
Czechoslovak Mathematical Journal

Karsten Kämmerling; Lutz Volkmann
The k-domatic number of a graph

Czechoslovak Mathematical Journal, Vol. 59 (2009), No. 2, 539–550

Persistent URL: http://dml.cz/dmlcz/140496

Terms of use:
© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/140496
http://dml.cz


Czechoslovak Mathematical Journal, 59 (134) (2009), 539–550

THE k-DOMATIC NUMBER OF A GRAPH

Karsten Kämmerling and Lutz Volkmann, Aachen

(Received September 28, 2007)

Abstract. Let k be a positive integer, and let G be a simple graph with vertex set V (G).
A k-dominating set of the graph G is a subset D of V (G) such that every vertex of V (G)−D

is adjacent to at least k vertices in D. A k-domatic partition of G is a partition of V (G)
into k-dominating sets. The maximum number of dominating sets in a k-domatic partition
of G is called the k-domatic number dk(G).
In this paper, we present upper and lower bounds for the k-domatic number, and we

establish Nordhaus-Gaddum-type results. Some of our results extend those for the classical
domatic number d(G) = d1(G).
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1. Terminology and introduction

We consider finite, undirected and simple graphs G with vertex set V (G). The

number of vertices |V (G)| of a graph G is called the order of G and is denoted by

n = n(G).

The open neighborhood N(v) = NG(v) of a vertex v consists of the vertices adja-

cent to v and d(v) = dG(v) = |N(v)| is the degree of v. The closed neighborhood of

a vertex v is defined by N [v] = NG[v] = N(v) ∪ {v}. The maximum degree and the

minimum degree of a graph G are denoted by ∆(G) = ∆ and δ(G) = δ, respectively.

A graph G with δ(G) = ∆(G) is called regular. The complement of a graph G is

denoted by G. We write Kn for the complete graph of order n.

Let k be a positive integer. A subset D ⊆ V (G) is a k-dominating set of the

graph G if |NG(v) ∩ D| > k for every v ∈ V (G) − D. The k-domination number

γk(G) is the minimum cardinality among the k-dominating sets of G. Note that the

1-domination number γ1(G) is the classical domination number γ(G). A k-domatic

partition of G is a partition of V (G) into k-dominating sets. The maximum number
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of dominating sets in a k-domatic partition of G is called the k-domatic number

dk(G). The 1-domatic number d1(G) is the usual domatic number d(G).

The k-domination number was first studied by Fink and Jacobson [2], [3], and

Cockayne and Hedetniemi [1] introduced the concept of the domatic number d(G)

of a graph G. For more information on the domatic number and their variants, we

refer the reader to the survey article by Zelinka [7]. The following theorem provides

a lower bound for the k-domination number in terms of order and maximum degree.

Theorem 1.1 (Fink and Jacobson [2] 1985). For any graph G,

γk(G) >
kn(G)

k + ∆(G)
.

For a comprehensive treatment of domination in graphs, see the monographs by

Haynes, Hedetniemi and Slater [4], [5].

2. Bounds for the k-domatic number

We begin this section with some straightforward observations which are useful for

further investigations.

Proposition 2.1. If k > p > 1 are integers, then dp(G) > dk(G) for any graph G.

P r o o f. Let D1, D2, . . . , Dt be a k-domatic partition of G such that t = dk(G).

Then D1, D2, . . . , Dt is also a p-domatic partition of G and thus dp(G) > dk(G). �

Proposition 2.2. If G is a graph of order n, then dk(G) 6 n/γk(G).

P r o o f. If k > n, then γk(G) = n and the desired bound is valid. Thus assume

now that k < n, and let D1, D2, . . . , Dt be a k-domatic partition of G such that

t = dk(G). Then |Di| > γk(G) for each i ∈ {1, 2, . . . , k}. Hence

n =
t

∑

i=1

|Di| > tγk(G) = dk(G)γk(G),

and the desired bound for dk(G) follows. �

Since γk(G) > min{k, n(G)} for any graph G, Proposition 2.2 implies the next

bound immediately.
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Corollary 2.3. If G is a graph of order n, then dk(G) 6 n/k.

Corollary 2.4. If G is a graph of order n, then

(1) dk(G) + γk(G) 6 dk(G) +
n

dk(G)
6 n + 1.

