## Czechoslovak Mathematical Journal

Jaroslav Hančl; Jan Šustek<br>Boundedly expressible sets

Czechoslovak Mathematical Journal, Vol. 59 (2009), No. 3, 649-654
Persistent URL: http://dml.cz/dmlcz/140507

## Terms of use:

© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

# BOUNDEDLY EXPRESSIBLE SETS 

Jaroslav Hančl, Jan Šustek, Ostrava

(Received January 11, 2008)


#### Abstract

For a given sequence a boundedly expressible set is introduced. Three criteria concerning the Hausdorff dimension of such sets are proved.


Keywords: expressible set, Hausdorff dimension.
MSC 2010: 11K55

## 1. Introduction

Following Erdős [2] we say that for a given sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ the set

$$
X_{B}\left\{a_{n}\right\}_{n=1}^{\infty}:=\left\{x \in \mathbb{R}: \exists K \in \mathbb{N} \exists\left\{c_{n}\right\}_{n=1}^{\infty}, c_{n} \in\{1, \ldots, K\}, x=\sum_{n=1}^{\infty} \frac{1}{a_{n} c_{n}}\right\}
$$

is its boundedly expressible set. In [2] it is shown that if $\lim _{n \rightarrow \infty} a_{n}^{1 / 2^{n}}=\infty$ and $a_{n} \in \mathbb{N}$ for all $n \in \mathbb{N}$ then $X_{B}\left\{a_{n}\right\}_{n=1}^{\infty}$ does not contain any rational number. It appears to be the case that in general evaluating the Lebesgue measure or Hausdorff dimension of the set $X_{B}\left\{a_{n}\right\}_{n=1}^{\infty}$ is not easy. In this paper we give conditions on $\left\{a_{n}\right\}_{n=1}^{\infty}$ to ensure that the Hausdorff dimension of the set $X_{B}\left\{a_{n}\right\}_{n=1}^{\infty}$ is zero. We prove the following.

Theorem 1. Let $\left.\left\{b_{n}\right]\right\}_{n=1}^{\infty}$ be a non-decreasing sequence of positive integers such that $b_{n}=\mathrm{O}\left(2^{2^{n / 2}}\right)$. Then $\operatorname{dim} X_{B}\left\{b_{n}+2^{2^{2^{\left[\log _{2} n\right]}}}\right\}_{n=1}^{\infty}=0$.

It is unknown to the authors if there exists a sequence of real numbers such that its boundedly expressible set has Hausdorff dimension greater than zero and Lebesgue

The research was supported by the grant GAČR 201/07/0191 and by the Research Projects ME09017 and MSM6198898701 of the Czech Goverment.
measure zero. For sequences which converge to infinity slower than $\left\{2^{2^{n}}\right\}_{n=1}^{\infty}$ Hančl in [3] proved the following theorem.

Theorem 2. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive real numbers and let $K$ be a positive integer. Assume that $F: \mathbb{N} \rightarrow \mathbb{R}^{+}$is a function such that $F(n)<n$,

$$
a_{n}<K 2^{2^{n-F(n)}} \quad \text { and } \quad \sum_{n=1}^{\infty} 2^{-F(n)}<\infty
$$

Put

$$
B:=\frac{1}{8 K\left[a_{1}+1\right]\left[2^{4 \sum_{n=2}^{\infty} 2^{-F(n)}}+2\right]} .
$$

Then for every number $x \in(0, B]$ there is a sequence $\left\{c_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{N}$ such that $x=$ $\sum_{n=1}^{\infty} 1 / a_{n} c_{n}$.

## 2. Main Results

We start with the theorem which is the basis for the other results.

Theorem 3. Let $\varepsilon$ be a positive real number. Assume that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a nondecreasing sequence of positive integers such that

$$
\begin{equation*}
L:=\liminf _{n \rightarrow \infty} \frac{2(1+\varepsilon) \log T_{n}}{\varepsilon \log a_{n}} \in[0,1), \tag{1}
\end{equation*}
$$

where $T_{n}=\operatorname{lcm}\left(a_{1}, \ldots, a_{n-1}\right)$, and that for every sufficiently large $n$

$$
\begin{equation*}
a_{n} \geqslant n^{1+\varepsilon} . \tag{2}
\end{equation*}
$$

Then $\operatorname{dim} X_{B}\left\{a_{n}\right\}_{n=1}^{\infty} \leqslant L$.
Theorem 1 follows immediately from the following more general result.

Theorem 4. Let $\varepsilon$ be a positive real number. Assume that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a nondecreasing sequence of positive integers such that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{n \log a_{n-1}}{\log a_{n}}=0 \tag{3}
\end{equation*}
$$

and that for every sufficiently large $n$

$$
\begin{equation*}
a_{n} \geqslant n^{1+\varepsilon} . \tag{4}
\end{equation*}
$$

Then $\operatorname{dim} X_{B}\left\{a_{n}\right\}_{n=1}^{\infty}=0$.
 obtain for $K=3$ and $F(n)=n \log _{2} 2 / A$ that $a_{n}<K 2^{2^{n-F(n)}}$. Theorem 2 implies that for every $x \in\left(0, \frac{1}{768}\right]$ there is a sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ of positive integers such that $x=\sum_{n=1}^{\infty} 1 / a_{n} c_{n}$. Theorem 4 implies that for almost every $x$ such sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ must be unbounded.

In the case that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is of the Cantor type we can use the following criterion.

Theorem 5. Let $A, B, S$ and $\varepsilon$ be a positive real numbers such that $S>1$ and $(2 / S)(A / B)((1+\varepsilon) / \varepsilon)<1$. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive integers such that $a_{n}$ divides $a_{n+1}$ for every $n \in \mathbb{N}$. Suppose that for every sufficiently large $n$

$$
\begin{equation*}
a_{n} \geqslant n^{1+\varepsilon} . \tag{5}
\end{equation*}
$$

Assume that for infinitely many $N$

$$
\begin{equation*}
a_{N-1} \leqslant 2^{A S^{N-1}} \quad \text { and } \quad a_{N} \geqslant 2^{B S^{N}} \tag{6}
\end{equation*}
$$

Then $\operatorname{dim} X_{B}\left\{a_{n}\right\}_{n=1}^{\infty} \leqslant(2 / S)(A / B)((1+\varepsilon) / \varepsilon)$.
Let us note that Theorem 5 also holds in the case when $A>B$. The authors do not know how to find non-trivial lower bounds for $X_{B}$.

Corollary 1. Let $A, B$ and $S$ be positive real numbers such that $S>1$ and $(2 / S)(A / B)<1$. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive integers such that $a_{n}$ divides $a_{n+1}$ for every $n$. Assume that $a_{n} \geqslant 2^{n}$ for every sufficiently large $n$. Suppose that $a_{N-1} \leqslant 2^{A S^{N-1}}$ and $a_{N} \geqslant 2^{B S^{N}}$ for infinitely many $N$. Then $\operatorname{dim} X_{B}\left\{a_{n}\right\}_{n=1}^{\infty} \leqslant$ $(2 / S)(A / B)$.

Example 2. Let $S>2$. As an immediate consequence of Corollary 1 we obtain that $\operatorname{dim} X_{B}\left\{2^{\left[\left(4+(-1)^{n}\right) S^{n}\right]}\right\}_{n=1}^{\infty} \leqslant \frac{6}{5} / S$.

Corollary 2. Let $A>0$ and $S>2$. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive integers such that $a_{n}$ divides $a_{n+1}$ for every $n \in \mathbb{N}$. Assume that $a_{k} \geqslant 2^{k}$ for every sufficiently large $k$. Suppose that $a_{N} \leqslant 2^{A S^{N}}$ for infinitely many $N$ and $a_{M} \geqslant 2^{A S^{M}}$ for infinitely many $M$. Then $\operatorname{dim} X_{B}\left\{a_{n}\right\}_{n=1}^{\infty} \leqslant 2 / S$.

Corollary 3. Let $0<B<A$ and $S>2 B / A$. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive integers such that $a_{n}$ divides $a_{n+1}$ for every $n$ and $2^{B S^{n}} \leqslant a_{n} \leqslant 2^{A S^{n}}$ for every sufficiently large $n$. Then $\operatorname{dim} X_{B}\left\{a_{n}\right\}_{n=1}^{\infty} \leqslant(2 / S)(A / B)$.

Example 3. Let $S>2$. Corollary 3 implies that $\operatorname{dim} X_{B}\left\{2^{\left[S^{n}\right]}\right\}_{n=1}^{\infty} \leqslant 2 / S$.

## 3. Proofs

We need the following classical Jarník-Besicovitch Theorem which can be found for example in [1]. See also [4].

Theorem 6. Let $\alpha>2$. Then the Hausdorff dimension of the set of all positive real numbers $x$ such that for infinitely many pairs $(p, q) \in \mathbb{N}$

$$
\left|x-\frac{p}{q}\right|<\frac{1}{q^{\alpha}}
$$

is equal to $2 / \alpha$. In other words,

$$
\operatorname{dim} \bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=1}^{\infty}\left(\frac{p}{q}-\frac{1}{q^{\alpha}}, \frac{p}{q}+\frac{1}{q^{\alpha}}\right)=\frac{2}{\alpha}
$$

Pro of of Theorem 3. Let $\delta>0$ be a sufficiently small real number. Let $K \in \mathbb{N}$ and let $\left\{c_{n}\right\}_{n=1}^{\infty}$ be a sequence of integers such that $c_{n} \in\{1, \ldots, K\}$ for each $n \in \mathbb{N}$. Let $N$ be a sufficiently large integer. Then from (2) and from the fact that the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is non-decreasing we obtain that

$$
\begin{align*}
\sum_{n=N}^{\infty} \frac{1}{a_{n} c_{n}} \leqslant \sum_{n=N}^{\infty} \frac{1}{a_{n}} & \leqslant \sum_{n \leqslant a_{N}^{1 /(1+\varepsilon)}} \frac{1}{a_{n}}+\sum_{n \geqslant a_{N}^{1 /(1+\varepsilon)}} \frac{1}{a_{n}}  \tag{7}\\
& \leqslant \frac{a_{N}^{1 /(1+\varepsilon)}}{a_{N}}+\sum_{n \geqslant a_{N}^{1 /(1+\varepsilon)}} \frac{1}{n^{1+\varepsilon}} \leqslant \frac{1}{a_{N}^{(1-\delta) \varepsilon /(1+\varepsilon)}}
\end{align*}
$$

Set $S_{K}:=\operatorname{lcm}(1, \ldots, K)$,

$$
q_{N}:=\operatorname{lcm}\left(a_{1} c_{1}, \ldots, a_{N-1} c_{N-1}\right) \quad \text { and } \quad p_{N}:=q_{N} \sum_{n=1}^{N-1} \frac{1}{a_{n} c_{n}}
$$

We have

$$
q_{N} \leqslant S_{K} T_{N} \leqslant T_{N}^{1+\delta} .
$$

This, (1) and (7) imply that for infinitely many $N$

$$
q_{N}^{2(1-\delta) /(1+\delta)(L+\delta)} \sum_{n=N}^{\infty} \frac{1}{a_{n} c_{n}} \leqslant \frac{T_{N}^{2(1-\delta) /(L+\delta)}}{a_{N}^{(1-\delta) \varepsilon /(1+\varepsilon)}}=\left(\frac{T_{N}^{2(1+\varepsilon) /(L+\delta) \varepsilon}}{a_{N}}\right)^{(1-\delta) \varepsilon /(1+\varepsilon)}<1 .
$$

Hence

$$
0<\sum_{n=1}^{\infty} \frac{1}{a_{n} c_{n}}-\frac{p_{N}}{q_{N}}=\sum_{n=N}^{\infty} \frac{1}{a_{n} c_{n}}<\frac{1}{q_{N}^{2(1-\delta) /(1+\delta)(L+\delta)}}
$$

for infinitely many $N$.
Set

$$
Y_{K}:=\left\{x \in \mathbb{R}: \exists\left\{c_{n}\right\}_{n=1}^{\infty} \subseteq\{1, \ldots, K\} \text { s.t. } x=\sum_{n=1}^{\infty} \frac{1}{a_{n} c_{n}}\right\} .
$$

Then

$$
X_{B}\left\{a_{n}\right\}_{n=1}^{\infty}=\bigcup_{K=1}^{\infty} Y_{K} \subseteq \bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{p=1}^{\infty}\left(\frac{p}{q}, \frac{p}{q}+\frac{1}{q_{N}^{2(1-\delta) /(1+\delta)(L+\delta)}}\right)
$$

The Jarník-Besicovitch Theorem implies that

$$
\operatorname{dim} X_{B}\left\{a_{n}\right\}_{n=1}^{\infty} \leqslant \frac{(1+\delta)(L+\delta)}{1-\delta}
$$

This holds for every small $\delta>0$. So the result follows.
Pro of of Theorem 4. Use Theorem 3 with $L=0$ and the fact that $T_{n} \leqslant a_{n-1}^{n-1}$.

Proof of Theorem 5. For sequences of the Cantor type we have $T_{n}=a_{n-1}$. Again use Theorem 3.

Proof of Theorem 1. Set $n=2^{m}$ where $m \in \mathbb{N}$ and $m$ is sufficiently large. Then $a_{n-1}=O\left(2^{2^{n / 2}}\right)$ and $a_{n}=2^{2^{n}}$. So (3) follows. Condition (4) is clear. Now we can apply Theorem 4.

Proof of Corollary 1. For every sufficiently large $\varepsilon>0$ we have $(2 / S)(A / B)$ $((1+\varepsilon) / \varepsilon)<1$. The inequality (5) is obviously fulfilled. Theorem 5 implies that

$$
\operatorname{dim} X_{B}\left\{a_{n}\right\}_{n=1}^{\infty} \leqslant \lim _{\varepsilon \rightarrow \infty} \frac{2}{S} \frac{A}{B} \frac{1+\varepsilon}{\varepsilon}=\frac{2}{S} \frac{A}{B} .
$$

Pro of of Corollary 2. Set $B:=A$ and use Corollary 1 .
Proof of Corollary 3. This is an immediate consequence of Corollary 1.

Acknowledgement. The authors thank the referee for his valuable suggestions.

## References

[1] V.I. Bernik, M. M. Dodson: Metric Diophantine Approximation on Manifolds. Cambridge University Press, Cambridge, 1999.
[2] P. Erdös: Some problems and results on the irrationality of the sum of infinite series. J. Math. Sci. 10 (1975), 1-7.
[3] J. Hanc̆l: Expression of real numbers with the help of infinite series. Acta Arith. 59 (1991), 97-104.
[4] J. Hančl, J. Štěpnička: On the trancendence of some infinite series. Glasg. Math. J. 50 (2008), 33-37.

Authors' address: J. Hančl, J. Šustek, Department of Mathematics and Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, 30. dubna 22, 70103 Ostrava 1, Czech Republic, e-mail: hancl@osu.cz, jan.sustek@osu.cz.

