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Abstract. Existence of a weak solution to the n-dimensional system of stochastic dif-
ferential equations driven by a fractional Brownian motion with the Hurst parameter
H € (0,1) \ {3} is shown for a time-dependent but state-independent diffusion and a
drift that may by split into a regular part and a singular one which, however, satisfies the
hypotheses of the Girsanov Theorem. In particular, a stochastic nonlinear oscillator driven
by a fractional noise is considered.
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1. INTRODUCTION

Let BH = {BH t > 0} be an n-dimensional fractional Brownian motion (fBm)
with the Hurst parameter H € (0,1) on a complete probability space (2, F,P), i.e.
BH is a centered Gaussian process with the covariance matrix

. ] 1
E[(BH){(BF)I] = 5(5”1 + 27 s —tPH) Sy, 5,20, 4,5=1,...,n,

where (BH)¥ k =1,... n, are the components of B¥.

For H = % the process BY is a standard Brownian motion. For H # % it
has stationary increments and is self-similar, i.e. BYZ and off Bf have the same
distribution for all & > 0. For any 0 < § < H the process B has also a version with
Holder continuous trajectories of order §. However, B is neither a semimartingale
nor a Markov process, hence standard methods of stochastic integration are not
applicable.

This work was partially supported by the GACR grant no. 201/07/0237.
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In this paper, we study the stochastic differential equation

t t
(1.1) X; = ir—l—/ b(s, Xy) ds+/ o(s)dBH
0 0

in R™ driven by an n-dimensional fractional Brownian motion B .

Recently, several papers devoted to the equation (1.1) were written assuming that
(1.2) n=1 o0c=1

holds. The proofs of existence of weak solutions in these papers are based on the
Girsanov Theorem. D.Nualart and Y.Ouknine in [23] show existence of a weak
solution of (1.1) supposing that either H < % and b is a Borel function of linear
growth, or H > % and b is Holder continuous of order « in  and Hélder continuous
of order 3 in t for some a € (1 — $H ', 1) and 8 € (H — 3,1). Later they proved
in [24] that in the case H < 3 it is sufficient to assume that v < K + F(t,z) for

almost all (¢, x), where F' is a non-negative Borel function such that

/OT (/R |F(t, )P dx) ’ de < 400

for some p > 1, 8> p(p— H)~'. In the case H > %, Y. Mishura and D. Nualart ([20])
considered an equation with time independent drift which satisfies the corresponding
hypothesis from [23] up to a finite number of jumps and proved the existence of a
weak solution for H < (14 v/5). B.Boufoussi and Y.Ouknine ([2]) for H > 1
found a weak solution to an equation with a drift b = by + by, where the function by
satisfies the assumptions from [23] and ba(s, -) is left-continuous and nondecreasing
(or continuous and nonincreasing) for each s.

We follow the same strategy as in the cited articles, but for a system of equations
(n > 1) and time-dependent diffusion 0. We assume that the drift b may be split

into two terms by and bo, where by is a Borel function of linear growth, the equation

t t
(1.3) Yi=2+ / b1(s,Ys)ds + / o(s)dBH
0 0

has a solution and by is a Borel function such that o~ 1by satisfies the hypotheses of
the Girsanov Theorem, where o~ 1(¢) is an inverse of o(t) for all t € [0, T] which we
suppose to exist. In the case of a standard Brownian motion, such a generalization
is rather straightforward, however, in the case of a fractional Brownian motion the
proofs involve heavy calculations which have to be carefully modified if (1.2) is not
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satisfied. As may be expected, the result depends on the Hurst parameter substan-
tially. In the regular case H > % a less limited integration theory is available, on
the other hand, in the singular case H < % the Girsanov transform is applicable
under less restrictive conditions. More precisely, we prove the following theorem (for
definitions and notation, see the subsequent sections):

Theorem 1.1. Let by,be: [0,T] x R® — R™, o: [0,T] — L(R™) be Borel map-
pings such that b = by + by on [0,T] x R™ and assume that o(t) is regular for all
t € [0, T]. Suppose that

3K, >0Vt € [0,T] Vo € R" ||by(t,2)]| < Kp(1 + |z])),

and let there exist a solution Y to the equation (1.3). Set u(t) = o~ (t)b2(t,Ys), t €
[0,T]. Assume that u € L>([0,T];R") P-almost surely and either H < %, o €
€ ([0, T); L(R™)) for some §* € (3 —H,1) and

3K >0t €[0,T] Vo € R™ |l (t) ba(t,2)|| < K(1+ |z])),

orH>%7

o € L*™([0,T]; L(R™)) and

Ja € (1—%,1) 3P e (H—%,l) 3C > 0 Vs, t € [0,T] Y,y € R

lo™ () ba(t, 2) — o7 (s) ba(s, y)|| < C(llz = y[|* + [t = s|”).

Then there exists a weak solution to the equation (1.1).

Let us note that pathwise uniqueness holds for equations discussed in [23], [24]
and, consequently, there exists a strong solution. (Cf. also the paper [6] devoted to
thorough discussion of a strong solution to (1.1) under the hypothesis (1.2).) The
methods employed in these articles seem to depend on the fact that n = 1 and we
do not know whether pathwise uniqueness holds for system of equations considered
in our paper. Further, results on the existence of solutions to equations with a state-
dependent diffusion o are worth being mentioned (see e.g. [16], [17], [22], [26]). In
the case of a multiplicative noise, various approaches to stochastic integration with
respect to B¥ (based on rough paths theory, fractional calculus, white noise theory
or Malliavin calculus) need not be equivalent. For our equation (1.1), this problem
disappears and all the theories yield the same stochastic integral. Finally, while most
of the available results on (1.1) concern only scalar eugations, there are some results
available about infinite-dimensional systems resembling (1.1) (cf. e.g. [7], [18]).

The paper is organised as follows. In Section 2, some necessary preliminaries
about fractional Brownian motion can be found. Holder continuity of trajectories of
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a solution to (1.3) is proved in Section 3. In Section 4, Girsanov’s Theorem and some
of its consequences are discussed. In Section 5, our main results on the existence
of weak solutions are proved. The last section is devoted to a study of a stochastic
nonlinear oscillator )

d d d

—x—i—F(t T —x) =o(t)—BH

dtQ PRl dt ( )dt t o

that is, rigorously, a system

t
Tt :xo—l—/ v ds,
(1.4) 0
H

¢ ¢
v = v — / F(t,zs,vs)ds —|—/ 5(s)dB, .
0 0

In particular, it is proved that for & constant and invertible the law of (z¢,v;)7" is
equivalent to the Lebesgue measure on R?" for all H € (0,1)\ {3}, t > 0 and initial
data (wg,v9)t € R?". (Results on the absolute continuity of the law of solutions
to stochastic differential equations driven by a fractional Brownian motion may be
found in [21] and [12], but none of them applies to (1.4).)

