

is [[a1u1, a2u2, . . . , anun]] for any u1, . . . , un ∈ U(R).

P r o o f. Assume that [[a1, a2, . . . , an]] is 0-clean. According to Theorem 2.1,

there exist x1, x2, . . . , xn ∈ R such that a1x1 + . . . + anxn = u ∈ U(R) and x1 ≡ 1

(mod x2R+ . . .+xnR). Thus, we deduce that (a1u1)x1+a2(u1x2)+ . . .+an(u1xn) =

u1u ∈ U(R). In addition,

x1 ≡ 1 (mod (u1x2)R + . . . + (u1xn)R).

In view of Theorem 2.1, we have an idempotent E ∈ Mn(R) and a U ∈ GLn(R) such

that










a1u1 a2 . . . an

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0











= E + U and detE = 0.

Therefore we conclude that

[[a1u1, a2u2, . . . , anun]] =











1

u−1

2

. . .

u−1
n











E











1

u2

. . .

un











+











1

u−1
2

. . .

u−1
n











U











1

u2

. . .

un











,

as desired. �
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Example 2.3. Let us show that [[12, 5, 3]] ∈ M3(Z) is clean, while [[12, 5]] ∈
M2(Z) is not. In view of [7, Example 4.5], [[12, 5]] ∈ M2(Z) is not clean. Since

12×(−2)+5×2+3×5 = 1 and −2 ≡ 1 (mod 2R+5R), it follows by Theorem 2.1 that

[[12, 5, 3]] ∈ M3(Z) is 0-clean. In fact, we have the decomposition: [[12, 5, 3]] = E+U,

where

E =





3 8 −2

−2 −7 2

−5 −20 6



 , U =





9 −3 5

2 7 −2

5 20 −6





with E = E2, detE = 0 and detU = 1. �

Note that Theorem 2.1 illustrates the process of computing “clean decompositions”

of numerical examples. Let a1, . . . , an, an+1 ∈ R (n ∈ N). If [[a1, a2, . . . , an]] ∈
Mn(R) is e-clean, then so is [[a1, a2, . . . , an+1]] ∈ Mn+1(R). Example 2.3 shows that

the converse is not true.

3. Stable ranges

Lemma 3.1. Let a1, a2, . . . , an+1 ∈ R (n ∈ N). If (a2, . . . , an+1) = 1, then

[[a1, a2, . . . , an+1]] ∈ Mn+1(R) is 0-clean.

P r o o f. Since (a2, . . . , an+1) = 1, there are x2, . . . , xn+1 ∈ R such that

a2x2 + . . . + an+1xn+1 = 1. Thus, a1 × 0 + a2x2 + . . . + an+1xn+1 = 1. It is easy to

see that

0 ≡ 1 (mod x2R + . . . + xn+1R).

Applying to Theorem 2.1, we complete the proof. �

Theorem 3.2. Let a1, a2, . . . , an+1 ∈ R (n ∈ N). If R satisfies the n-stable range

condition, then the following conditions are equivalent:

(1) [[a1, a2, . . . , an+1]] is 0-clean.

(2) (a1, a2, . . . , an+1) = 1.

P r o o f. (1) ⇒ (2) By virtue of Theorem 2.1, there exist x1, . . . , xn+1 ∈ R such

that a1x1 + . . . + an+1xn+1 = u ∈ U(R); hence, a1x1u
−1 + . . . + an+1xn+1u

−1 = 1.

That is, (a1, a2, . . . , an+1) = 1.

(2) ⇒ (1) Since (a1, a2, . . . , an+1) = 1 in R, there exist c2, . . . , cn+1 ∈ R such

that (a2 + a1c2, . . . , an+1 + a1cn+1) = 1. In view of Lemma 3.1, [[a1, a2 + a1c2, . . . ,

an+1 + a1cn+1]] ∈ Mn+1(R) is 0-clean. Thus, we have an idempotent E ∈ Mn+1(R)
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and a U ∈ GLn+1(R) such that [[a1, a2 + a1c2, . . . , an+1 + a1cn+1]] = E + U and

detE = 0. Let

Q =











1 c2 . . . cn+1

0 1 . . . 0
...
...
. . .