P r o o f. Proposition 2.2 yields the first inequality in (1). The other inequality

follows from the fact that 1 6 dk(G) 6 n. �

Example 2.5. Let H be the disjoint union of p copies of the complete graph

Kk. Then H is a graph of order n(H) = kp, k-domatic number dk(H) = p and

k-domination number γk(H) = k. Thus

dk(H) + γk(H) = p + k = dk(H) +
n(H)

dk(H)
.

This example shows that Proposition 2.2, Corollary 2.3 and the first inequality in

(1) are the best possible.

Theorem 2.6. Let G be a graph of order n. Then dk(G) + γk(G) = n + 1 if and

only if ∆(G) < k or G = Kn when k = 1.

P r o o f. If ∆(G) < k or G = Kn when k = 1, trivially dk(G) + γk(G) = n + 1.

Conversely, assume that ∆(G) > k and G 6= Kn when k = 1. Then n > 3 and

γk(G) 6 n − 1.

If γk(G) > 2, then Proposition 2.2 implies

dk(G) + γk(G) 6 γk(G) +
n

γk(G)
.

If we define x = γk(G) and g(x) = x + n/x for x > 0, then, because of 2 6

γk(G) 6 n− 1, we have to determine the maximum of the function g in the interval

I : 2 6 x 6 n − 1. It is straightforward to verify that

max
x∈I

{g(x)} = max{g(2), g(n− 1)} = max
{

2 +
n

2
, n − 1 +

n

n − 1

}

= n − 1 +
n

n − 1
< n + 1,

and we obtain dk(G) + γk(G) 6 n when γk(G) > 2.

The case that remains is k = 1 and γ(G) = 1. Since G 6= Kn, it follows that

d(G) 6 n − 1 and thus d(G) + γ(G) 6 n. �
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Corollary 2.7 (Cockayne and Hedetniemi [1] 1977). For any graph G with n

vertices, d(G) + γ(G) 6 n + 1, with equality if and only if G = Kn or Kn.

Corollary 2.8. Let G be a graph of order n, and let k > 2 be an integer. If

dk(G) > 2, then

dk(G) + γk(G) 6 2 +
n

2
.

P r o o f. Since k > 2 and dk(G) > 2, it follows from Corollary 2.3 that 2 6

dk(G) 6 n/k 6 n/2. Applying the first inequality in (1), we obtain

dk(G) + γk(G) 6 dk(G) +
n

dk(G)
6 2 +

n

2
.

�

Corollary 2.8 is no longer true for k = 1. For example, if H is the complete graph

of order n > 5 minus one edge, then γ(H) = 1 and d(H) = n − 1 and therefore

d(H) + γ(H) = n > 2 + n/2.

Theorem 2.9. For any graph G,

dk(G) 6
δ(G)

k
+ 1.

P r o o f. Let u ∈ V (G) be such that dG(u) = δ(G), and let D1, D2, . . . , Dt be a k-

domatic partition of G such that t = dk(G). Then either u ∈ Di or |NG(u)∩Di| > k

for each i ∈ {1, 2, . . . , t}. Since D1, D2, . . . , Dt is a partition of V (G), we obtain the

desired bound. �

The special case k = 1 of Theorem 2.9 can be found in the article by Cockayne

and Hedetniemi [1].

For the graph H in Example 2.5 we have n(H) = kp, dk(H) = p and δ(H) =

n − k = k(p − 1). Consequently,

dk(H) = p =
k(p − 1)

k
+ 1 =

δ(H)

k
+ 1,

and therefore Theorem 2.9 is the best possible.

The next result is an extension of a lower bound for the classical domatic number

given by Zelinka [6].
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Theorem 2.10. For any graph G of order n and minimum degree δ,

dk(G) >

⌊ n

k(n − δ)

⌋

.

P r o o f. If k > δ, then

k(n − δ) > (δ + 1)(n − δ) = n + δ(n − δ − 1) > n

and the desired bound is obvious.

Assume next that k 6 δ. Since the desired bound is trivial in the case k(n−δ) > n,

we assume in the sequel that k(n − δ) 6 n. Let D ⊆ V (G) be any subset with

|D| > k(n − δ). It follows that

|D| > k(n − δ) = n − δ + (k − 1)(n − δ) > n − δ + (k − 1)

and therefore |V (G) − D| 6 δ − k + 1. If v ∈ V (G) − D, then |NG[v]| > δ + 1 and

|V (G)−D| 6 δ−k+1 imply that |NG(v)∩D| > k. Hence D is a k-dominating set of

G. Thus one can take any ⌊n/(k(n−δ))⌋ disjoint subsets, each of cardinality k(n−δ).

All these subsets are k-dominating sets of G, and so Theorem 2.10 follows. �

If H is the complete graph of order n(H) = kp, then dk(H) = p and δ(H) =

n(H) − 1 and thus

dk(H) = p =
kp

k
=

n(H)

k(n(H) − δ(H))
.