2. PRELIMINARIES

Define
Cx t\H-1/2 H-1/2
_ t —

H— % {(s) (t=9)

B t
Kg(t,s) = —(H _ %) 51/271{/ w320 — )12 du|, s <t,
0, s>t

where

H(2H - 1)
CH - 1\°
B(2-2H,H - 3)
where B(a,b) = fol u? (1 —u)*"tdu, a > 0, b > 0, denotes the Beta function.

The process BY has an integral representation (see e.g. [5])
t

(2.1) Bl = / Ky (t,s)id dW,, 0 <t < 400,
0

where W = {W;,t > 0} is an n-dimensional Wiener process on the probability space
(Q,F,P) and id denotes the identity operator from R™ to R™.
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Denote by £ the set of L(R™)-valued step functions on the interval [0,T7], i.e. each
@ € & has the form

=2

—1

(2'2) Y= ak I[tk;tk+1)’
0

=~
Il

forsome N eN, 0=ty <t1 <...<ty=T,ar € LR™),k=0,...,N, I, denoting
an indicator function of A. Then we define the integral of a function ¢ € £ of the
form (2.2) with respect to fractional Brownian motin as

T N-1
I(y) E/O p(s)dBI =" ap(BH (try1) — B (1)
k=0

Define a linear operator K% : € — L?([0,T]; L(R™)) by

T
(Kir)0) = Kn(T.00(7) - [ (0(6) = 9(0) 5L () s p e &, e 0.7)

Then for all p,9 € £ we have (in [1] the one-dimensional case is discussed; the
extension to the multi-dimensional case is straightforward)

(2.3) [E</ dBH/ U(s dBH>Rn

= (Ku(p ),’CH(1P)>L2([0,T];c(Rn)) = {p,V)n

Let (H,(-,-)2) be the Hilbert space defined as the completion of £ with respect to
the scalar product (-, -)2;. Denote by || - || the norm in H associated with the scalar
product (-,-)%. From (2.3) it follows that the operator K}; provides an isometry
between the spaces (H, || - ||) and L?(Q; L(R™)). Since € is dense in H there exists
a unique extension I € L£(H, L(€%; L(R™))) of the operator I. Hence, we can define

T
VoeH I(p) = / o(s)dBE.
0
The process W = {W,;,0 < t < T} defined by

T
(2.4) W, = / (K3~ (Tog id)(s) dBH, t € [0,T],

is a Wiener proces and with this choice of the Wiener process W, the representation
(2.1) holds (cf. [23]).
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Definition 2.1. Let (F;):>0 be a right-continuous filtration on (€2, F,P) such
that Fy contains P-null sets. A fractional Brownian motion B = {B t € [0,T]}
is called an Fi-fractional Brownian motion if the process W defined in (2.4) is an
Fi-Wiener proces, i.e. W is Fy-adapted and for all h > 0 Wy, — W, is independent
of F;.

Let BY = {BH t € [0,T]} be an n-dimensional fractional Brownian motion with
the Hurst parameter H on a complete probability space (2, F,P). Assume that B
has representation (2.1) with some Wiener process W. Denote

N ={F e F; P(F)=0},
FP" = o(BY, 0 s<t) and FV =o(W,,0<s<t),
FE = (oFEF UN) and FY = ()o(FV UN).

s>t s>t

Then W is an F}V-Wiener process, (F}V) is a complete right-continuous filtration
and FB” = F holds (see [23]). Hence, FB" = FV, (FB") is a complete right-
continuous filtration and W is an F " ‘Wiener process.

For ¢ € L*([0,T]; L(R™)), a > 0, we define

(12, 0)(t) == % / (- 5)" (s) ds,

—1)a@ T
(1500 i= S [ 5= (e s,

where (—1)? = e™ ™ and I'(h) = 0+OO ub~le™*du, b > 0, denotes the Gamma
function. The integrals are well-defined for a.e. t € [0,T].
For a € (0,1), ¢ € Ig, (L7([0,T[; £(R™))) and ¢ € I7_(LP([0,T]; L(R"))) we

define
D800 = s (G4 [ S0 ds)ran

and

_1)a T
(D300 = g (g o [ S0 s ) T 0

where the integrals are well-defined for a.e. ¢ € [0, T].
For H > % set

u— o2 dudv

T T
loll2, = HH — 1) / / o)L gm0l 2

and define a space
Hi={peM; ol < +oo}.
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Then (H, || - ll7;) is a Banach space, £ C H, & is dense in H and

(ol - 1) = (1L D)

In [19] we can find the estimate
by >0V e LYH([0,T); L(R™)  lellg < ballell a qo.r).c0mm)-

Thus

(LMH([0, 70 LR™), |- v m o.rc@ny) = (Holl - i) < (H, |- %),

hence

(2.5) by >0V e LYH([0, T L(R™)  lglln < ballell pi/a o cmmy)-

Also (cf. [11),
ey [[ o stonees

T
[ etas|
0
holds for each ¢ € H.

Consider the linear operator Ky : L%([0,T]; L(R™)) — IHJr2 (L2([0,T); L(R™)))
defined by

u—v|*72 dudv

(2.6) E ‘

(Kno)(t / Ky(t,s)p(s)ds.
The operator Ky provides an isomorphism between the spaces
LA([0, T £(R™) and I,y (Z2([0,T); £(R™))).

Thus there exists the inverse K ;' Igfé (L2([0,T]; L(R™))) — L2([0,T]; L(R™)) of
the operator Kp. Set

()= t2= 1y (t), t €0, 7).

For H < & and o e Iy, Hts (L2([0,T]; £L(R™))) almost everywhere differentiable the

operator K 5 ! has the form (as may be shown analogously to [6] where the case n = 1
is studied)

(2.7) (K'e)(t) = "3 (I3, o)), te (0,7

In the case H > 3, o € I172 (L2([0, T]; £(R™))), we have (cf. [6])

(2.8) (K'e)(t) = t"#(Dy? Foi_g)(t), te[0,T].