...

0 0 . . . 1











∈ GLn+1(R).

Then, Q−1[[a1, a2, . . . , an+1]]Q = [[a1, a2 +a1c2, . . . , an+1 +a1cn+1]] = E +U. There-

fore [[a1, a2, . . . , an+1]] = QEQ−1 + QUQ−1. In addition, QEQ−1 ∈ Mn+1(R) is an

idempotent matrix, detQEQ−1 = 0 and QUQ−1 ∈ GLn+1(R). Thus we complete

the proof. �

Recall that a domain ring R is a Dedekind domain provided every ideal of R is

a projective R-module. The class of Dedekind domains is very large. It includes

all principal ideal domains. The ring Z[
√
−d] is a Dedekind domain provided d is

square-free and d 6= 3 (mod 4). Also we note that R[x, y]/(x2 + y2 − 1), the ring of

polynomial functions on a circle, is a Dedekind domain. It is well known that every

Dedekind domain satisfies the 2-stable range condition.

Corollary 3.3. Let R be a Dedekind domain and let a1, . . . , an ∈ R (n > 3).

Then the following conditions are equivalent:

(1) [[a1, a2, . . . , an]] is 0-clean.

(2) [[a1, a2, . . . , an]] 6= 0 is unit-regular.

(3) (a1, . . . , an) = 1.

P r o o f. (1) ⇔ (3) Since R is a Dedekind domain, it satisfies the 2-stable range

condition, and so this is clear by virtue of Theorem 3.2.

(2) ⇒ (3) Let [[a1, a2, . . . , an]] 6= 0 be unit-regular. Then there exist an idempo-

tent E = (eij) ∈ Mn(R) and a U = (uij) ∈ GLn(R) such that [[a1, a2, . . . , an]] = EU,

i.e., [[a1, a2, . . . , an]]U−1 = E. This implies that eij = 0 for i = 2, . . . , n. Thus,

[[a1, a2, . . . , an]] = [[e11, e12, . . . , e1n]]U ; hence, (a1, . . . , an) = e11(u11, . . . , u1n).

Clearly, e11 = e2
11 ∈ R, and then, e11 = 1. Thus we get (a1, . . . , an) = (u11, . . . ,

u1n) = 1.

(3) ⇒ (2) Since (a1, . . . , an−1, an) = 1, there are x1, . . . , xn ∈ R such that

a1x1 + . . . + anxn = 1. As R satisfies the 2-stable range condition, we have bi,

ci (3 6 i 6 n) such that (a1 + a3b3 + . . . + anbn, a2 + a3c3 + . . . + ancn) = 1. Thus,

(a1 + a3b3 + . . . + anbn)x + (a2 + a3c3 + . . . + ancn)y = 1 for some x, y ∈ R. One
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easily checks that





















a1 a2 a3 . . . an−1 an

−y x 0 . . . 0 0

−b3 −c3 1 . . . 0 0
...

...
...

...
. . .

...

−bn−1 −cn−1 0 . . . 1 0

−bn −cn 0 . . . 0 1





















∈ GLn(R).

Therefore

[[a1, a2, . . . , an]] =











1 0 . . . 0

0 0 . . . 0
...
...
. . .
...

0 0 . . . 0

























a1 a2 . . . an

−y x . . . 0

−b3 −c3 . . . 0
...

...
. . .

...

−bn −cn . . . 1















,

as desired. �

The following result should be compared to the fact that the problem of deciding

the cleanness of [[a, b]] ∈ M2(Z) is considerably harder (cf. [7]).

Corollary 3.4. Let a1, . . . , an ∈ Z (n > 3). Then [[a1, a2, . . . , an]] ∈ Mn(Z) is

clean iff a1 = 0 or a1 = 2 or (a1, . . . , an) = 1.

