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GLOBAL STRUCTURE OF POSITIVE SOLUTIONS FOR

SUPERLINEAR 2mth-BOUNDARY VALUE PROBLEMS

Ruyun Ma, Yulian An, Lanzhou

(Received September 6, 2008)

Abstract. We consider boundary value problems for nonlinear 2mth-order eigenvalue
problem

(−1)mu(2m)(t) = λa(t)f(u(t)), 0 < t < 1,

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, 2, . . . , m − 1.

where a ∈ C([0, 1], [0,∞)) and a(t0) > 0 for some t0 ∈ [0, 1], f ∈ C([0,∞), [0,∞)) and
f(s) > 0 for s > 0, and f0 = ∞, where f0 = lim

s→0+
f(s)/s. We investigate the global

structure of positive solutions by using Rabinowitz’s global bifurcation theorem.

Keywords: multiplicity results, Lidstone boundary value problem, eigenvalues, bifurca-
tion methods, positive solutions

MSC 2010 : 34B10, 34G20

1. Introduction

We are interested in the study of the global structure of positive solutions of the

problem

(−1)mu(2m)(t) = λa(t)f(u(t)), t ∈ (0, 1),(1.1)

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, 2, . . . , m − 1,(1.2)

where λ is a positive parameter, a : [0, 1] → [0,∞) and f : [0,∞) → [0,∞) is contin-

uous. We note that when m = 2, (1.1), (1.2) may describe the deformations of an

elastic beam whose both ends are simply supported, see Gupta [1].
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In the past twenty years, the existence of solutions, especially the existence of

positive solutions, of (1.1), (1.2) and its general cases, has been extensively studied

by using the Leray-Schauder degree and the fixed point theorem in cones, see Agarwal

[1], Agarwal and Wong [2], Aftabizadeh [3], Yang [4], Del Pino and Manásevich [5],

Ma and Wang [6], Ma, Zhang and Fu [7], Bai and Wang [8], Bai and Ge [9], Yao

[10], Y. Li [11], F. Li et al. [12] and references therein. Also, the global structure

of positive solution set (and nodal solutions set) are investigated by several authors,

see for example, the interesting contributions [13]–[15] by Bari and Rynne.

Very recently Ma [16]–[18] studied the global bifurcation phenomena of nodal

solutions of (1.1), (1.2) when m = 2 and f0 ∈ (0,∞), where f0 = lim
s→0+

f(s)/s.

However, relatively little is known about the global structure of solutions in the

case that f0 = ∞, and no global results are found in the available literature when

f0 = ∞ = f∞. The probable reason is that the global bifurcation techniques cannot

be applied directly in this case.

In the present work we obtain complete description of the global structure of

positive solutions of (1.1), (1.2) under the assumptions

(A1) a : [0, 1] → [0,∞) is continuous and a(t) 6≡ 0 on [0, 1];

(A2) f : [0,∞) → [0,∞) is continuous and f(s) > 0 for s > 0;

(A3) f0 = ∞, where f0 = lim
s→0+

f(s)/s;

(A4) f∞ ∈ [0,∞], where f∞ = lim
s→+∞

f(s)/s.

Let Y be the Banach space C[0, 1] with the norm

‖u‖0 = max{|u(t)| | t ∈ [0, 1]}.

Let E denote the Banach space defined by

E = {u ∈ C2m−1[0, 1] ; u(2i)(0) = u(2i)(1) = 0, i = 0, 1, 2, . . . , m − 1}

equipped with the norm

‖u‖ = max{‖u‖0, ‖u
′‖0, . . . , ‖u

2m−1‖0}.

Define an operator L : (E ∩ C2m[0, 1]) → Y by

Lu = (−1)mu(2m), u ∈ E ∩ C2m[0, 1].

To state our main results, we need the spectrum theory for the linear eigenvalue

problem

Lu = λa(t)u, t ∈ (0, 1),(1.3)

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, 2, . . . , m − 1.(1.4)
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Lemma 1.0 ([19]). Let (A1) hold. Then the eigenvalues of (1.3), (1.4) {λk}k∈N ⊂

(0,∞) satisfy

(i) 0 < λ1 < λ2 < . . . < λk < λk+1 < . . . , lim
k→∞

λk = ∞;

(ii) for each k ∈ N, the algebraic multiplicity of λk is equal to 1;

(iii) for each k ∈ N, if v ∈ ker(L − λkI) \ {0}, then v has exactly k − 1 simple zeros

in (0, 1).