We will need the following technical lemma.
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Lemma 2.2.
(i) For any H € (0, ) there exists a constant C(H) > 0 depending only on H such
that

TH-L1 _H-1
(2.9) / u dr < C(H)s~+2H
s 2

holds for each s € (0,T).
(ii) For any H € (1,1) there exists a constant C(H) > 0 depending only on H such

that
S |ox—H _ . 1-H
(2.10) / 277 = P g < o) si2H
o (s—r)ztH
holds for each s > 0.
Proof. Using elementary estimates and the mean value theorem. ([

3. EQUATIONS WITH REGULAR COEFFICIENTS

Consider the stochastic differential equation

t
(3.1) Y}zi—l—/ b1(u,Yy)du+ Z, te€][0,T],
0
where
t
(3.2) Zy = / o(s)dBH, teo,T).
0

In this section we show that there exists a solution to (3.1) under suitable regularity
conditions on b; and ¢ and we provide an estimate on a Holder norm of its paths.
Let C°([0, T]; £L(R™)) be the space of all Hélder continuous functions of order § from
the interval [0, T] to the space L(R™).

Proposition 3.1. Let H < % and o: [0,T] — L(R™) be a map satisfying o €
C" ([0, T); L(R™)) for some §* € (2 - H,1).

Then there exists a version of {Z;,t € [0,T]} with Holder continuous trajectories
of order v € (0,H), which is an n-dimensional .FfH—adapted centered Gaussian

process.

Proof. In the case H < % the inclusion
C7([0,T]; L(R™)) CH
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holds for any 1 > v > 1 —H (see [25], Section 1.5.2), so o € H. Thus an aproximation
of the integrand o by step functions in the space H gives us the second part of the
statement. To simplify the notation, set

1

popr 1 (0) = (u— )" Fip(u).

Analogously to [1] (where the case s = 0, = T and n = 1 is studied) it can be
proved for all 0 < s <t < T and ¢ € H that

(Kro)(w) = Crr(u— )2 (Do, 1 1)(u), s <u<t

S, )

and

(3.3) H / dBH

We verify the condition

= ”’CESDH%Q([SJ];C([R"))~

Ja>0,8>0,K>0Vt,s€[0,T] E|Z—Z|® <K|t— s+

of the Kolmogorov-Chentsov Theorem (see e.g. [13]) using the isometry (3.3).
For 0 < s <t < T arbitrary we have

ElZ: — Zs|I?

t
% 1 i
= WCHUH%Z([S,,:];L(W)) Z/ [Cr(u—s)2 H(th— Us,H—%)(u)HQL([R")du

Cu \? [ son[(@—8) S0
(i) [ oot R

1 to _ \H-1 —(y — VH-1L 2
+(__H)/ (=)o) - (u—s) U(@] du
2 w (v—u)2~ L(R™)
2 t
<o) { / S CT
Pz +H)/ Ls M1t —w)z " llz@m
9 ot ) to _ H—1L —(y — \H—L 2
+(1—H)/ (u—s)i_H/ (v—2) o(v) (Ju s) o(u) d du]
2 s u (v—u)>"H L(R™)
B Cy 2 1 2
_'2(1“(%+H)> [I“L(i_H) IQ]
Obviously,
(3.4) I —/t ’%HQ du < Mw(t_s)zH
‘ ) g — i e 2H
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holds, where C([0, T']; £L(R™)) is the space of all continuous functions from the interval
[0,T] to the space L(R™), and

=y ger [ =) 0(w) — (w8 Eow) I
12*/5 ( ) /u (U—u)%*H d ﬁ(R”)d
< [ w-sin
y /t (v—s)Héa(v)i(u(_ s)H)jUhEv) — (u—s)H 20(u) W 2 "
“ v L(R")
P e (Gt L e et L) O G
<2[/S ( ) /u T d L(Rn)d
+/S L%dv C(Rn)du} =: 2[5 + Iy).
By Lemma 2.2 we get
Y S ) (Ol et Ut St YR
(3.5) 13_/5 (u—s) /u o wiF d ﬁ(RH)d

t T H-1 H-—1 2
_ [P 72 — (u—s)" 2|
< ||U||g([07T];C(Rn)) / (’U, - 8)1 2H (/ 3 dr ) du

e (w—s)i A

C*(H), 2 2H
< WHUHC([O,T];L(W))@ —s)".

Using 6*-Holder continuity of o we obtain
2
du

(3.6) ]4—/t /tg(@%dv
s W (v—u)2™ L(R™)

t t . s 2
<HJH§5*([07T];C(W))/ (/(U—U)6 2+Hd’l)> du

2
B HUHCS*([QT];C([R”)) 26*+2H
= 1\2 (t - S) :
200+ H)(6* + H — 3)

Thus (3.4), (3.5) and (3.6) yield

1CiHH))Q[I1 + (3 — H)’L] < B(t —s)*7,

[EZ—ZQ<2(
12~ 2 < 25 2

where B depends only on T', H, o.
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Since Z; — Z, is Gaussian with zero mean for each k € N there exists a constant
C(k) > 0 such that
E(Z: — Zs|?* < C(k)(t — )%

holds, hence by the Kolmogorov-Chentsov Theorem the process {Z;,t € [0,T]} has
a Holder continuous version of order v < (2kH —1)/2k for all k € N satisfying
2kH > 1. Taking k — +o00 completes the proof. O

In the case H > % we prove a similar statement.

Proposition 3.2. Let H > 1 and o: [0,7] — L(R") be a map satisfying o €
L*>([0,T]; L(R™)). Then the conclusion of Proposition 3.1 holds true.

Proof. The second part of the assertion can be shown in the same way as in
Proposition 3.1 (o € H because L>([0,T); L(R™)) c LYH([0,T); L(R™)) C H C H).
For the remaining part take arbitrary s,t € [0,7], s < t, and set

By the equality (2.6) we obtain

EZ: — Zs|? = [EH/ u)dBH (u

—[EH/ dBH

=H(2H - 1) / / ) @y lu—v|*# 72 dudv

wen— [ [ oot

:H(ZH—l)/O g/0 9<U(u—|—s),a(v—l—s))[;(w)

2

u—v|*72 dudv

u—v[*1 72 dudv

t—s
—[EH/ o(u+s)dBY
0

Using the notation os(u) = o(u+s), s € [0,T], u € [s,T], and (2.5) we get

e ot

bH||Us||L1/H([o t—s;L(R7)) bH||U||Loc([o T); L([R"))(t —s) A= B(t - 5)2H7

2
E||Z: — Z||> = [EH/ s)dBHY

where B is a constant depending only on T, H,o. The proof is completed in the
same way as in Proposition 3.1. O
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Remark 3.3. For fixed 0 < v < H we identify the process {Z;,t € [0,T]}
with its version having Holder continuous trajectories of order « for o satisfying the
assumptions of Proposition 3.1 (case H < 1) or Proposition 3.2 (case H > 1).