P r o o f. If [[a1, a2, . . . , an]] ∈ Mn(Z) is 1-clean, then we can find an idempotent

E ∈ Mn(Z) and a U = (uij) ∈ GLn(Z) such that [[a1, a2, . . . , an]] = E + U and

detE = 1. Thus, E = diag(1, . . . , 1) ∈ Mn(Z). This implies that uij = 0 (i 6= 1, j),

uii = −1 (2 6 i 6 n). Hence, a1 − 1 ∈ U(Z), i.e., a1 = 0, 2. Thus we conclude

that [[a1, a2, . . . , an]] ∈ Mn(Z) is 1-clean if and only if either a1 = 0 or a1 = 2.

Consequently, the result follows from Corollary 3.3. �

We say that 0 6= A ∈ Mn(R) has rank 1 provided there exist P, Q ∈ GLn(R) such

that PAQ = [[a1, . . . , an]] for some a1, . . . , an ∈ R.

Corollary 3.5. Let R be a Dedekind domain and let A ∈ Mn(R) (n > 3). If A

has rank 1, then the following conditions are equivalent:

(1) A is 0-clean.

(2) A is unit-regular.

P r o o f. (1) ⇒ (2) As A has rank 1, there exist P, Q ∈ GLn(R) such that

PAQ = [[a1, . . . , an]] for some a1, . . . , an ∈ R. Thus,

PAP−1 = [[a1, . . . , an]]Q−1P−1 = [[b1, . . . , bn]]
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for some b1, . . . , bn ∈ R. This implies that [[b1, . . . , bn]] is 0-clean. According to

Corollary 3.3, [[b1, . . . , bn]] is unit-regular. Therefore A is unit-regular.

(2) ⇒ (1) As in the preceding discussion, PAP−1 = [[b1, . . . , bn]] 6= 0 for

some b1, . . . , bn ∈ R. Thus, [[b1, . . . , bn]] is unit-regular. In view of Corollary 3.3,

[[b1, . . . , bn]] is 0-clean, and therefore so is A. �

It is clear that no polynomial in the polynomial ring over a field is clean. Fur-

thermore, [1, Example 3.3] shows that no polynomial in the polynomial ring over

a commutative ring is semiclean. We end this section by noting that Theorem 2.1

provides an explicit program to represent such kind of a matrix as the sum of an

idempotent matrix and an invertible matrix.

Example 3.6. Let [[1 + xy, x2, y]] ∈ M3(Z[x, y]). Obviously, we have (1 + xy) ·
(1−xy)+x2 ·y+y ·x2(−1+y) = 1. In addition, 1−xy = 1+y · (−x)+x2(−1+y) ·0.

Thus, we have

E =





1 −x 0

0 1 0

0 0 1









0 0 0

−y 1 0

x2(1 − y) 0 1









1 x 0

0 1 0

0 0 1





=





xy −x(1 − xy) 0

−y 1 − xy 0

x2(1 − y) x3(1 − y) 1



 .

Then E = E2 ∈ M3(Z[x, y]) and detE = 0. Let

U =





1 + xy x2 y

0 0 0

0 0 0



 − E =





1 x(1 + x − xy) y

y −1 + xy 0

−x2(1 − y) −x3(1 − y) −1



 .

Then U ∈ GL3(Z[x, y]) and det U = 1. This proves that

[[1 + xy, x2, y]]

=





xy −x(1 − xy) 0

−y 1 − xy 0

x2(1 − y) x3(1 − y) 1



 +





1 x(1 + x − xy) y

y −1 + xy 0

−x2(1 − y) −x3(1 − y) −1





is clean. �

4. Extensions

In [2], Camillo and Yu proved that every element of a clean ring in which 2 is

invertible is (s, 2). In this section, we investigate some sufficient conditions under

which an n × n matrix [[a1, a2, . . . , an]] over a commutative ring is (s, 2).
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Theorem 4.1. Let a1, . . . , an ∈ R. Then [[a1, a2, . . . , an]] is (s, 2) provided the

following conditionshold:

(1) There exist x1, . . . , xn ∈ R such that a1x1 + . . . + anxn ∈ R is (s, 2).