Let M be a subset of E. A component of M is a maximal connected subset ofM ,

i.e. a connected subset of M which is not contained in any other connected subset

of M .

The main results of this paper are the following theorems.

Theorem 1.1. Let (A1)–(A3) hold.

(a) If f∞ = 0, then there exists a component ζ of Σ with (0, 0) ∈ ζ and

ProjRζ = [0,∞).

(b) If f∞ ∈ (0,∞), then there exists a component ζ of Σ with

(0, 0) ∈ ζ, ProjRζ ⊆
[
0,

λ1

f∞

)
.

(c) If f∞ = 0, then there exists a component ζ of Σ with (0, 0) ∈ ζ, ProjRζ is a

bounded closed interval, and ζ approaches (0,∞) as ‖u‖ → ∞.

Theorem 1.2. Let (A1)–(A3) hold.

(a) If f∞ = 0, then (1.1), (1.2) has at least one positive solution for λ ∈ (0,∞).

(b) If f∞ ∈ (0,∞), then (1.1), (1.2) has at least one positive solution for λ ∈

(0, λ1/f∞).

(c) If f∞ = 0, then there exists λ∗ > 0 such that (1.1), (1.2) has at least two positive

solutions for λ ∈ (0, λ∗).

We will develop a bifurcation approach to treat the case f0 = ∞. Crucial to this

approach is to construct a sequence of functions {f [n]} which is asymptotically linear

at 0 and satisfies

f [n] → f, (f [n])0 → ∞.

By means of the corresponding auxiliary equations, we obtain a sequence of un-

bounded components {C
[n]
+ } via Rabinnowitz’s global bifurcation theorem [11], and

this enables us to find an unbounded component C satisfying

(0, 0) ∈ C ⊂ lim sup C
[n]
+ .
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We now conclude this introduction by outlining the rest of the paper: In Section 2,

we introduce some notation and prove some preliminary results. Finally, in Section 3,

we prove our main results by global bifurcation techniques.

2. Some preliminaries

In this section we introduce some notation and preliminary results which will be

used in the proofs of our main results.

Definition 2.1 [20]. Let X be a Banach space and {Cn ; n = 1, 2, . . .} a family

of subsets of X . Then the limit superior D of {Cn} is defined by

D := lim sup
n→∞

Cn = {x ∈ X ; ∃{ni} ⊂ N and xni
∈ Cni

such that xni
→ x}.

Lemma 2.1 [20]. Suppose that Y is a compact metric space, A and B are non-

intersecting closed subsets of Y , and no component of Y intersects both A and B.

Then there exist two disjoint compact subsets YA and YB such that Y = YA ∪ YB,

A ⊂ YA, B ⊂ YB.

Lemma 2.2. Let X be a Banach space and let {Cn} be a family of closed con-

nected subsets of X . Assume that

(i) there exist zn ∈ Cn, n = 1, 2, . . ., and z∗ ∈ X such that zn → z∗;

(ii) lim
n→∞

rn = ∞, where rn = sup{‖x‖ ; x ∈ Cn};

(iii) for every R > 0,
( ∞⋃

n=1
Cn

)
∩ BR is a relatively compact set of X , where

BR = {x ∈ X ; ‖x‖ 6 R}.

Then D (= lim sup
n→∞

Cn) contains an unbounded component C with z∗ ∈ C.

P r o o f. By the definition of D, z∗ ∈ D. Suppose on the contrary that the

component C in D which contains z∗ is bounded. Note that D is closed in X . It

follows that C is a closed subset of D, and consequently C is a closed subset of X . It

is easy to see that C is a compact subset of X by (iii). Take δ > 0, and let U1 be a

δ-neighborhood of C in X .

We discuss two cases.

Case 1. ∂U1 ∩ D 6= ∅.

In this case, we have from (iii) that U1 ∩ D is a compact metric space. Obvi-

ously, C and ∂U1 ∩ D are two disjoint closed subsets of X . Because of the maximal

connectedness of C, there exists no component C∗ of D ∩ U1 such that C∗ ∩ C 6= ∅,
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C∗ ∩ (∂U1 ∩ D) 6= ∅. By Lemma 2.1, there exist two disjoint compact sets XA and

XB of D ∩ U1 such that D ∩ U1 = XA ∪ XB, C ⊂ XA, ∂U1 ∩ D ⊂ XB. Evidently,

d(XA, XB) > 0. Let δ1 = 1
3d(XA, XB), and let U2 be the

1
3δ1-neighborhood of XA.