Definition 3.4. An ftBH—adapted process with continuous trajectories is a so-
lution to the equation (3.1) if {Y;,t € [0,T]} satisfies the equation (3.1) for all
t € [0,T] P-a.s. Pathwise uniqueness holds for (3.1) if

holds for any two solutions {Y;, ¢ € [0,T]}, {Yz, ¢ € [0,T]}.

Proposition 3.5. Suppose that either H < 3 and o: [0,T] — L(R"™) satisfies
the assumptions of Proposition 3.1, or H > % and o satisfies the assumptions of
Proposition 3.2. Further, let by: [0,T] x R™ — R™ be a Borel function satisfying

VNeNIKy >0Vte[0,T]Vz,y € R” ||z + |y <N
161(2,2) = bi(t,y)|| < Enllz -y,
IK, >0Vte[0,T] Ve e R" ||bi(t,x)| < Kp(1+ ||z|).
Then there exists a pathwise unique solution to the equation (3.1).

Proof. Since {Z:,t € [0,T]} has continuous trajectories, standard ODE tech-
niques may be used. O

Now we can prove the Holder continuity of the process {Y;,t € [0,T]}.

Theorem 3.6. Let {Y;,¢t € [0,T]} be a solution to the equation (3.1), where
b1: [0,T] x R® — R™ is a Borel function satisfying

(3.7) JKy >0Vt e [0,T] Vo e R [|by(t, )] < Kp(1 + ||z]))-

Let either H < } and o: [0,T] — L(R") satisfy the conditions of Proposition 3.1 or
H > % and o satisfy the conditions of Proposition 3.2.

Then there exists a version of the process {Y;,t € [0,T|} with Holder continuous
trajectories of order 0 < -y < H. Moreover, for any 0 < v < H the estimate

(3.8) 1Yller(o,mirmy < AL+ [ Zlc(o,rmm)) P -aus.

is valid for a constant A = A(T,Z, Kp,7) > 0.
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Proof. Take~y < H. First we estimate ||Y|¢(jo,7};rn) in terms of || Z]|¢(j0,7;rn)-
We have

t
Yell < 121 + 1 Zllero,rrimm) +/0 [b1(s, Y5) |l ds
t
< |zl + 11 Zlleo,ryrmy + KT + Kb/ [Ys]l ds
0
for all ¢ € [0,T] P-a.s. By Gronwall’s lemma (see e.g. [15]) we get
||Y;f|| < (HiH + KbT+ ||Z||C([0,T];R"))eKbta te [O7T] IP-&.S.,
which implies
(3.9) 1Y lleqorysrmy < (121 + KT + | Z]lcqo,mmm)e™ ™ P-as.
According to Proposition 3.1 and 3.2 in the respective cases the process {Z;,t €
[0,T]} has trajectories in C7([0,T]; R™), v < H.
Select Qo € F, P (o) = 1 such that

VweQ Z(w)eC(0,T];R™)

and

t
Ywe Qo Vtel[0,T] Y}:fﬁ—k/bl(s,Ys)ds—th.
0

By (3.7) and (3.9) we obtain

t t
(3.10) ||Yt—Ys||—H/ bl Yo dut 2= 2] < [ IonGuYo)ldu+ 120~ 2]

t
< Kb/ (L +[[Yull) du + (¢ = s)7[|Z]lc (o0, 77:mm)

Ky(t = )1+ (12| + KT + | Z]lco,rymm)e™ ] + (¢ = )1 Z ]l e (o, rym)

<
< Al(t - S)’Y(l + ||Z||C’y([0’T];Rn)) on Qg

for 0 < s <t < T, where A; is a constant depending only on T',~, K3, and Z, hence
{Y;,t € [0,T]} takes values in C7([0,T]; R™) P-a.s. If we define

. {w), Yi(w) € ([0, T RY),

0 otherwise,

then {Y,,t € [0,7]} is a version of the process {Y;,t € [0, 7]} with trajectories in
C7([0,T]; R™). We prove the estimate (3.8). Using (3.9) and (3.10) for w € €2 such

891



that Y;(w) = Y;(w), t € [0,T], we obtain

- + [V = Yol

Y -5 g+ sup el

¥ llexo.r3:mmy = 1Y lleqo,zrimm) o< oy
”Yu_Yv”

=Y .gn) +  Sup
| ||C([07T]7R) O0<ocu<T (u_v)'y

< (12 + KT + | Zleqo,rirm)e™ ™ + A1(1 + | Zlev o,71:mm))
<A+ Z]levqo,115mm)))5

where A depends only on T, 7, Kj, %, and (3.8) follows for the version {Y,t € [0, 7]}
of the process {Y;,t € [0,T]}. O

4. GIRSANOV THEOREM AND ITS APPLICATION

In what follows {W;,t > 0} denotes an n-dimensional F;-Wiener process defined
by (2.4).

Theorem 4.1 (Girsanov Theorem for fBm). Let BY = {BH t € [0,T]} be
an n-dimensional Fi-fractional Brownian motion with Hurst parameter H on the
interval [0,T]. Consider an Fi-adapted n-dimensional process u = {u,t € [0,T]}
with integrable trajectories. Set

v(s) = K§1</ . dr> (s), s€][0,T],
0
and assume that

T 1 (T
gT—exp{/ vEdWS——/ |v5||2ds},
0 2 Jo
H+3

(i) Jyusds e I, 2 (L*([0,T]; R™)) P-a.s.,
(ii) E(¢r) = 1.
Then { BH — fot usds,t € [0,T]} is an n-dimensional F;-fractional Brownian motion
with Hurst parameter H on the interval [0,T] under the probability P defined by
the density & = dﬁ/dﬂj’ with respect to P.

Proof. Cf. [23]. O
For A € (0,1] define the space
COMO([0, T); R™) o= {f € CM[0,T;R™); Ve > 038 =6(c, f) > 0

Vs, te (0,T), O<|t—s|<5:>%<e}.

