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Abstract. We establish necessary and sufficient conditions under which the linear span
of positive AM-compact operators (in the sense of Fremlin) from a Banach lattice E into a
Banach lattice F is an order σ-complete vector lattice.
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1. Introduction and notations

A Banach lattice G is said to be a KB-space if every monotone sequence in the

unit ball of G is convergent. Note that every KB-space has an order continuous norm

(cf. [9], Theorem 2.4.2), but the norm of the Banach lattice c0 is order continuous

without the space being a KB-space. In [4], Aliprantis and Burkinshaw established

that each weakly compact operator from an AL-space into a KB-space has a weakly

compact modulus. This result was generalized by Chen and Wickstead [6] by proving

that if E is an AL-space or F is an AM-space, then the space of weakly compact

operators from E into F is a vector lattice. As a consequence, they obtained that

the linear span of positive weakly compact operators forms an order complete vector

lattice.

On the other hand, Wickstead gave several necessary and sufficient conditions

under which the linear span of positive compact operators is an order σ-complete

vector lattice ([11], Theorem 2.1). In the same way, Chen and Wickstead [6] studied

the order structure of the linear span of positive weakly compact (resp. positive

Dunford-Pettis) operators between Banach lattices and they proved analogous results

to those for compact operators ([6], Theorem 3.5) (resp. ([6], Theorem 3.8)). Also,
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they gave an example of a compact and a compactly dominated operator whose

modulus is not weakly compact. However, this modulus is Dunford-Pettis and AM-

compact. We claim that we can construct one such that the modulus is neither

AM-compact nor Dunford-Pettis.

It is natural to consider the corresponding problem for AM-compact operators

between Banach lattices. Recall that the class of such operators was introduced by

Fremlin in [7]. A regular operator T from a vector lattice E into a Banach lattice F is

said to be AM-compact if it carries each order bounded subset of E onto a relatively

compact subset of F . It is easy to see that each regular compact operator between

two Banach lattices is AM-compact but the converse is false in general. In fact,

the identity operator of the Banach lattice l1 is AM-compact but it is not compact.

Whenever E is an AM-space with unit, the class of AM-compact operators on E

coincides with that of regular compact operators on E.

In the same vein as the papers [11] and [6], we give an example (Theorem 2.1)

which shows the existence of an order complete Banach lattice E and a compact and

compactly dominated operator T from E into an order complete Banach lattice F

such that the modulus of T is neither AM-compact nor Dunford-Pettis. This justifies

the claim of Wickstead and Chen announced in ([6], p. 405). Next, we characterize

Banach lattices E and F such that the linear span of positive AM-compact operators,

that we denote by AMr(E, F ), is an order σ-complete vector lattice (Theorem 2.3).

To state our results we need to fix some notation and recall some definitions that

will be used in this paper. A vector lattice E is order σ-complete if every majorized

countable nonempty subset of E has a supremum. Let E be a vector lattice, then

for any two elements x, y ∈ E with x 6 y, the set [x, y] = {z ∈ E : x 6 z 6 y} is

called an order interval. A subset of E is said to be order bounded if it is included

in some order interval. An order ideal B is a solid subspace of a vector lattice E i.e.

if x ∈ B and y ∈ E is such that |y| 6 |x|, then y ∈ B. A principal ideal is any order

ideal generated by a subset containing only one element x; this order ideal will be

denoted by Ix. A generalized sequence (xα) is order convergent to x ∈ E if there

exists a generalized sequence (yα) such that yα ↓ 0 and |xα − x| 6 yα for each α,

where the notation yα ↓ 0 means that the sequence (yα) is decreasing, its infimum

exists and inf(yα) = 0. A band is an order ideal which is order closed. The band

generated by an element x is called a principal band that we denote by Bx.

A Banach lattice is a Banach space (E, ‖ ‖) such that E is a vector lattice and its

norm satisfies the following property: for each x, y ∈ E such that |x| 6 |y|, we have

‖x‖ 6 ‖y‖. Finally, the topological dual E′ of a Banach lattice E, endowed with the

dual norm, is a Banach lattice. For terminology which is not explained, we refer the

reader to the book of Zaanen [13].
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2. Main results

For each vector lattice E, we define E+ = {x ∈ E : 0 6 x}. If E and F are two

vector lattices, a linear mapping T from E into F is said to be positive if T (x) ∈ F+

whenever x ∈ E+. It is well known that each positive linear mapping from a Banach

lattice into a normed vector lattice is continuous.

By operator we mean a bounded linear mapping from a Banach lattice E ; into a

Banach lattice F . Recall that Krengel [8] constructed two operators S and T : l2 −→

l2 such that T is compact but T is not an element of the linear span of positive

operators from l2 ; into l2, and S is an element of the linear span of positive operators

from l2 ; into l2 which is compact but its modulus |S| is not compact ; (observe that

the modulus |S| exists because the vector lattice l2 is order complete).

To give our example which is a simple modification of an example of Abramovich

and Wickstead ([1], Theorem 4 (i)), we need to recall from [1] the following operators

and equalities:

Let Sn be an operator on the 2n-dimensional Euclidean space l2
n

2 such that ‖Sn‖ =

1 and |||Sn||| = 2n and let Jn be the operator which embeds l2
n

2 into L2[0, 1] defined

by the following formula:

Jn(x1, x2, x3, . . . , x2n) =

2n

∑

k=1

xkχ[(k−1)/2n,k/2n]

Also, we will need the operator Qn defined in [1] as an operator from L2([0, 1])

into Jn(l2
n

2 ) by the following formula:

Qn(f) = 2n
2n

∑

k=1

(
∫ k/2n

(k−1)/2n

f dµ

)

χ[(k−1)/2n,k/2n]

where µ denotes the Lebesgue measure on [0, 1].

In [1] and [6], it has been established that for each n ∈ N, we have

‖Jn ◦ Sn‖ = 1 and |||Jn ◦ Sn||| = 2n/2

and that

|Jn| ◦ |Sn|(xk) = Jn ◦ |Sn|(xk) =

( 2n

∑

k=1

xk

)

χ[0,1] = 2n/2(xk)(vn)χ[0,1]

where vn = 2−n/2(1, 1, . . . , 1) ∈ l2
n

2 , so that ‖vn‖2 = 1.
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Also, they proved that

‖Jn ◦ Sn ◦ J−1
n ◦ Qn‖ = 2n/2

while

|||Jn ◦ Sn ◦ J−1
n ◦ Qn||| = ‖Jn ◦ |Sn| ◦ J−1

n ◦ Qn‖ = 2n

In ([6], p. 405), Chen and Wickstead claimed that there exists a compactly dom-

inated compact operator with a modulus which is neither Dunford-Pettis nor AM-

compact. The following Theorem confirms their claim.

Theorem 2.1. There exist a Banach lattice E, an order complete Banach lattice

F and two compact operators S and T from E into F such that S < T and −S < T

but the modulus of S is neither AM-compact nor Dunford-Pettis.

P r o o f. Let (rn) be the sequence of Rademacher functions on [0, 1] defined by

rn(x) = Sign(sin(2n
πx)) for each x ∈ [0, 1].

Consider the Banach lattices E = L2([0, 1]) and F = l∞(L2([0, 1])). Define two

operators S and T from E into F by the following formulas:

S(f) = (2−nJn ◦ Sn ◦ J−1
n ◦ Qn(fr+

n ))+∞

n=1

and

T (f) =

((
∫ 1

0

f(x) dx

)

· χ[0,1]

)+∞

n=1

.

A simple check shows that S and T are compact, −S, S 6 T and that

|S|(f) =

((
∫ 1

0

f(x)r+
n dx

)

χ[0,1]

)+∞

n=1

.

It is well known that (r+
m) ⊂ [0, χ[0,1]], and that (r+

m) converges weakly to 1
2 . We

have just to prove that (|S|(r+
m)) does not admit any convergent subsequence.

Observe that

|S|(r+
m) =

((
∫ 1

0

r+
m · r+

n dx

)

· χ[0,1]

)+∞

n=1

.

If such sequence converges, then its limit l is given by

l =

((

1

2

∫ 1

0

r+
n dx

)

· χ[0,1]

)+∞

n=1

.
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Since

|S|(r+
m) − l =

((
∫ 1

0

(

r+
m · r+

n −
1

2
r+
n

)

dx

)

· χ[0,1]

)+∞

n=1

for n = m, we have

∫ 1

0

(

r+
m · r+

n −
1

2
r+
n

)

dx =
1

2

∫ 1

0

r+
n dx =

1

2

(1

2
+

1

2m

)

>
1

4
.

This shows that (|S|(r+
m)) does not admit any convergent subsequence.

The above Theorem proves that the subspace of AM-compact operators is not

necessary a vector sublattice. To characterise Banach lattices for which this remains

true, we need to recall the following definitions:

A vector lattice equipped with a vector topology is said to be a locally convex

solid lattice if zero admits a fundamental system of convex and solid neighborhoods.

If E′ is the topological dual of E, the absolute weak topology |σ|(E, E′) is the

locally convex solid topology on E generated by the family of lattice seminorms

{Pf : f ∈ E′} where Pf (x) = |f |(|x|) for each x ∈ E. Similarly, |σ|(E′, E) is the

locally convex solid topology on E′ generated by the family of lattice seminorms

{Px : x ∈ E} where Px(f) = |f |(|x|) for each f ∈ E′. For more information about

locally convex solid topologies, we refer the reader to the book of Aliprantis and

Burkinshaw [2].

Let us recall that if an operator T : E −→ F between two Banach lattices is

positive (i.e. T (x) > 0 in F whenever x > 0 in E), then its dual operator T ′ : F ′ −→

E′ is likewise positive, where T ′ is defined by T ′(f)(x) = f(T (x)) for each f ∈ F ′

and for each x ∈ E.

We will need the following lemma which is a consequence of Grothendieck’s The-

orem ([10], Theorem 3, p. 51).

Lemma 2.2. Let E and F be two Banach lattices and let T : E −→ F be an

operator. Then for each x ∈ E+, T ([−x, x]) is norm precompact in F if and only if

T ′(BF ′) is precompact for |σ|(E′, E) in E′, where BF ′ is the closed unit ball of the

topological dual F ′ of F .

Recall that the norm of a Banach lattice E is order continuous if for each gener-

alized sequence (xα) such that xα ↓ 0 in E, the sequence (xα) converges in norm to

0. For example, the norm of the Banach lattice l1 is order continuous but the norm

of the Banach lattice l∞ is not.

A nonzero element x of a vector lattice E is discrete if the order ideal generated by

x equals the sublattice generated by x. The vector lattice E is discrete if it admits

a complete disjoint system of discrete elements. For example, the Banach lattice l1

is discrete but C([0, 1]) is not.
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Now, we are in position to establish our principal result.

Theorem 2.3. For Banach lattices E and F the following assertions are equiva-

lent:

1. One of the following two conditions holds:

a) F has an order continuous norm.

b) The topological dual E′ is discrete and F is order σ-complete.

2. The vector lattice F is order σ-complete and if 0 6 S 6 T with T ∈ AMr(E, F ),

then S ∈ AMr(E, F ).

3. AMr(E, F ) is an order σ-complete vector lattice.

4. Any increasing order bounded sequence in AMr(E, F ) has a supremum.

P r o o f. 1 =⇒ 2. The implication a =⇒ 2 is just a theorem of Fremlin [7].