Therefore the lower bound on dk(G) in Theorem 2.10 is sharp.

3. Nordhaus-Gaddum-type results

Theorem 3.1. For every graph G of order n,

(2) dk(G) + dk(G) 6
n − 1

k
+ 2,

and equality in (2) implies that G is a regular graph.

P r o o f. Because of δ(G) + δ(G) 6 n − 1, it follows from Theorem 2.9 that

dk(G) + dk(G) 6
δ(G)

k
+ 1 +

δ(G)

k
+ 1 =

δ(G) + δ(G)

k
+ 2 6

n − 1

k
+ 2,

and (2) is proved. If G is not regular, then δ(G) + δ(G) 6 n − 2, and we obtain

analogously a better bound dk(G) + dk(G) 6 (n − 2)/k + 2. �

As an immediate corollary of Theorem 3.1, we have the following Nordhaus-

Gaddum-type result which was established in [1].
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Corollary 3.2 (Cockayne and Hedetniemi [1] 1977). For every graph G having

n vertices, d(G) + d(G) 6 n + 1.

Theorem 3.3. Let G be a graph of order n > 2 such that

(3) dk(G) + dk(G) =
n − 1

k
+ 2.

If we assume, without loss of generality, that dk(G) > dk(G), then

(4) dk(G) =
n

r

for an integer r ∈ {k, k + 1, . . . , 2k − 1}.

If k = 1, then G is isomorphic to the complete graph Kn.

If k > 2, then k + 1 6 r 6 2k − 1 and n < kr2/(r − k).

P r o o f. If k > n, then equality (3) is impossible, and hence we assume in the

sequel that k 6 n − 1. The hypothesis dk(G) > dk(G) and (3) lead to

(5) dk(G) >
n + 2k − 1

2k
.

Let D1, D2, . . . , Dt be a k-domatic partition of G such that t = dk(G) and r =

|D1| 6 |D2| 6 . . . 6 |Dt|. Clearly, r > k, and if r > 2k, then (5) yields the

contradiction n > rt > 2kdk(G) > n + 2k − 1.

Assume next that k 6 r 6 2k − 1. We notice that

(6) n > rdk(G).

In addition, since D1 is a k-dominating set of G, we deduce that

∑

v∈D1

dG(v) > k(n − r)

and thus ∆(G) > k(n − r)/r and so

δ(G) = n − ∆(G) − 1 6 n − 1 −
k(n − r)

r
=

n(r − k) + r(k − 1)

r
.

Applying Theorem 2.9, we then obtain

dk(G) 6
n(r − k) + r(k − 1)

rk
+ 1 =

n(r − k) + r(2k − 1)

rk
.
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Now (3) leads to

dk(G) =
n + 2k − 1

k
− dk(G) >

r(n + 2k − 1) − (n(r − k) + r(2k − 1))

rk
=

n

r
.

Using this inequality and (6), we arrive at the identity (4).

If k = 1, then it follows from k 6 r 6 2k − 1 that r = 1, and therefore (4) implies

d1(G) = d(G) = n. However, this is only possible when G is isomorphic to the

complete graph Kn.

Assume next that k > 2.

Assume that r = k. We deduce that each vertex v ∈ V (G)−D1 is adjacent to each

vertex of D1 and thus ∆(G) > n − k and so δ(G) 6 k − 1. In view of Theorem 2.9,

we obtain dk(G) = 1, and hence (3) and Corollary 2.3 yield the contradiction

n − 1

k
+ 2 = dk(G) + dk(G) 6

n

k
+ 1.

Assume that k + 1 6 r 6 2k − 1. First we note that (4) implies that |Di| = r for

every i ∈ {1, 2, . . . , t}. Since D1, D2, . . . , Dt are k-dominating sets of G, each vertex

v ∈ Di is adjacent to at most r − k vertices in Dj in the graph G for i 6= j.

Next, let F be any minimum k-dominating set in G. If Di ∩ F = ∅ for any

i ∈ {1, 2, . . . , t}, then the last observation shows that |F | > (kr)/(r−k). In the other

case when Di ∩ F 6= ∅ for every i ∈ {1, 2, . . . , t}, we obviously have |F | > t = dk(G).

