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Abstract. We study a third order singular boundary value problem with multi-point
boundary conditions. Sufficient conditions are obtained for the existence of positive so-
lutions of the problem. Recent results in the literature are significantly extended and
improved. Our analysis is mainly based on a nonlinear alternative of Leray-Schauder.
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1. Introduction

In this paper, we are concerned with the existence of positive solutions of the

singular boundary value problem (BVP) consisting of the forced nonlinear third

order differential equation

(1.1) u′′′ = f(t, u) + e(t), t ∈ (0, 1),

and the multi-point boundary condition (BC)

(1.2) u(0) = u′(p) =

∫ 1

q

w(s)u′′(s) ds = 0,

where 1/2 < p < q < 1 are constants, f : (0, 1) × (0,∞) → [0,∞), e : (0, 1) → R,

and w : [q, 1] → [0,∞) are continuous functions, and e ∈ L(0, 1). Note that f(t, x)

may be singular at t = 0, 1, and x = 0 and e(t) may be singular at t = 0, 1. By a
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positive solution of BVP (1.1), (1.2), we mean a function u ∈ C2[0, 1]∩C3(0, 1) such

that u(t) satisfies Eq. (1.1) and BC (1.2), and u(t) > 0 on (0, 1].

In recent years, the existence of positive solutions of singular higher order BVPs

has been studied by many researchers. For a small sample of such work, we refer the

reader to [1], [2], [6], [7], [9], [10], [11], [12], [13], [14], [15] and the references therein.

In particular, Graef, Henderson, and Yang [6] studied BVP (1.1), (1.2) with e(t) ≡ 0

on (0, 1), i.e., the BVP consisting of the equation

(1.3) u′′′ = f(t, u), t ∈ (0, 1),

and BC (1.2). Using a fixed point theorem for decreasing operators due to Gatica,

Oliver, and Waltman [5], they proved the following result.

Proposition 1.1. Assume that the following conditions hold:

(C1) w is nondecreasing and w(t) > 0 on (q, 1];

(C2) f(t, x) > 0 on (0, 1] × (0,∞), and for each fixed t ∈ (0, 1], f(t, x) is decreasing

in x;

(C3) lim
x→0+

f(t, x) = ∞ uniformly on compact subsets of (0, 1];

(C4) lim
x→∞

f(t, x) = 0 uniformly on compact subsets of (0, 1];

(C5)
∫ 1

0 f(s, θa(s)) ds <∞ for each θ > 0, where

(1.4) a(t) =
t(2p− t)

p2
for t ∈ [0, 1].

Then BVP (1.3), (1.2) has at least one positive solution.

We will establish some new existence criteria for BVP (1.1), (1.2). In our results,

the forcing term e(t) in Eq. (1.1) need not be positive, and we note that, even

for the special case when e(t) ≡ 0 on (0, 1), our results are still extensions and

improvements of Proposition 1.1. In particular, (C2) is relaxed considerably, (C3)

is removed, and (C4) is replaced by a more applicable condition (see Theorem 3.1).

Our proof will employ a nonlinear alternative of Leray-Schauder. Our approach

involves examining a one-parameter family of nonsingular problems constructed from

a sequence of nonsingular perturbations of f . For each of these nonsingular problems,

we will apply the nonlinear alternative of Leray-Schauder to obtain the existence

of solutions. From this sequence of solutions, we will extract a subsequence that

converges to a positive solution of some associated problem, and from here, we can

deduce the existence of a positive solution of BVP (1.1), (1.2). This type of technique

has been successfully used in obtaining positive solutions for several classes of singular

BVPs, see, for example, [1], [2], [3], [4]. Our proofs are partly motivated by these

works.
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To demonstrate the applicability of our general existence results, we also derive

some sufficient conditions for the existence of positive solutions of the BVP consisting

of the equation

(1.5) u′′′ = c(t)u−α + µd(t)uβ + e(t), t ∈ (0, 1),

and BC (1.2), where α > 0 and β > 0 are constants, c, d, and e are continuous

functions on [0, 1] with c(t) > 0 on (0, 1) and d(t) > 0 on (0, 1), and µ > 0 is a

parameter (see Corollary 3.1).

The rest of this paper is organized as follows. In Section 2, we present some

preliminary lemmas, and the main results together with their proofs are given in

Section 3.

2. Preliminary results

Recall that if I ⊆ R is an interval, then the characteristic function χ on I is given

by

χI(t) =

{

1, t ∈ I,

0, t /∈ I.

From [8], the Green function G(t, s) for the BVP consisting of the equation

u′′′(t) = 0, t ∈ (0, 1),

and BC (1.2) is given by

G(t, s) = − t(p− s)χ[0,p](s) +
(t− s)2

2
χ[0,t](s)

+
t(2p− t)

2
W (s)χ[q,1](s) +

t(2p− t)

2
χ[0,q](s),

where

W (s) =

(
∫ 1

q

w(v) dv

)−1 ∫ 1

s

w(v)dv, s ∈ [q, 1].