(2) x1 ≡ 1 (mod x2R + . . . + xnR).

P r o o f. By (1), we can find x1, . . . , xn ∈ R such that a1x1+. . .+aixi+. . .+anxn

is (s, 2). Let c1 = x1 and ci = −xi (2 6 i 6 n). Then a1c1 − . . .− aici − . . .− ancn =

u + v for some u, v ∈ U(R). Let

U = (eij) =











1 −k2 . . . −kn

1
. . .

1





















u

c2 1
...

. . .

cn 1





















1 k2 . . . kn

1
. . .

1











.

Obviously, U ∈ GLn(R) and detU = u. Let

V = (vij) =











a1 . . . an

0 . . . 0
...
. . .

...

0 . . . 0











− U.

Then

detV =

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 − u11 a2 − u12 . . . an − u1n

−u21 −u22 . . . −u2n

...
...

. . .
...

−un1 −un2 . . . −unn

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 . . . an

−u21 −u22 . . . −u2n

...
...

. . .
...

−un1 −un2 . . . −unn

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ (−1)n detU

= (−1)n−1(a1A11 + . . . + anA1n) + (−1)nu,

where A11, . . . , A1n are algebraic complements of U corresponding to u11, . . . , u1n,

respectively. Clearly,

U =















1 + (u − c1) (u − c1)k2 (u − c1)k3 . . . (u − c1)kn

c2 1 + k2c2 k3c2 . . . knc2

c3 k2c3 1 + k3c3 . . . knc3

...
...

...
. . .

...

cn k2cn k3cn . . . 1 + kncn.














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It is easy to see that A11 = 1+k2c2+ . . .+kncn = c1. As in the proof of Theorem 2.1,

we see that A1i = −ci (2 6 i 6 n). Thus, a1A11+. . .+a1nA1n = a1c1−. . .−aici−. . .−
ancn = u + v. Hence, detU = (−1)n−1(u + v) + (−1)nu = (−1)n−1v ∈ U(R), and so

U ∈ GLn(R). Consequently, we conclude that A is (s, 2), as desired. �

Corollary 4.2. Let a1, . . . , an ∈ R. Then [[a1, a2, . . . , an+1]] ∈ Mn+1(R) is (s, 2)

provided the following conditions hold:

(1) There exist u, v ∈ U(R) such that 1 = u + v.

(2) R satisfies the n-stable range condition.

(3) (a1, . . . , an+1) = 1.

P r o o f. By (2) and (3), there exist c2, . . . , cn+1 ∈ R such that (a2 +

a1c2, . . . , an+1 + a1cn+1) = 1. Let bi = ai + a1ci(2 6 i 6 n). Then there are

x2, . . . , xn+1 ∈ R such that b2x2 + . . . + bn+1xn+1 = 1. By (1), a1 × 0 + b2x2 + . . . +

bn+1xn+1 = u + v. Clearly,

0 ≡ 1 (mod x2R + . . . + xn+1R).

By Theorem 4.1, there are U, V ∈ GLn+1(R) such that [[a1, b2, . . . , bn+1]] = U + V.

Let

Q =











1 c2 . . . cn+1

0 1 . . . 0
...
...
. . .

...

0 0 . . . 1











∈ GLn+1(R).

Then [[a1, a2, . . . , an+1]]Q = [[a1, a2+a1c2, . . . , an+1+a1cn+1]] = U +V. This implies

that [[a1, a2, . . . , an+1]] = UQ−1 + V Q−1, as required. �

Example 4.3. Let R = {0, e, a, b} be a set. Define operations by the following
tables:

+ 0 e a b
0 0 e a b
e e 0 b a
a a b 0 e
b b a e 0

× 0 e a b
0 0 0 0 0
e 0 e a b
a 0 a b e
b 0 b e a

Then R is a field with four elements. In this case, 2 6∈ U(R) and the identity e ∈ R

is the sum a + b of two units a, b ∈ R. Let [[e + x, x2, e − x]] ∈ M3(R[x]). Then

(e + x)(e − x) + x2 × 1 + (e − x) × 0 = e. Clearly, R[x] satisfies the 2-stable range

condition. According to Corollary 4.2, [[e + x, x2, e − x]] ∈ M3(R[x]) is (s, 2). �
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Theorem 4.4. Let a1, . . . , an ∈ R. If R satisfies the 1-stable range condition,

then [[a1, a2, . . . , an]] is (s, 2) iff the following conditions hold:

(1) There exist x1, . . . , xn ∈ R such that a1x1 + . . . + anxn is (s, 2).

(2) x1 ≡ 1 (mod x2R + . . . + xnR).

P r o o f. “⇐” is clear by Theorem 4.1.
“⇒” Suppose that [[a1, a2, . . . , an]] is (s, 2). Then we have two matrices U =

(uij), V = (vij) ∈ GLn(R) such that [[a1, a2, . . . , an]] = U + V. Thus,











a1 − u11 a2 − u12 . . . an − u1n

−u21 −u22 . . . −u2n

...
...

. . .
...

−un1 −un2 . . . −unn











= V.

Hence, we get

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 . . . an

−u21 −u22 . . . −u2n

...
...

. . .
...

−un1 −un2 . . . −unn

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ (−1)n detU = detV.

It follows that a1A11 + a2A12 + . . . + anA1n = (−1)n+1u + v, where u = detU ,

v = detV and A1i (1 6 i 6 n) is the algebraic complement corresponding to ai

(1 6 i 6 n). Let each xi = A1i. Then a1x1 + a2x2 + . . . + anxn is (s, 2). Obviously,

(−u21)A11 + (−u22)A12 + . . . + (−u2n)A1n = 0, and thus,

(−u21)A11 ≡ 0 (mod x2R + . . . + xnR).

Furthermore, u11A11 + u12A12 + . . . + u1nA1n = (−1)n+1u, and then

u11A11 ≡ (−1)n+1u (mod x2R + . . . + xnR).

Since u ∈ U(R), we see that

−u21 ≡ 0 (mod x2R + . . . + xnR).

Likewise, we show that

−u31, . . . ,−un1 ≡ 0 (mod x2R + . . . + xnR).
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Therefore











−u11 −u12 . . . −u1n

0 −u22 . . . −u2n

...
...

. . .
...

0 −un2 . . . −unn











is invertible (mod x2R + . . . + xnR).

This yields that A11 ∈ R is invertible modulo x2R+ . . .+xnR. That is, there exists a

v ∈ R such that r := A11v−1 ∈ x2R+ . . .+xnR. Since R satisfies the 1-stable range

condition, it follows from A11v − r = 1 that w := A11 − rz ∈ U(R) for some z ∈ R.

Let x′

i = A1iw
−1 (1 6 i 6 n). Then a1x

′

1 + . . . + anx′

n = (−1)n+1uw−1 + vw−1 ∈ R

is (s, 2). In addition, x′

1 ≡ 1 (mod x2R + . . . + xnR), and we are done. �

Corollary 4.5. Let R be a strongly π-regular ring. Then [[a1, a2, . . . , an]] is (s, 2)

iff the following conditions hold:

(1) There exist x1, . . . , xn ∈ R such that a1x1 + . . . + anxn is (s, 2).

(2) x1 ≡ 1 (mod x2R + . . . + xnR).

P r o o f. Since every strongly π-regular ring satisfies the 1-stable range condition,

we complete the proof by Theorem 4.4. �

Example 4.6. Let R = {a + bt : a, b ∈ Z/2Z, t2 = 0}. Then neither 1 nor 1 + t

is (s, 2). For any a + bt ∈ R, (a + bt)2 = (a + bt)4; hence, R is strongly π-regular.

As 1 × 1 + (1 + t) × 1 is (s, 2) and 1 ≡ 1 (mod R), it follows by Corollary 4.5 that

[[1, 1 + t]] is (s, 2). In fact, we have the decomposition:

[[1, 1 + t]] =

(

0 1 + t

1 1

)

+

(

1 0

1 1

)

.

In this case, 2 6∈ U(R). �
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