For the implication b =⇒ 2, let S and T be operators from E into F such that

0 6 S 6 T and T is AM-compact. Then for each x ∈ E+, T ([0, x]) is norm

precompact in F , and hence T ′(BE′) is precompact for the weak absolute topology

|σ|(E′, E) (Lemma 2.2). Since 0 6 S′ 6 T ′, it results from Theorem 3.1.b of [5]

that S′(BF ′) is also precompact for the weak absolute topology |σ|(E′, E). A second

application of Lemma 2.2 gives the result.

The implications 2 =⇒ 3 and 3 =⇒ 4 are clear.

It remains to prove the implication 4 =⇒ 1. First, observe that by the same proof

as Theorem 2.1 of Wickstead [11], we can show that the vector lattice F is σ-order

complete. Now, aiming at contradiction, we assume that E is not discrete and that

the norm of F is not order continuous. It follows from the proof of Theorem 1 of

Wickstead [12] that F contains a sublattice H which is isomorphic to l∞ and there

exists a positive projection P from F intoH . We denote by (en) the family of discrete

elements of H and we put e = sup{en : n ∈ N} and denote by Pn the projection of

H onto the principal band generated by en in H .

It follows from Corollary 21.13 of [2], that there exist Φ ∈ (E′)+ and a sequence

(Φn) in [−Φ, Φ] such that (Φn) converges to 0 for the weak topology σ(E′, E) but

does not converge to 0 for the absolute weak topology |σ|(E′, E).

By passing to a subsequence, we can find α ∈ R+ and yn in [0, y] such that

|Ψn(yn)| > α, |Ψn(yk)| <
α

k
and |Ψ(yk − yn)| <

α

4
for each k < n.

Consider the operators Sn and T defined from E into F by the following formulas:

Sn(x) =
n

∑

k=1

(Φ + Φk)(x) · en
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and

T (x) = 2Φ(x)e for each x ∈ E.

Clearly 0 6 Sn ↑6 T and T ∈ AMr(E, F ). Assume that the sequence (Sn) admits

an operator S as a supremum in AMr(E, F ). It is evident to see that P ◦ S ∈

AMr(E, H) and that 0 6 Sn ↑ P ◦ S in AMr(E, H).

Moreover,

Pn ◦ P ◦ Sn 6 Pn ◦ P ◦ S for each n ∈ N∗.

We claim that we have equality. In fact, if not, there exists some n1 ∈ N∗ such that

Pn1
◦ P ◦ Sn1

� Pn1
◦ P ◦ S,

and in this case we have

Sn 6 P ◦ S − (Pn1
◦ P ◦ S − Pn1

◦ P ◦ Sn1
) � P ◦ S for each n ∈ N∗.

Since

P ◦ S − (Pn1
◦ P ◦ S − Pn1

◦ P ◦ Sn1
) ∈ AMr(E, H),

the above inequality gives a contradiction because P ◦S is a supremum of the sequence

(Sn). Hence, for each n ∈ N∗, we have

Pn ◦ P ◦ Sn = Pn ◦ P ◦ S.

On the other hand, since P ◦S ∈ AMr(E, H), the sequence (P ◦S(yk))k>0 admits

a convergent subsequence, and then it is Cauchy in H . But for each k ∈ N and for

each n ∈ N such that 4 6 k < n we have

α

2
6 α −

α

n
−

α

4
6 |Pn ◦ P ◦ S(yn − yk)| 6 |P ◦ S(yn) − P ◦ S(yk)|.

This proves that our subsequence cannot be Cauchy. We obtain a contradiction.

If in Theorem 2.2 we assume F is order complete, by an analogous proof, we obtain

the following result:
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Theorem 2.4. For Banach lattices E and F the following assertions are equiva-

lent:

1. One of the following two conditions holds:

a) F has an order continuous norm.

b) The topological dual E′ is discrete and F is order complete.

2. The vector lattice F is order complete and if 0 6 S 6 T with T ∈ AMr(E, F ),

then S ∈ AMr(E, F ).

3. AMr(E, F ) is an order complete vector lattice.

4. Any increasing order bounded generalized sequence in AMr(E, F ) has a supre-

mum.
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