Our first lemma provides a lower bound for the function G(t, s) defined above.
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Lemma 2.1. G(t, s) > a(t)b(s) for (t, s) ∈ [0, 1] × [0, 1], where a(t) is defined by

(1.4) and

(2.1) b(s) = min
{p2

2

(

W (s)χ[q,1](s) + χ[0,q](s)
)

,
p2s2

4

}

.

P r o o f. We will prove the lemma by discussing three different cases.

C a s e 1. s > p. In this case, we have

G(t, s) =
(t− s)2

2
χ[0,t](s) +

t(2p− t)

2
W (s)χ[q,1](s) +

t(2p− t)

2
χ[0,q](s)

>
t(2p− t)

2

(

W (s)χ[q,1](s) + χ[0,q](s)
)

=
t(2p− t)

p2

(p2

2

(

W (s)χ[q,1](s) + χ[0,q](s)
)

)

= a(t)
(p2

2

(

W (s)χ[q,1](s) + χ[0,q](s)
)

)

.

C a s e 2. s 6 p and s > t. Here we have

G(t, s) =
t(2s− t)

2
=
t(2p− t)

p2

p2(2s− t)

2(2p− t)

>
t(2p− t)

p2

ps

4
>
t(2p− t)

p2

p2s2

4
= a(t)

p2s2

4
.

C a s e 3. s 6 p and s 6 t. In this case, we have

G(t, s) =
s2

2
>
t(2p− t)

p2

p2s2

4
= a(t)

p2s2

4
.

Combining the above cases yields that G(t, s) > a(t)b(s) for (t, s) ∈ [0, 1] × [0, 1].

This completes the proof of the lemma. �

The following result, which gives information about functions that satisfy BC

(1.2), is taken from [8, Lemmas 2.2–2.3].

Lemma 2.2. Assume (C1) holds. Let z ∈ C2[0, 1]∩C3(0, 1) satisfy z′′′(t) > 0 on

(0, 1) and z(0) = z′(p) =
∫ 1

q
w(s)z′′(s) ds = 0. Then:

(i) |z(p)| = max
t∈[0,1]

|z(t)|;

(ii) z(t) > a(t) max
t∈[0,1]

|z(t)| > 0 for t ∈ [0, 1].

We also need the following version of the well known nonlinear alternative of

Leray-Schauder. We refer the reader to [1, Theorem 1.2.3] for this result.
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Lemma 2.3. Let K be a convex subset of a normed linear space X , and let Ω

be a bounded open subset with p̃ ∈ Ω. Then every compact map N : Ω → K has at

least one of the following two properties:

(i) N has at least one fixed point;

(ii) there is u ∈ ∂Ω and λ ∈ (0, 1) such that u = (1 − λ)p̃+ λNu.

Throughout this paper, let the Banach space C[0, 1] be equipped with the norm

‖u‖ = max
t∈[0,1]

|u(t)|, and for the function e(t) given in Eq. (1.1), we define

γ(t) =

∫ 1

0

G(t, s)e(s) ds, t ∈ [0, 1].

Since e ∈ L(0, 1), we have that γ ∈ C2[0, 1] ∩ C3(0, 1) and moreover γ is the unique

solution of the BVP consisting of the equation

u′′′ = e(t), t ∈ (0, 1),

and BC (1.2). For convenience, we also introduce the notations

γ∗ = min
t∈[0,1]

γ(t) and γ∗ = max
t∈[0,1]

γ(t).

Observe that γ∗ 6 0 since γ(0) = 0.

3. Main results

We first state our existence results.

Theorem 3.1. Assume that (C1) and the following conditions hold:

(H1) there exist continuous, nonnegative functions g(x), h(x), and ϕ(t) such that

f(t, x) 6 ϕ(t)(g(x) + h(x)) for (t, x) ∈ (0, 1) × (0,∞),
∫ 1

0

ϕ(s)g(a(s)) ds <∞,

g(x) > 0 is nonincreasing on (0,∞), and h(x)/g(x) is nondecreasing on (0,∞);

(H2) there exists δ > 0 such that

g(xy) 6 δg(x)g(y) for all x, y ∈ (0,∞);

(H3) for each r > 0, there exists a continuous nonnegative function ψr(t) such that

f(t, x) > ψr(t) for (t, x) ∈ (0, 1) × (0, r]
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and

0 <

∫ 1

0

b(s)ψr(s) ds <∞,

where b(s) is defined by (2.1);

(H4) there exists R > 0 such that

R > δg(R)

(

1 +
h(R+ γ∗)

g(R+ γ∗)

)
∫ 1

0

G(p, s)ϕ(s)g(a(s)) ds

with δ given in (H2).

If γ∗ = 0, then BVP (1.1), (1.2) has at least one positive solution y(t) satisfying

y(t) > γ(t) on (0, 1] and 0 < ