Czechoslovak Mathematical Journal

Jian Hua Yin

Degree sequences of graphs containing a cycle with prescribed length

Czechoslovak Mathematical Journal, Vol. 59 (2009), No. 2, 481-487

Persistent URL: http://dml.cz/dmlcz/140492

Terms of use:

© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

DEGREE SEQUENCES OF GRAPHS CONTAINING A CYCLE WITH PRESCRIBED LENGTH

Jian-Hua Yin, Haikou

(Received September 7, 2007)

Abstract. Let $r \geqslant 3, n \geqslant r$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a non-increasing sequence of nonnegative integers. If π has a realization G with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $d_{G}\left(v_{i}\right)=d_{i}$ for $i=1,2, \ldots, n$ and $v_{1} v_{2} \ldots v_{r} v_{1}$ is a cycle of length r in G, then π is said to be potentially $C_{r}^{\prime \prime}$-graphic. In this paper, we give a characterization for π to be potentially $C_{r}^{\prime \prime}$-graphic.

Keywords: graph, degree sequence, potentially C_{r}-graphic sequence
MSC 2010: 05C07

1. Introduction

A non-increasing sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of nonnegative integers is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is referred to as a realization of π. The following well-known result due to Erdős and Gallai [2] which gave a characterization for π to be graphic.

Theorem 1.1 (Erdős and Gallai [2]). Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a non-increasing sequence of nonnegative integers, where $\sum_{i=1}^{n} d_{i}$ is even. Then π is graphic if and only if

$$
\sum_{i=1}^{t} d_{i} \leqslant t(t-1)+\sum_{i=t+1}^{n} \min \left\{t, d_{i}\right\}
$$

for each $t, 1 \leqslant t \leqslant n$.
This work was supported by the grant of National Natural Science Foundation of China No. 10861006 and China Scholarship Council.

A non-increasing sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of nonnegative integers is said to be potentially K_{r+1}-graphic if there is a realization of π containing K_{r+1} as a subgraph, where K_{r+1} is the complete graph on $r+1$ vertices. If π has a realization in which the $r+1$ vertices of largest degree induce a clique, then π is potentially A_{r+1}-graphic. In [7], Rao proved that π is potentially A_{r+1}-graphic if and only if π is potentially K_{r+1}-graphic. In [8], Rao gave a characterization (Theorem 1.2) for π to be potentially A_{r+1}-graphic. This is a generalization of Erdős-Gallai characterization for π to be graphic (which corresponds to $r=0$).

Theorem 1.2 (Rao [8]). Let $n \geqslant r+1$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing sequence of nonnegative integers, where $d_{r+1} \geqslant r$ and $\sum_{i=1}^{n} d_{i}$ is even. Then π is potentially A_{r+1}-graphic if and only if

$$
\begin{aligned}
\sum_{i=1}^{s} d_{i}+\sum_{i=1}^{t} d_{r+1+i} \leqslant & (s+t)(s+t-1)+\sum_{i=s+1}^{r+1} \min \left\{s+t, d_{i}-r+s\right\} \\
& +\sum_{i=r+t+2}^{n} \min \left\{s+t, d_{i}\right\}
\end{aligned}
$$

for any s and $t, 0 \leqslant s \leqslant r+1$ and $0 \leqslant t \leqslant n-r-1$.

The original proof of Theorem 1.2 remains unpublished, but Kézdy and Lehel in [5] have given a different proof using network flows.

A non-increasing sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of nonnegative integers is said to be potentially C_{r}-graphic if there is a realization of π containing C_{r} as a subgraph, where C_{r} is the cycle of length r. If π has a realization containing C_{r} on the $\left|V\left(C_{r}\right)\right|$ highest degree vertices in π, then π is said to be potentially C_{r}^{\prime}-graphic. Furthermore, if π has a realization G with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $d_{G}\left(v_{i}\right)=d_{i}$ for $i=1,2, \ldots, n$ and $v_{1} v_{2} \ldots v_{r} v_{1}$ is a C_{r}, then π is said to be potentially $C_{r}^{\prime \prime}$-graphic. It follows from a result in [4] that π is potentially C_{r}^{\prime}-graphic if and only if π is potentially C_{r}-graphic. An extremal problem on potentially C_{r}-graphic sequences was investigated by Lai [6]. In this paper, we shall give a characterization for π to be potentially $C_{r}^{\prime \prime}$-graphic. In other words, we will prove the following

Theorem 1.3. Let $r \geqslant 3, n \geqslant r$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a non-increasing sequence of nonnegative integers, where $d_{r} \geqslant 2$ and $\sum_{i=1}^{n} d_{i}$ is even. Then π is potentially
$C_{r}^{\prime \prime}$-graphic if and only if

$$
\begin{aligned}
\sum_{i=1}^{p} d_{i}+\sum_{i=r+1}^{r+q} d_{i} \leqslant & (p+q)(p+q-1)+\min \left\{p+q, d_{p+1}-1\right\} \\
& +\sum_{i=p+2}^{r-1} \min \left\{p+q, d_{i}-2\right\}+\min \left\{p+q, d_{r}-1\right\} \\
& +\sum_{i=r+q+1}^{n} \min \left\{p+q, d_{i}\right\}
\end{aligned}
$$

for any p and $q, 0 \leqslant p \leqslant r$ and $0 \leqslant q \leqslant n-r$.
Remark. If $p=0$, the above inequality means that

$$
\sum_{i=r+1}^{r+q} d_{i} \leqslant q(q-1)+\sum_{i=1}^{r} \min \left\{q, d_{i}-2\right\}+\sum_{i=r+q+1}^{n} \min \left\{q, d_{i}\right\} .
$$

2. The proof of Theorem 1.3

In order to prove Theorem 1.3, we shall use a simple version of a general result of Fulkerson, Hoffman and Mcandrew [3] (see also [1] and [5]). Let H be a simple graph on vertex set $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We say that H satisfies the odd-cycle condition, if between any two disjoint odd cycles there is an edge.

Theorem 2.1 (Fulkerson, Hoffman and Mcandrew [3]). Assume that $H=$ $(V(H), E(H))$ satisfies the odd-cycle condition, where $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. There exists a subgraph $G \subseteq H$ such that every vertex v_{i} has degree d_{i}, if and only if
(i) $\sum_{i=1}^{n} d_{i}$ is even,
(ii) for every $A, B \subseteq V(H)$ such that $A \cap B=\emptyset$, we have

$$
\sum_{v_{i} \in A} d_{i} \leqslant\left|\left\{\left(v_{i}, v_{j}\right): v_{i} v_{j} \in E(H), v_{i} \in A, v_{j} \in V(H) \backslash B\right\}\right|+\sum_{v_{i} \in B} d_{i} .
$$

The following observation is obvious.
Observation 2.1. Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where $d_{1} \geqslant d_{2} \geqslant \ldots \geqslant d_{n}$. Take $i_{1}, i_{2}, \ldots, i_{p} \in\{1,2, \ldots, n\}$ such that $i_{1}<i_{2}<\ldots<i_{p}$ and $i_{1}>1, i_{2}>2, \ldots$, $i_{p}>p$. If $d_{i_{1}}+d_{i_{2}}+\ldots+d_{i_{p}}=d_{1}+d_{2}+\ldots+d_{p}$, then $d_{1}=d_{2}=\ldots=d_{i_{p}}$.

Pro of of Theorem 1.3. To prove the necessity, we let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $d_{G}\left(v_{i}\right)=d_{i}$ for $i=1,2, \ldots, n$ and $v_{1} v_{2} \ldots v_{r} v_{1}$ is a C_{r} in G. Then, $\sum_{i=1}^{p} d_{i}+\sum_{i=r+1}^{r+q} d_{i}$ is the sum of the number of edges from v_{h} to $\left\{v_{1}, \ldots, v_{p}, v_{r+1}, \ldots, v_{r+q}\right\}$ the summation being taken over $h=1,2, \ldots, n$. Now the contribution of v_{h} to this sum is at most $p+q-1$ if $h \in\{1, \ldots, p, r+1, \ldots, r+q\}$, at $\operatorname{most} \min \left\{p+q, d_{h}-1\right\}$ if $h=p+1$, at $\operatorname{most} \min \left\{p+q, d_{h}-2\right\}$ if $h \in\{p+2, \ldots, r-1\}$, at $\operatorname{most} \min \left\{p+q, d_{h}-1\right\}$ if $h=r$ and at $\operatorname{most} \min \left\{p+q, d_{h}\right\}$ if $h \in\{r+q+1, \ldots, n\}$. Thus the necessity is proved.

We now prove the sufficiency. Denote $L(p, q)=\sum_{i=1}^{p}\left(d_{i}-2\right)+\sum_{i=r+1}^{r+q} d_{i}$ and

$$
\begin{aligned}
R(p, q)= & (p+q)(p+q-1)-2 p+\min \left\{p+q, d_{p+1}-1\right\} \\
& +\sum_{i=p+2}^{r-1} \min \left\{p+q, d_{i}-2\right\}+\min \left\{p+q, d_{r}-1\right\} \\
& +\sum_{i=r+q+1}^{n} \min \left\{p+q, d_{i}\right\} .
\end{aligned}
$$

Assume that $r \geqslant 3, n \geqslant r$ and $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a non-increasing sequence of nonnegative integers such that $d_{r} \geqslant 2, \sum_{i=1}^{n} d_{i}$ is even and $L(p, q) \leqslant R(p, q)$ for any p and $q, 0 \leqslant p \leqslant r$ and $0 \leqslant q \leqslant n-r$.

Let $\pi_{r}^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{r}^{\prime}, d_{r+1}^{\prime}, \ldots, d_{n}^{\prime}\right)$, where $d_{i}^{\prime}=d_{i}-2$ for $1 \leqslant i \leqslant r$ and $d_{i}^{\prime}=d_{i}$ for $r+1 \leqslant i \leqslant n$, and let H be the graph obtained from K_{n} with vertex set $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ by deleting edges $v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{r-1} v_{r}, v_{r} v_{1}$. It is easy to see that π is potentially $C_{r}^{\prime \prime}$-graphic if and only if H has a subgraph G with the degree sequence π_{r}^{\prime} such that every vertex v_{i} has degree d_{i}^{\prime}. Observe that between any two disjoint cycles of H there is an edge. Therefore, H satisfies the odd-cycle condition and we may apply Theorem 2.1.

Let $K=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and $A, B \subseteq V(H)$ such that $A \cap B=\emptyset$. Let $A_{1}=A \cap K$, $A_{2}=A \backslash K, B_{1}=B \cap K, B_{2}=B \backslash K, C=K \backslash\left(A_{1} \cup B_{1}\right), D=\left\{v_{r+1}, \ldots, v_{n}\right\} \backslash$ $\left(A_{2} \cup B_{2}\right)$ and set $p=\left|A_{1}\right|, q=\left|A_{2}\right|, b_{1}=\left|B_{1}\right|, b_{2}=\left|B_{2}\right|$. For convenience, we denote

$$
\begin{aligned}
L^{\prime}(A, B)= & \sum_{v_{i} \in A} d_{i}^{\prime}=\sum_{v_{i} \in A_{1}}\left(d_{i}-2\right)+\sum_{v_{i} \in A_{2}} d_{i}, \\
R^{\prime}(A, B)= & \left|\left\{\left(v_{i}, v_{j}\right): v_{i} v_{j} \in E(H), v_{i} \in A, v_{j} \in V(H) \backslash B\right\}\right|+\sum_{v_{i} \in B} d_{i}^{\prime} \\
= & \left|\left\{\left(v_{i}, v_{j}\right): v_{i} v_{j} \in E(H), v_{i} \in A, v_{j} \in V(H) \backslash B\right\}\right| \\
& +\sum_{v_{i} \in B_{1}}\left(d_{i}-2\right)+\sum_{v_{i} \in B_{2}} d_{i},
\end{aligned}
$$

$$
\begin{aligned}
F(A, B) & =\sum_{v_{i} \in C}(p+q)+\sum_{v_{i} \in B_{1}}\left(d_{i}-2\right)+\sum_{v_{i} \in D}(p+q)+\sum_{v_{i} \in B_{2}} d_{i}, \\
W(A, B) & =\sum_{i=p+1}^{r-b_{1}}(p+q)+\sum_{i=r+1-b_{1}}^{r}\left(d_{i}-2\right)+\sum_{i=r+q+1}^{n-b_{2}}(p+q)+\sum_{i=n+1-b_{2}}^{n} d_{i} .
\end{aligned}
$$

Clearly, $L^{\prime}(A, B) \leqslant L(p, q)$. We now prove that $L^{\prime}(A, B) \leqslant R^{\prime}(A, B)$.
If $b_{1}=0$, then $B_{1}=\emptyset$ and $|C|=r-p$. Since $\mid\left\{\left(v_{i}, v_{j}\right): v_{i} v_{j} \in E(H), v_{i} \in A, v_{j} \in\right.$ $V(H) \backslash B\} \mid$ is the number of counting the edges of H between A and $V(H) \backslash(A \cup B)$ and double counting the edges induced by A, we get

$$
\begin{aligned}
R^{\prime}(A, B) & \geqslant(p+q)(p+q-1)-2 p+F(A, B) \\
& \geqslant(p+q)(p+q-1)-2 p+W(A, B) \geqslant R(p, q) \geqslant L(p, q) .
\end{aligned}
$$

If $b_{1} \geqslant 1$ and $|C|=0$, then $b_{1}=r-p$. Thus

$$
\begin{aligned}
R^{\prime}(A, B) & \geqslant(p+q)(p+q-1)-2 p+2+F(A, B) \\
& \geqslant(p+q)(p+q-1)-2 p+2+W(A, B) \geqslant R(p, q) \geqslant L(p, q)
\end{aligned}
$$

If $b_{1} \geqslant 1$ and $|C|=1$, then $b_{1}=r-p-1$. Thus

$$
\begin{aligned}
R^{\prime}(A, B) & \geqslant(p+q)(p+q-1)-2 p+1+F(A, B) \\
& \geqslant(p+q)(p+q-1)-2 p+1+W(A, B) \geqslant R(p, q) \geqslant L(p, q)
\end{aligned}
$$

We assume that $b_{1} \geqslant 1$ and $|C|=r-p-b_{1} \geqslant 2$. Then $p \leqslant r-3$. If $v_{1} \in A_{1}$ and $v_{r} \in B_{1}$, then

$$
\begin{aligned}
R^{\prime}(A, B) & \geqslant(p+q)(p+q-1)-2 p+1+F(A, B) \\
& \geqslant(p+q)(p+q-1)-2 p+1+W(A, B) \geqslant R(p, q) \geqslant L(p, q)
\end{aligned}
$$

If $v_{1} \in A_{1}$ and $v_{r} \notin B_{1}$, then

$$
\begin{aligned}
R^{\prime}(A, B) \geqslant & (p+q)(p+q-1)-2 p+F(A, B) \\
\geqslant & (p+q)(p+q-1)-2 p+\sum_{i=p+1}^{r-b_{1}-1}(p+q) \\
& +\sum_{i=r-b_{1}}^{r-1}\left(d_{i}-2\right)+(p+q)+\sum_{i=r+q+1}^{n-b_{2}}(p+q)+\sum_{i=n+1-b_{2}}^{n} d_{i}
\end{aligned}
$$

$$
\geqslant R(p, q) \geqslant L(p, q)
$$

If $L^{\prime}(A, B)<L(p, q)$, then

$$
\begin{aligned}
R^{\prime}(A, B) & \geqslant(p+q)(p+q-1)-2 p+1+F(A, B)-1 \\
& \geqslant(p+q)(p+q-1)-2 p+1+W(A, B)-1 \\
& \geqslant R(p, q)-1 \geqslant L(p, q)-1 \geqslant L^{\prime}(A, B)
\end{aligned}
$$

We further assume that $v_{1} \notin A_{1}$ and $L^{\prime}(A, B)=L(p, q)$. Then $\sum_{v_{i} \in A_{1}}\left(d_{i}-2\right)=$ $\sum_{i=1}^{p}\left(d_{i}-2\right)$ and $\sum_{v_{i} \in A_{2}} d_{i}=\sum_{i=r+1}^{r+q} d_{i}$. By Observation 2.1, we have that $d_{1}-2=$ $d_{2}-2=\ldots=d_{p+1}-2$. We now consider the following two cases.

Case 1: $q \geqslant 1$. In this case, if $p+q \geqslant d_{p+2}-1$, then

$$
\begin{aligned}
R^{\prime}(A, B) \geqslant & (p+q)(p+q-1)-2 p+F(A, B) \\
\geqslant & (p+q)(p+q-1)-2 p+W(A, B) \\
\geqslant & (p+q)(p+q-1)-2 p+\min \left\{p+q, d_{p+1}-1\right\} \\
& +\sum_{i=p+2}^{r} \min \left\{p+q, d_{i}-2\right\}+1+\sum_{i=r+q+1}^{n} \min \left\{p+q, d_{i}\right\}=R(p, q) \geqslant L(p, q) .
\end{aligned}
$$

If $L(p, q)<R(p, q)$, then

$$
\begin{aligned}
R^{\prime}(A, B) & \geqslant(p+q)(p+q-1)-2 p+F(A, B) \\
& \geqslant(p+q)(p+q-1)-2 p+1+W(A, B)-1 \\
& \geqslant R(p, q)-1 \geqslant L(p, q) .
\end{aligned}
$$

If $p+q \leqslant d_{p+2}-2$ and $L(p, q)=R(p, q)$, then by $L(p+1, q-1) \leqslant R(p+1, q-1)$, we have that $L(p+1, q-1)-L(p, q) \leqslant R(p+1, q-1)-R(p, q)$, that is, $d_{p+1}-d_{r+q} \leqslant 0$. Hence $d_{p+1}=d_{r+q}$. Thus

$$
\begin{aligned}
R^{\prime}(A, B) & \geqslant(p+q)(p+q-1)-2 p+F(A, B) \\
& \geqslant(p+q)(p+q-1)-2 p+W(A, B) \geqslant R(p, q) \geqslant L(p, q)
\end{aligned}
$$

Case 2: $q=0$. In this case, if $L(p, 0)<R(p, 0)$ or $R(p, 0) \leqslant p(p-1)-2 p+W(A, B)$, then $R^{\prime}(A, B) \geqslant L(p, 0)$ is clear.

If $L(p, 0)=R(p, 0)>p(p-1)-2 p+W(A, B)$, then we only have $L(p, 0)=$ $R(p, 0)=p(p-1)-2 p+W(A, B)+1$, and $p \leqslant d_{i}-2$ for $p+1 \leqslant i \leqslant r-b_{1}, p \geqslant d_{i}-2$ for $r+1-b_{1} \leqslant i \leqslant r-1, p \geqslant d_{r}-1, p \leqslant d_{i}$ for $r+1 \leqslant i \leqslant n-b_{2}$ and $p \geqslant d_{i}$ for $n+1-b_{2} \leqslant i \leqslant n$. On the one hand, it follows from $d_{1}-2=d_{2}-2=\ldots=d_{p+1}-2$ that

$$
L(p, 0)=p\left(d_{1}-2\right)=p(p-1)-2 p+p y+z
$$

and hence

$$
L(p+1,0)=(p+1)\left(d_{1}-2\right)=(p+1)\left(p-3+y+\frac{z}{p}\right)
$$

where $y=n-p-b_{1}-b_{2}$ and $z=\sum_{i=r+1-b_{1}}^{r-1}\left(d_{i}-2\right)+\left(d_{r}-1\right)+\sum_{i=n+1-b_{2}}^{n} d_{i}$. On the other hand, it is easy to see that

$$
\begin{aligned}
L(p+1,0) \leqslant & R(p+1,0) \\
= & (p+1) p-2(p+1)+\min \left\{p+1, d_{p+2}-1\right\}+\sum_{i=p+3}^{r-1} \min \left\{p+1, d_{i}-2\right\} \\
& +\min \left\{p+1, d_{r}-1\right\}+\sum_{i=r+1}^{n} \min \left\{p+1, d_{i}\right\} \\
\leqslant & (p+1) p-2(p+1)+(p+1)(y-1)+z \\
= & (p+1)\left(p-3+y+\frac{z}{p+1}\right) \\
< & (p+1)\left(p-3+y+\frac{z}{p}\right)=L(p+1,0), \quad \text { a contradiction. }
\end{aligned}
$$

References

[1] C. Berge: Graphs and Hypergraphs. North Holland, Amsterdam, 1973.
[2] P. Erdös, T. Gallai: Graphs with given degrees of vertices. Math. Lapok 11 (1960), 264-274.
[3] D. R. Fulkerson, A. J. Hoffman, M. H. Mcandrew: Some properties of graphs with multiple edges. Canad. J. Math. 17 (1965), 166-177.
[4] R.J. Gould, M.S. Jacobson, J. Lehel: Potentially G-graphical degree sequences. In: Combinatorics, Graph Theory, and Algorithms, Vol. 1 (Y. Alavi et al., eds.). New Issues Press, Kalamazoo Michigan, 1999, pp. 451-460.
[5] A. E. Kézdy, J. Lehel: Degree sequences of graphs with prescribed clique size. In: Combinatorics, Graph Theory, and Algorithms, Vol. 2 (Y. Alavi, eds.). New Issues Press, Kalamazoo Michigan, 1999, pp. 535-544.
[6] C. Lai: The smallest degree sum that yields potentially C_{k}-graphical sequences. J. Combin. Math. Combin. Comput. 49 (2004), 57-64.
[7] A. R. Rao: The clique number of a graph with given degree sequence. Graph Theory, Proc. Symp. Calcutta 1976, ISI Lecture Notes 4 (A. R. Rao, ed.). 1979, pp. 251-267.
[8] A.R. Rao: An Erdős-Gallai type result on the clique number of a realization of a degree sequence. Unpublished.

Author's address: J.-H. Yin, Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, P. R. China, e-mail: yinjh@ustc.edu.