Set U = U1 ∩ U2. Then

(2.1) C ⊂ U, ∂U ∩ D = ∅.

Case 2. ∂U1 ∩ D = ∅.

In this case, we take U = U1. It is obvious that (2.1) holds.

Since zn → z∗, we may assume that {zn} ⊂ U . By (ii) and the connectedness

of Cn, there exists n0 > 0 such that for all n : n > n0 ⇒ Cn ∩ ∂U 6= ∅. Take

yn ∈ Cn ∩ ∂U , then {yn ; n > n0} is a relative compact subset of X , so there exist

y∗ ∈ ∂U and a subsequence {ynk
} of {yn ; n > n0} such that ynk

→ y∗. Obviously,

y∗ ∈ D. Therefore, y∗ ∈ ∂U ∩ D. However, this contradicts (2.1). The proof is

completed. �

Now, let σ be a constant with 0 < σ < 1
2 . Denote the cone K in Y by

(2.2) K = {u ∈ Y ; u(t) > 0 on (0, 1), and min
σ6t61−σ

u(t) > Γ‖u‖0},

where Γ = σm[
∫ 1−σ

σ
G(τ, τ) dτ ]m−1. For r > 0, let

Ωr = {u ∈ K ; ‖u‖0 < r}.

Define a map Tλ : K → Y by

(2.3) Tλu(t) = λ

∫ 1

0

Gm(t, s)a(s)f(u(s)) ds, t ∈ [0, 1],

where Gm(t, s) can be expressed by the recurrence

(2.4) Gm(t, s) =

∫ 1

0

G(t, τ)Gm−1(τ, s) dτ, m > 2

and

(2.5) G1(t, s) =

{
(1 − t)s, 0 6 s 6 t 6 1,

t(1 − s), 0 6 t 6 s 6 1,

see [8] for the details. It is easy to verify that the following lemma holds.
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Lemma 2.3 ([21]). (i) For any (t, s) ∈ [0, 1]× [0, 1] we have

(2.6) Gm(t, s) 6

[ ∫ 1

0

G(τ, τ) dτ

]m−1

G(s, s) =
1

6m−1
G(s, s), ∀m ∈ N.

(ii) For any (t, s) ∈ [σ, 1 − σ] × [0, 1] we have

(2.7) Gm(t, s) > ΓG(s, s), ∀m ∈ N.

Lemma 2.4. Assume that (A1), (A2) hold. Then Tr : K → K is completely

continuous.

Lemma 2.5. Let (A1), (A2) hold. If u ∈ ∂Ωr, r > 0, then

‖Tλu‖0 6
λM̂r

6m−1

∫ 1

0

G(s, s)a(s) ds.

where M̂r = 1 + max
06s6r

{f(s)}.

P r o o f. Since f(u(t)) 6 M̂r for t ∈ [0, 1], it follows that

‖Tλu‖0 6
λ

6m−1

∫ 1

0

G(s, s)a(s)f(u(s)) ds 6
λM̂r

6m−1

∫ 1

0

G(s, s)a(s) ds.

�

Lemma 2.6. Let (A1), (A2) hold. Assume that {(µk, yk)} ⊂ (0, +∞) × K is

a sequence of positive solutions of (1.1), (1.2). Assume that |µk| 6 C0 for some

constant C0 > 0, and

lim
k→∞

‖yk‖ = ∞.

Then

lim
k→∞

‖yk‖0 = ∞.

P r o o f. From (1.1), (1.2), we have

(2.8) y
(2m−1)
k (t) =

∫ t

η

y
(2m)
k (s) ds =

∫ t

η

µka(s)f(yk(s)) ds

6 C0

∫ t

η

a(s)f(yk(s)) ds, ∀ t ∈ (0, 1)

for some η ∈ (0, 1) such that y
(2m−1)
k (η) = 0. (2.8) implies that {‖y2m−1

k ‖0} is

bounded whenever {‖yk‖0} is bounded. This together with the boundary condition

(1.2) implies that {‖y
(j)
k ‖0} (j = 1, 2, . . . , 2m− 2) is bounded if {‖yk‖0} is bounded.

�
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3. Proof of the main results

Define f [n](s) : [0,∞) → [0,∞) by

(3.1) f [n](s) =

{
f(s), s > ( 1

n
,∞),

nf
(

1
n

)
s, s ∈

[
0, 1

n

]
.