This leads to

(7) γk(G) > min
{

dk(G),
kr

r − k

}

.

If we suppose on the contrary that n > kr2/(r − k), then (4) implies

dk(G) =
n

r
>

kr

r − k
,

and thus it follows from (7) that γk(G) > kr/(r − k). Combining this with (3), (4)

and Proposition 2.2, we arrive at the contradiction

n − 1

k
+ 2 = dk(G) + dk(G) 6

n

r
+

n

γk(G)
6

n

r
+

n(r − k)

kr
=

n

k
.

Altogether we have shown that k + 1 6 r 6 2k − 1 and n < kr2/(r − k) in the case

k > 2, and the proof of Theorem 3.3 is complete. �

Since d(Kn) + d(Kn) = n + 1, the next well-known result is an immediate conse-

quence of Theorem 3.3.
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Corollary 3.4 (Cockayne and Hedetniemi [1] 1977). If G is a graph of order n,

then d(G) + d(G) = n + 1 if and only if G = Kn or Kn.

Corollary 3.5. Let k > 2 be an integer. Then there is only a finite number of

graphs G of order n such that

dk(G) + dk(G) =
n − 1

k
+ 2.

P r o o f. If k > 2 is a fixed integer, then the hypothesis and Theorem 3.3 lead

to n < kr2/(r − k) with k + 1 6 r 6 2k − 1. This implies that

n <
kr2

r − k
6 k(2k − 1)2,

and the proof is complete. �

Next we investigate the cases k = 2 and k = 3 in Theorem 3.3 more precisely.

Theorem 3.6. If G is a graph of order n > 3 such that

(8) d2(G) + d2(G) =
n − 1

2
+ 2,

then n = 9 and G is 4-regular.

P r o o f. We assume, without loss of generality, that d2(G) > d2(G). Let

D1, D2, . . . , Dt be a 2-domatic partition of G such that t = d2(G) and r = |D1| 6

|D2| 6 . . . 6 |Dt|. Applying (8) and Theorem 3.3, we deduce that r = 3, 3d2(G) = n

and n < 18 is odd. Since n = 3 is not possible, there remain two cases n = 9 and

n = 15.

If n = 15, then (7) implies that γ2(G) > 5 and thus Proposition 2.2 leads to

d2(G) 6 3. Combining this with d2(G) = 5, we obtain d2(G) + d2(G) 6 8, a

contradiction to the hypothesis (8).

Assume that n = 9. First we note that, in view of Theorem 3.1, G and G are

regular graphs. According to (4), we have d2(G) = 3. Theorem 1.1 implies that

3 = r > γ2(G) >
2n

2 + δ(G)

and thus δ(G) > 4. This yields δ(G) 6 4. If we suppose that δ(G) 6 3, then

Theorem 2.9 leads to d2(G) 6 2. Thus

d2(G) + d2(G) 6 5,

a contradiction to (8). HenceG andG are 4-regular graphs, and the proof is complete.

�

546



Example 3.7. IfH is the 4-regular graph of order 9 in Figure 1, then {u1, u2, u3},

{v1, v2, v3} and {w1, w2, w3} are 2-dominating sets of H . Therefore d2(H) > 3.

In Figure 2 we have sketched the graph H , and we observe that {u1, v1, w2},

{u2, v3, w3} and {u3, v2, w1} are 2-dominating sets of H. Combining this with (2),

we deduce that d2(H) + d2(H) = 6 = 1

2
(n − 1) + 2.

This example demonstrates that there exists at least one 4-regular graph of order

9 such that the identity (8) holds.

u2

u1 u3

v1

v3

v2 w1

w2

w3

Figure 1. Graph H

u2

u1 u3

v1

v3

v2 w1

w2

w3

Figure 2. Graph H

Theorem 3.8. If G is a graph of order n > 4 such that

(9) d3(G) + d3(G) =
n − 1

3
+ 2,

then n = 25 and G is 12-regular or n = 28 and G or G is 9-regular.

P r o o f. We assume, without loss of generality, that d3(G) > d3(G). Let

D1, D2, . . . , Dt be a 3-domatic partition of G such that t = d3(G) and r = |D1| 6
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|D2| 6 . . . 6 |Dt|. Applying Theorem 3.3, we deduce that r = 4 or r = 5. In view of

Theorem 3.1, G and G are regular graphs.