892



If the space C%*0([0,T]; R") is equipped with the norm of the space C*([0,T]; R"™)
then

1. CO*([0, T]; R™) c ([0, T]; R™);

2. ([0, T);R™) c COMNO([0, T); R™) Vv > \;

3. the space CO*9(]0,T]; R™) is separable (cf. [14], Theorem 1.4.11).

The separability of C>*0([0,T]; R™) will be important when we apply Fernique’s
Theorem (cf. [9]).

In what follows, let o: [0,7] — L(R™) be a Borel mapping such that there exists
an inverse o~ 1(t) of o(t) for all t € [0,7] and let be: [0,7] x R® — R™ be a Borel
function. Set

u(s) = o (s) ba(s,Ys), s€[0,T],
and

v(s) = Kﬁl(/o. Uy dr) (s), s€10,T],

where {Ys,s € [0,T]} is a solution to (3.1) with Holder continuous trajectories of
order 4, 0 < 0 < H.

Case H < %

Theorem 4.2. Let {Y;,0 < ¢t < T} be a solution to the equation (3.1) whose
diffusion and drift satisfy the assumptions of Theorem 3.6. Assume that o(t) is
invertible for allt € [0,T]. Let ba: [0,T] x R™ — R™ be a Borel function satisfying

(4.1) JK >0Vte[0,T] Ve e R |jo () balt, )| < K(1+ ||z])).

Then BH = {Bf{—fot usds,0 < t < T} is an n-dimensional FfH—fractjonaI Brownian

motion on [0, T| under the probability measure defined by the density &p with respect

T 1 (T
& = exp {/ U;F dW, — —/ ||vs|2ds}.
0 2 Jo

Proof. The process {us,s € [0,T]} is .7-"tBH—adapted. We show that the as-
sumptions (i), (ii) of Theorem 4.1 are satisfied for {us, s € [0,7]}. The condition (i)
of Theorem 4.1 is equivalent to

to P, where

(4.2) ve L*([0,T]) P-as.

To check (ii) it suffices to show that there exists A > 0 and a partition {0 = t; <
b <...<tnna) = T} such that |t;11 — ;| < A and

tit1
(4.3) E exp {/ ||1)S|2ds} < 400
ti

893



holds for all ¢ = 0,..., N(A) — 1, since this implies

tiy1 1 tit1
(4.4) E [eXp {/ vl dW, — 5/ ||Us||2d5}
t; t;

(cf. [10], Lemma 7.1.3). Using repeatedly (4.4) we obtain

T 1 /7
E [exp{/ U;F dW, — —/ ||vs|2ds}] =1,
0 2 Jo

which is (ii) from Theorem 4.1. Thus it is sufficient to prove (4.2) and (4.3).
By Proposition 3.1 {Z;,t € [0,T]} is a Gaussian process with Holder continuous

.7:51{} =1 P-as.

trajectories on [0, 7] of order v, 0 < v < H, and
([0, T; R™) € C® ([0, T]; R™; || - llev(po,rymmy) € C¥([0, T]; R™)

for any v, H > v > v > 0. Due to the separability of the space C%*°([0,T]; R";
I llevqorirny)s Z: Q@ — COO([0,T];R™; || - |lcv(fo,77;rm)) is a Gaussian random
variable. Thus, by Fernique’s Theorem (cf. [9]) we get

(4.5) E exp{¢[|Z|

& (0. msmm } < 00
for some ¢ > 0. Denote
o(s) = séfHafl(s) ba(s,Ys).

For any t1,t2 € [0,T], t1 < ta, we have

ta ta .
/ ||v5|\2ds:/ ’Kﬁl(/ urdr)
t1 t1 0
g [ [ e v a
= s—r r o “(r T, r
r2(5—H) ), 0 s

s
In view of (4.1) we get

2

to . 1_gg
dS:/ 1572 (I3 " @) (s)lI” ds
t1

2
ds.

[N

ta 1 t2 s 101 ?
lvg||? ds < 7/ sQH_l{/ s—r) H 2r2 B (14|, )dr} ds
[ s < s | (= 1+ %]

1

K21+ ||Y]|z ’ny)? 1 t2
< (14 |1\L (10,7);R™)) Bz(§ —H, - —H)/ s172H g = I,
(3 — H) 2 2 t

Obviously,

3_

to to—t1 . 1
(4.6) / s ds = / (s4+t1) " 2(s+1t1)2*ds < QT%_QH(tQ —11)2,
t1 0
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and using the estimate (3.8) from Theorem 3.6 we have

47 A+ Yl orirm)? < [T+ AQ+ (1 Zller o, r7mm))])
<2(1424% + 222 Z |30 o rymmy) P-as.

From (4.6) and (4.7) we obtain

K2(1+ [|Y]| rmy)2 1 t2
(4.8) I, = Sl l'L (o11:7") BQ@—H,——H)/ s 72H g
r2(l —m 2 2 )

< B[+ (b2 = 1) 2| 2130 0,170

1

for any t1,t3 € [0,T], t1 < t2, P-a.s., where B is a constant depending only on K,
T, H, A.
For t1 =0, ty =T, (4.8) reads

T
/ a2 ds < B[1 + T 2|
0

gu([o’T];Rn)] < +o0 IP—a.s.,

which implies (4.2).

Take A > 0 such that BA? < ¢ and consider a partition {0 = tp < t; < ... <
tn(ay = T} such that [t —t;] <A, i=0,...,N(A) — 1. By (4.5) and (4.8) we
obtain

tit1 . .
E exp {/ ||vs|2d8} < E exp{ B[l + (tiy1r — )2 | 21120 10, 17:0m))}
ti

<ePE exp{CHZH%V([O,T];Rn)} < 400,

which verifies (4.3) and the proof is complete. O
Case H > 3.
Theorem 4.3. Let {Y;,0 < ¢t < T} be a solution to the equation (3.1) whose

diffusion and drift satisfy the assumptions of Theorem 3.6. Assume that o(t) is
invertible for allt € [0,T]. Let ba: [0,T] x R™ — R™ be a Borel function satisfying

1
(49) ZFae(l 1)3pe(H - 5,1) 3C >0Vs,t€[0,T|Va,y e R"

- 5=,
lo= (8) ba(t, ) — o~ (5) ba(s, )| < Oz — yl|* + [t — s]%).

Then the conclusion of Theorem 4.2 holds true.
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Proof. We verify (4.2) and (4.3) which appear in the proof of Theorem 4.2.
First we prove that for any 6 € (0, H) there exists a constant B > 0 such that

to .
(4.10) [ ol ds < B+ (2 = 01208 g )

t1

holds P-a.s. whenever t1,t2 € [0,T], t1 < t2. Setting again

p(s) = s a7 (s) ba(s, Y5),

we may estimate

ta
(4.11) / o2 ds

ty
. to .
w5t ([ war)o| as= [T1m o o P
0 t1

-/,
- [ gl [ ) [ 22|

2 to—1t1 )
<———— t d
e GRIRT

2

r2(3
1 L [T et t) — () |
+ H—-—-)(v+t H‘?/ ———Fdr dv}
A ( 2)( 1) 0 (U—f—tl_T)HJ’_E
2
== - +1
FQ(% —H)( 1 + 2)

for t1,t2 € [0,T], t1 < ta. Without loss of generality we suppose
(4.12) lo7(0) b2(0,2)|| < C,
where C' is the constant from (4.9). Fix any d, 0 < 6 < H. By (4.9), (4.12) and

the Holder continuity of order ¢ of the trajectories of the process {V;,0 <t < T} we
obtain

to—t1
L= [ et )P
0
to—t1
= / (1} + tl)l_QHHO'_l(U + f,l) bQ(U + 11, Y[)+t1) + 0'_1(0) bg(o, Y())HQ dv
0
to—1t1
<20 [ 0 t) (Yo = ol + (04 0)) 4 o
0
to—t1
<202 / (0 +t1)" 27 2((0 + t1)** Y113 0. 110y + (v + 1)) + 1] do.
0
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Using (3.8) to estimate Y, we get

to—t1
(413) I < 2C2/ (v+t) 2H
0

x [2((v +t1)** A% (1 + || Zles o,y ) > + (v + 81)%) + 1] dv
< Bi[l + (t2 — 1)’ 2013 o 1y0m)) P-as,

where B; depends only on H, C, T, «, 6, 3, A. Setting ¥(s) = o7 1(s) ba(s, Ys),
s € [0,T], we have

12—/;”1 (H-3>(v+t1)H%/0v+tl ploth) —et) g,

2 (U+If1—T)H+2
- v 1_
2(H_1)2/t2 tl(v+t1)2H1H/ T tt) —rz Mg+ t)
2 0 0
YR ERy

(v+ty —r)ts
2
r dv
v+t1 —r)HJrz ]
2 [t2—t1 v+t1|(v—|—t1)%7H—7’%7H| 2
H——) / v+1 QHI{{/ dr||v(v+t ]
( 27 Jo ( 2 0 (04t —r)H+s o€ Vl

v+t r%fH .
' [/ i) —wmudr} }dv.

2
dv

2
dr

By (2.10) from Lemma 2.2, (4.9), (4.12), the Holder continuity of order ¢ of the
trajectories of the process {¥;,0 < ¢t < T'} and the estimate (3.8) we obtain

414) L < (H——) o2

to—t1
[ w2 4 0 R, = Yol 2o ) 1
0

v+t TéiH s 2
+ Wt = )Y my W+t —r dr} }dv
[/0 (v+t1—r)H+1{( 1= )Y s o ryy + (0 411 = 1))
to—1t1

]_ 2
< 4 2 2H—1
\2( 2) c/o (v+t)
< {202<H><v P + 020 A2 (14 213 o ) + 200+ 07 4 1]
1
1_ g1
n [Aa<1+|Z||za<[o,T];Rn>> [ty

2
X (v 1) 02 g2 (1 )P H T () P2 du} } v
< B[l + (t2 — tl)Q(lfH)HZ”g?([o,T];Rn)] P-a.s.,

897



where Bs is a constant depending on H,C, T, a,, 3, A, C(H). Plugging (4.13) and
(4.14) into (4.11) we get that P-a.s.

ta -
/ ol ds < B+ (t2 — )* | ZJ28 0 0]

t1
holds for all t1,t5 € [0,T], t1 < to, where

~ 2
B=———(B1+B
mgom

which completes the proof of (4.10).
Using (4.10) for t; = 0,t2 = T we get

T
/0 lvs|1* ds < B[1+ 770~ H)||Z||C5(OT rmy] < +oo P-as.,

hence (4.2) holds.
In order to verify (4.3), choose A > 0 such that BA21=H) < ¢ and a partition
{Ozf,o <t < ---<tN(A) ZT}, |ti+1 —ti| < A, 1= 1,...,N(A)—1. We have

t, 1 -
E eXp{ |Us||2d8} <E exp{B[L + (tiy1 — t:)* ) 2113 0.13.0m) )}
E

{/ eXP{BAQ(l H)||Z||05 ([0,T];R™) }dP
0<l1Zll¢s (o, 7

]",n)gl

+/ exp{B(A2(1 ) ||Z||c26 ([0,T];R™ }d[P’]
1Zllcs (0,790 >1
<eP [QCP{O < Zllesqo,ryrmy < 1}

+/ eXp{C”ZHgS([O,T];[R”)}dIP:|
121l go.290m) >1
<ePlet +E eXP{C”Z||(2:5([0,T];Rn)}] < +o0,

which shows (4.3) and the proof may be completed as in the proof of Theorem 4.3.
O
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5. EXISTENCE OF A WEAK SOLUTION

Consider the equation

t t
(5.1) X; = &':—l—/ b(s, Xy) ds+/ o(s)dBH
0 0

where b: [0,T] x R* — R", o: [0,7] — L(R") and {Bf,t € [0,T]} is an n-
dimensional ffH-fractional Brownian motion on (2, F,P) with parameter H on
the interval [0, T].

Proposition 5.1. Suppose that trajectories of the process {us,t € [0,T]} are P-
a.s. in L>([0,T); R™). Then for any ¢ € H (case H < 1) or ¢ € LH([0,T]; L(R™))
(case H > 1)

(5.2) /0 o(s)dBH = /0 o(s)dBH + /0 o(s)u(s)ds P-as., t e [0,T),

where {BH t € [0,T]} is the n-dimensional FB" -fBm on (Q, F,P) defined in Theo-
rems 4.2 and 4.3 in the respective cases H < % and H > %

Remark 5.2. Note that the stochastic integrals on the left-hand and the right-
hand sides of (5.2) are defined on different probability spaces (2, F, P ) and (€2, F, I]S),
respectively. However, these spaces differ only by the measures P and ﬁ, which are
mutually absolutely continuous. Therefore, (5.2) makes sense.