Then f [n] ∈ C([0,∞), [0,∞)) with

f [n](s) > 0, ∀ s ∈ (0,∞), and (f [n])0 = nf
( 1

n

)
.

By (A3), it follows that

lim
n→∞

(f [n])0 = ∞.

To apply the Global Bifurcation Theorem, we extend f by an odd function g : R → R

such that

(3.2) g(s) =

{
f(s), s > 0;

−f(−s), s < 0.

Similarly we may extend f [n] to an odd function g[n] : R → R for each n ∈ N.

Now let us consider an auxiliary family of equations

(−1)mu(2m)(t) = λa(t)g[n](u), t ∈ (0, 1),(3.3)

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, 2, . . . , m − 1.(3.4)

Let ζ ∈ C(R) be such that

(3.5) g[n](u) = (g[n])0u + ζ(u) = nf
( 1

n

)
u + ζ(u).

Note that

(3.6) lim
|s|→0

ζ(s)

s
= 0.

Let us consider

(3.7) Lu − λa(t)(g[n])0u = λa(t)ζ(u)

as a bifurcation problem for the trivial solution u ≡ 0.
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Equation (3.7) can be converted to the equivalent equation

(3.8) u(t) =

∫ 1

0

Gm(t, s)[λa(s)(g[n])0u(s) + λa(s)ζ(u(s))] ds

:= (λL−1[a(·)(g[n])0u(·)](t) + λL−1[a(·)ζ(u(·))])(t).

Further, we note that ‖L−1[a(·)ζ(u(·)]‖ = o(‖u‖) for u near 0 in E.

The results of Rabinowitz [22] for (3.7) can be stated as follows: For each integer

n > 1, ν ∈ {+, −}, there exists a continuum C
[n]
ν of solutions of (3.7) joining(

λ1/(g[n])0, 0
)
to infinity in ν K. Moreover, C

[n]
ν \ {(λ1/(g[n])0, 0)} ⊂ ν (intK).

P r o o f of Theorem 1.1. Let us verify that {C
[n]
+ } satisfies all of the conditions

of Lemma 2.2.

Since

limit
n→∞

λ1

(g[n])0
= limit

n→∞

λ1

n f(1/n)
= 0,

Condition (i) in Lemma 2.4 is satisfied with z∗ = (0, 0). Obviously

rn = sup{|µ| + ‖y‖0 ; | (µ, y) ∈ C
[n]
+ } = ∞,

and accordingly, (ii) holds. (iii) can be deduced directly from the Arzela-Ascoli The-

orem and the definition of g[n]. Therefore, the limit superior of {C
[n]
+ }, D, contains

an unbounded connected component C with (0, 0) ∈ C.

(a) f∞ = 0.

In this case, we show that Proj
R
C = [0,∞).

Assume on the contrary that

(3.9) sup{λ ; (λ, y) ∈ C} < ∞,

then there exists a sequence {(µk, yk)} ⊂ C such that

(3.10) lim
k→∞

‖yk‖ = ∞, |µk| 6 C0,

for some positive constant C0 independent of k. From Lemma 2.8, we have that

(3.11) lim
k→∞

‖yk‖0 = ∞,

This together with the fact

(3.12) min
σ6t61−σ

yk(t) > Γ‖yk‖0, ∀ 0 < σ < min{t0, 1 − t0}
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implies that

(3.13) lim
n→∞

yk(t) = ∞ uniformly for t ∈ [σ, 1 − σ].

Since (µk, yk) ∈ C, we have

(−1)my
(2m)
k (t) = µka(t)g[n](yk(t)), t ∈ (0, 1),(3.14)

y
(2i)
k (0) = y

(2i)
k (1) = 0, i = 0, 1, 2, . . . , m − 1.(3.15)

Set vk(t) = yk(t)/‖yk‖0. Then

(3.16) ‖vk‖0 = 1.

Now, choosing a subsequence and relabelling if necessary, it follows that there exists

(µ∗, v∗) ∈ [0, C0] × E with

(3.17) ‖v∗‖0 = 1

such that

(3.18) lim
k→∞

(µk, vk) = (µ∗, v∗) in R× E.