Case 1: Assume that r = 4. Then it follows from Theorem 3.3 that 4d3(G) = n

and n < 48. As 3 | (n− 1), we deduce that n = 4(3j − 2) for an integer j > 1. Since

n = 4 is not possible, there remain three cases n = 16, n = 28 and n = 40.

Subcase 1.1: Assume that n = 40. Then (7) implies that γ3(G) > 10 and thus

Proposition 2.2 leads to d3(G) 6 4. Combining this with d3(G) = 10, we obtain

d3(G) + d3(G) 6 14, a contradiction to the hypothesis (9).

Subcase 1.2: Assume that n = 16. According to (4), we have d3(G) = 4. Using

Theorem 1.1, we obtain

4 = r > γ3(G) >
3n

3 + δ(G)

and thus δ(G) > 9. This yields δ(G) 6 6, and hence Theorem 1.1 leads to γ3(G) > 6.

Now it follows from Proposition 2.2 that d3(G) 6 2, and we arrive at the contradiction

d3(G) + d3(G) 6 6.

Subcase 1.3: Assume that n = 28. According to (4), we have d3(G) = 7.

Theorem 1.1 implies that

4 = r > γ3(G) >
3n

3 + δ(G)

and thus δ(G) > 18. This yields δ(G) 6 9. If we suppose that δ(G) 6 8, then

Theorem 2.9 leads to d3(G) 6 3. Thus

d3(G) + d3(G) 6 10,

a contradiction to (9). Hence G is 9-regular and G is 18-regular.

Case 2: Assume that r = 5. Then it follows from Theorem 3.3 that 5d3(G) = n

and n < 37. As 3 | (n − 1), we deduce that n = 5(3j − 1) for an integer j > 1 and

thus n = 10 or n = 25.

Subcase 2.1: Assume that n = 10. Then (4) implies that d3(G) = 2. Using

Theorem 1.1, we obtain

5 = r > γ3(G) >
3n

3 + δ(G)

and thus δ(G) > 3. This yields δ(G) 6 6, and hence Theorem 1.1 leads to γ3(G) > 4.

Now it follows from Proposition 2.2 that d3(G) 6 2, and we arrive at the contradiction

d3(G) + d3(G) 6 4.

Subcase 2.2: Assume that n = 25. Then (4) implies that d3(G) = 5. Using

Theorem 1.1, we obtain

5 = r > γ3(G) >
3n

3 + δ(G)
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and thus δ(G) > 12. This yields δ(G) 6 12. If we suppose that δ(G) 6 11, then

Theorem 2.9 leads to d3(G) 6 4. Thus

d3(G) + d3(G) 6 9,

a contradiction to (9). Hence both G and G are 12-regular graphs, and the proof is

complete. �

Example 3.9. The following adjacency matrix represents a 12-regular graph H

with vertex set {1, 2, . . . , 25}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0
2 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1
3 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0
4 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1
5 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1
6 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1
7 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0
8 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1
9 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0
10 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1
11 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0
12 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1
13 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0
14 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1
15 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1
16 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1
17 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1 0
18 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1
19 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0
20 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1
21 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0
22 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0 0 0
23 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0
24 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0
25 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0

This adjacency matrix shows easily that D1 = {1, 2, 3, 4, 5}, D2 = {6, 7, 8, 9, 10},

D3 = {11, 12, 13, 14, 15}, D4 = {16, 17, 18, 19, 20} and D5 = {21, 22, 23, 24, 25} are

3-dominating sets of H . Therefore d3(H) > 5. In addition, it is straightforward

to verify that F1 = {1, 6, 11, 16, 21}, F2 = {2, 7, 12, 17, 22}, F3 = {3, 8, 13, 18, 23},

F4 = {4, 9, 14, 19, 24} and F5 = {5, 10, 15, 20, 25} are 3-domiting sets of H and

thus d3(H) > 5. Combining this with (2), we arrive at d3(H) + d3(H) = 10 =
1

3
(n(H) − 1) + 2.

This example shows that there exists at least one 12-regular graph of order 25

such that the identity (9) holds.

Whether there exist regular graphs of order n = 28 with equality in (9) remains

still open.
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Following the idea of Example 3.9, for each k > 4 we have constructed 2k(k − 1)-

regular graphs H of order (2k − 1)2 such that

dk(H) + dk(H) =
n(H) − 1

k
+ 2 = 4k − 2.

While this work was printed, we discovered an article of B. Zelinka [8], where he

introduced the k-domatic number as the k-ply domatic number. In Zelinka’s article

one can find Proposition 2.1 and Theorem 2.9 of our work.
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