Proof. Takeanyt € [0,7], a,b € [0,t]. If ¢ = Ij,4) then the left-hand side of
(5.2) is equal to

t
(5.3) / ¢(s)dBH = Blf — BH.
0

Further, with this choice of ¢,
t _ t _ _ b
/ ©(s)dBH —|—/ o(s)u(s)ds = BE — BH —|—/ u(s)ds
0 0 a

b a b
= Blfl —/ u(s) ds—f—Bf —/ u(s) ds+/ u(s)ds = BL{'I — Bf’
0 0 a

so (5.2) has been shown for ¢ = Ij, 3, a,b € [0,t]. By linearity we can extend (5.2)
to all ¢ € £. The rest of the proof is divided into two parts.
(i) H < . By the definition of 1

VoeH o, €& lon —plln — 0, n — +o0.
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Using the isometry (2.3)

/ /Otson<s>d§£—/otso<s>d§5 2

<K% (on — ) (5)||2L2([0,T];L(Rn)) = [lon — <P||%f — 0, n — +o0,

dP = ||K}; (o — ¢) (122042

thus .
/ on(s)dBH —>/ s)dBP, n — 400 in L*(Q,P;R™).

Hence there exists a subsequence of (¢,,) (denoted again by (¢,,)) such that
(5.4) /1t on(s)dBH — / s)dB, n— +o0o P-as.
Repeating the same procedure for { Bt € [0,T]} we get

/tgan( ydBH —>/ s)dB”, n — 400 P-as.
and since the measures P and P are equivalent we also have
(5.5) /1t @n(s)dBT — / s)dBY n— +o0o P-as.
As H — LY([0,T]; £L(R™)) ([3], Remark 2.1) we have

lon — @l L1 o, @m)) — 0, 7 — +o00.
It follows that

| / pulsyuls)ds = | " p(s)u(s) ds -/ (on(s) — p(s))uls) ds

(pHLl([O’T];C(Rn)) — 0, n — 40 ﬁ-a.s.

(5.6)

< ”u”LOO([O,T];[R") On —

Our statement follows from

' S H: ' S BH ' S)uls S ~-a.s.
/Osanmst /Osanmst +/0 on(s)u(s)ds P-as., te[0,T)

by letting n — +oco and using (5.4), (5.5) and (5.6).
(i) H > . Take p € LYH([0,T]; L(R™)), then there exist ¢, € & such that

llon — 80||L1/H([0,T];5(Rn)) — 0, n — +o0.
However, L'/# ([0, T]; L(R™)) < H according to (2.5) and hence
llen = ¢llrt — 0, n — +o0.

Repeating the above arguments we find that (5.4), (5.5) and (5.6) are valid in the
case H > % as well and the proof is complete. ([
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Definition 5.3. Let (?t)@o be an augmented filtration on a complete proba-
bility space (Q,F,P). By a weak solution to the equation

t t
(5.7) E:m/ b(s,YS)dH/ o(s)dBY
0 0

we mean a couple of F;-adapted processes (EH, X) with continuous trajectories on
a probability space (Q, F,P) such that B is an JF;-fractional Brownian motion and
X and B satisfy the equation (5.7) for all t € [0,T] P-a.s.

We prove the existence of a weak solution to the equation (5.1).
Theorem 5.4. Let by,be: [0,T] x R® — R™, o: [0,T] — L(R™) be Borel map-

pings such that b = by + by on [0,T] x R™ and assume that o(t) is regular for all
t € [0,T]. Suppose that

3K, > 0Vt € [0,T) Vo € R™  ||by(t, 2)|| < Kyp(1 + |z])),

and let there exist a solution Y to the equation (3.1). Set u(t) = o= 1(t)b2(t,Ys), t €
[0,T). Assume that u € L°°([0,T]; R") P-almost surely and either H < %, o €
€% ([0,T); L(R™)) for some 6* € (3 — H,1) and

JK >0Vt€[0,T] Vo € R |o ' (t) bo(t,2)| < K(1+ |z|),

or H> 1 o€ L>~([0,T]; L(R")) and

o e (1-%,1) Pe (H—%,l) 3C > 0 Vs, t € [0,T] Yo,y € R"

lo= (8) ba(t, ) — o~ (5) ba(s, )| < Oz — yl|* + [t — s/%).

Then there exists a weak solution (EH,Y) to the equation (5.1). Moreover, the
probability laws of X and Y are equivalent.

Proof. Let B be the process defined in Theorem 4.2 (case H < %) or
4.3 (case H > 1) and Y = {Y;,t € [0,T]} be a version of solution to (3.1) with
Holder continuous trajectories of order §, 0 < § < H. We show that the couple of
FfH—adapted processes (EH, Y') is a weak solution to (5.1) on the probability space

(Q,F, I]S), where P is the probability measure defined by the density

T 1 T
fT:exp{/ U;FdVVs——/ |Us|2d5}
0 2.Jo
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with respect to P. The process BH ig a ffH—fractional Brownian motion so it is
sufficient to show that the process (BH,Y) satisfies the equation (5.1) for all ¢ € [0, T
P-as. Fix t € [0,7]. Using Propositon 5.1 and the fact that Y is a solution to the
equation (3.1) we have

t t t
Y}zﬁft—l—/ bl(s,Ys)ds—i—Zt:fé—i—/ bl(s,Ys)ds—l—/ U(s)dBf
0 0 0
t t B t
::H/ bl(s,YS)ds—f—/ a(s)dBf+/ o(s) o (s) ba(s,Ys) ds
0 0 0
t t t _
=§:+/ bl(s,Ys)ds—i—/ bg(s,Ys)ds—i—/ o(s)dBH
0 0 0

t t
::z+/ b(s,YS)ds—k/ o(s)dB? P-as.,
0 0

therefore (B Y) satisfies the equation (5.1) for all ¢ € [0,7] P-a.s. So (EH,Y) =
(BH.Y) is a weak solution to (5.1). The equivalence of the laws of X and Y may be
proved in a similar way as in the Wiener case H = % O

6. EQUATION OF THE STOCHASTIC OSCILLATOR

The last section is devoted to an example of a stochastic nonlinear oscillator driven
by a fractional Brownian motion. Consider the n-dimensional stochastic differential
equation

d? d d=n
@xt + F(t,l‘t, amt> = E(t)_Bt )

which can be rewritten as

t
(6.1) Ty = Xo —|—/ v, ds,
0

t t —
vy = Vg — / F(t,zs,vs)ds +/ 7(s)dB; .
0 0

Moreover, consider the linear equations

t
(6.2) Y = To + / w, ds
0

¢
wy = vy + / 7(s) dEf.
0
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For t € [0,T] and y = (z,v)T € R*" denote

and

0 0
= (o o)
o(t) being a 2n X 2n matrix.