Moreover, using (3.13), (3.14), (3.15) and the assumption f∞ = 0, it follows that

(−1)mv
(2m)
∗ (t) = µ∗a(t) · 0, t ∈ (0, 1),(3.19)

v
(2i)
∗ (0) = v

(2i)
∗ (1) = 0, i = 0, 1, 2, . . . , m − 1,(3.20)

and consequently, v∗(t) ≡ 0 for t ∈ [0, 1]. This contradicts (3.17). Therefore

sup{λ; (λ, y) ∈ C} = ∞.

(b) f∞ ∈ (0,∞).

In this case, we show that ProjR C ⊆ [0, λ1/f∞).

Let us rewrite (1.1), (1.2) to the form

(−1)mu(2m)(t) − λa(t)g∞u − λa(t)ξ(u(t)) = 0, t ∈ (0, 1),(3.21)

u(2i)(0) = u(2i)(1) = 0, i = 0, 1, 2, . . . , m − 1,(3.22)

where ξ(s) = g(s) − g∞s. Obviously

(3.23) lim
|s|→∞

ξ(s)

s
= 0.
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Now by the same method as that used to prove [21, Theorem 1.1], we may prove

that C joins (0, 0) with (0, λ1/f∞).

(c) f∞ = ∞.

In this case, we show that C joins (0, 0) with (0,∞).

Let {(µk, yk)} ⊂ C be such that

(3.24) |µk| + ‖yk‖ → ∞, k → ∞.

Then

(−1)my
(2m)
k (t) = µka(t)g(yk(t)), t ∈ (0, 1),(3.25)

y
(2i)
k (0) = y

(2i)
k (1) = 0, i = 0, 1, 2, . . . , m − 1.(3.26)

If {‖yk‖} is bounded, say, ‖yk‖ 6 M1 for some M1 independent of k, then we may

assume that

lim
k→∞

µk = ∞.

Note that
g(yk(t))

yk(t)
> inf

{g(s)

s
; 0 < s 6 M1

}
> 0

and

(3.27) (−1)my
(2m)
k (t) = µka(t)

g(yk(t))

yk(t)
yk(t), t ∈ (0, 1).

The proof of Lemma 4 in [19] (see also the remarks in the final paragraph on p. 43

of [19]) shows that yk must change its sign on (0, 1) if k is large enough. This is a

contradiction. Hence {‖yk‖} is unbounded.

Now, taking {(µk, yk)} ⊂ C such that

(3.28) ‖yk‖ → ∞ as k → ∞,

we show that lim
k→∞

µk = 0.

Suppose on the contrary that, choosing a subsequence and relabelling if necessary,

µk > a0 for some constant a0 > 0. Then we have from (3.28)

(3.29) ‖yk‖0 → ∞ as k → ∞.

This together with (3.13) and condition (A1) implies that there exist constants α1,

β1 with σ < α1 < β1 < 1 − σ,

(3.30) a(t) > 0, lim
k→∞

µk

g(yk(t))

yk(t)
= ∞, ∀ t ∈ [α1, β1]

for every fixed constant σ with 0 < σ < min{t0, 1 − t0}.

Thus, we have from (3.27) that yk must change its sign on [σ, 1 − σ] if k is large

enough. This is a contradiction. Therefore lim
k→∞

µk = 0. �
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P r o o f of Theorem 1.2. (a) and (b) are immediate consequences of Theorem 1.1

(a) and (b), respectively.

To prove (c), we rewrite (1.1), (1.2) to

(3.31) u = λ

∫ 1

0

Gm(t, s)a(s)f(u(s)) ds =: Tλu(t).

By Lemma 2.5, for every r > 0 and u ∈ ∂Ωr we have

‖Tλu‖0 6
λM̂r

6m−1

∫ 1

0

G(s, s)a(s) ds,

where M̂r = 1 + max
06s6r

{f(s)}.

Let λr > 0 be such that

λrM̂r

6m−1

∫ 1

0

G(s, s)a(s) ds = r.

Then for λ ∈ (0, λr) and u ∈ ∂Ωr

‖Tλu‖0 < ‖u‖0.

This means that

(3.32) Σ ∩ {(λ, u) ∈ (0,∞) × K ; 0 < λ < λr, u ∈ K : ‖u‖0 = r} = ∅.

By Lemma 2.6 and Theorem 1.1, it follows that C is also an unbounded component

joining (0, 0) and (0,∞) in [0,∞) × Y . Thus, (3.32) implies that for λ ∈ (0, λr),

problem (1.1), (1.2) has at least two positive solutions. �
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