Then the equations (6.1) and (6.2) can be rewritten in the matrix form

- t S S tO' S "
(6.3) X, = o+ /0 (b2(X.) + bals, X)) ds + /0 (s) dB!
and
== t S tO' S i

where {BH,0 <t < T} is a 2n-dimensional F2" -fractional Brownian motion whose

—H . .
second n components are the components of B . Suppose that the matrix 7(t) is
regular for all ¢ € [0,T]. Let

E(t)—<8 _?(t)>’ te[0,T7],

T
denote the 2n x 2n matrix with the property

0 0

, telo,T],

o(0)2(0) = S(0)ote) =
where I, «, is the n X n identity matrix.
If we replace the inverse o~!(¢) by the matrix Y(¢) all statements in the previous
sections hold true.

Suppose that 7 is a Borel function and
e either H < J and @ € C° ([0, T); £(R™)) for some 6* € (3 — H,1),
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e or H >} and & € L*°([0,T]; L(R™)).

The function by : R** — R?"; y = (z,v)T + (v,0)7T is Lipschitz (consequently b;
satisfies the condition (3.7)). Thus there exists a unique solution to the equation (6.4)
(ct. Proposition 3.5) and it has a Hélder continuous version of order v, 0 < v < H
(Theorem 3.6).

Assume that the trajectories of the process {7 1(t)F(¢,Y;),t € [0,T]} are in
L*°([0,T]; R™) and suppose moreover that

e cither H <  and 3K >0Vt € [0,T]Vy € R*™ g () F(t,y)|| < K(1+ [ly]),

eor H> %andda € (1—-LH11)38 € (H-11)3C > 0Vst ¢

[O,T] Vyi,y2 € R2"

[T (O F (t,y1) =7 () F(t, y2) | < Cllyr — w2l + [t = /7).

Then the assumptions of Theorem 5.4 on the map (¢t,y) — X(t) b2(t,y), t € [0,T],
y € R?" are satisfied because

0
E(t) ba(ty) = (_E(t)F(t,y)) ,

hence the equation (6.3) has a weak solution and so the equation (6.1) has a weak
solution.

In the remaining part of this section the equivalence of the laws of weak solutions
is studied for 7(t) = 7 independent of ¢. Under the above assumptions we prove
that the laws of the solutions (z;,v;)" are equivalent to the Lebesgue measure on
R?" for each t > 0, H € (0,1)\ {3} and (z¢,v9)"T € R*". We show that the
covariance matrix Qr of the random variable Y7 ({¥;,t € [0,T]} is a solution to the
equation (6.4) which is Gaussian) is positive definite therefore the law of Y has a
(positive) density with respect to the Lebesgue measure on R?". Hence, obviously,
the probability law of Y; for ¢ € [0, 7] is equivalent to the Lebesgue measure on R?".

Using the above notation the equation (6.4) can be rewritten as

t t
(6.5) Yi=yo+ / AY,ds + / ocdBH,
0 0

A — 0 I?’LXTL
0 O

is a 2n X 2n matrix. Then the solution is given by the formula (cf. [8], [7])

where

' H "0 (t—s)T H
Y: = exp{At}yo + exp{A(t — s)}o dB; = exp{At}yo + 0 _ dB;’,
0 0 o
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since

I tl,
exp{At} = ( "Oxn Inxn> .
nxn

So the law of Y is Gaussian N (exp{ AT }yo, @7). The computation of Qr is divided
into two cases.
Case H > 1. The covariance matrix Qr has the form (cf. [7])

T T
Qr=H(2H — 1)/ / exp{As}ooT exp{ATr}|r — 5|22 drds.
o Jo

Using the identities

T T
1
2H -2 _ m2H+2
rs|r —s dr,ds =T ,
/0 /0 Ir =l 2H(2H — 1)(H + 1)
T 2H -2 2H+1 1
— “Fdrds=T —_
/0 /0 r|r — s| rds SHEH 1)’

ot 2H-2 2H 1
_ - —_2H___
/0 /0 [r — s] drds HEH—1)

we get
7 _r T'__p
66 0 _en 2(H+1)O'O' 50’0’
‘ T T__ T
50’0’ oo

Case H < %. It is sufficient to compute E [fOT(T — 5)d(BH)i)? and E [(BH)" x
fOT(T —s5)d(BH)I] for i, = 1,...,2n. In the norm of the space H the function
f(s) =T —s, s €0,T], may be approximated by

-k
fils) = =TIy gy (s), s €[0,T], LN,

so we have

| | ' fz<s>d<Bf’>sr _ (%)w“gkwﬂ

1
o TR e I oo, i = 1 2,

and
T , 1 1
o) [ asamy| = gra i ]
0
1
— 5T2H+1, | — +o00, 4,j=1,...,2n,
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therefore

’ Hyi N s i [ Hyj L om
E T—3s)d(BS)"| = E [(Bf)" T—-3s)d(B) | ==T
[ a-amy| = g e |ey [ @ - gamny] - o,
fori,5 =1,...,2n. It is easy to see that r has the same form (6.6) as in the case

H> 1.
Now we prove that Qr is positive definite. For z = (21, 72)" € R?" we obtain

(Qra,z) = T*[(ays + by2)" (ay1 + bya) + cy3 yal,

where
_T —T
Y1 =0 T1, Y2 =0 T2

and

H+1 1-H
b=/l S0 = > 0.

I >0
4= — ,
V2(H +1) 2 2
By the regularity of &, (y1,y2)T # 0 for x # 0, and therefore (Qrx,z) > 0 for all

x # 0.
The equivalence of the probability laws of the solutions to the equations (6.1) and

(6.2) follows from Theorem 5.4, so it follows that the laws of the solutions (z¢,v:)T to
(6.1) are equivalent to the Lebesgue measure on R*" for each t > 0, H € (0,1)\ {3}
and (zg,v0)".
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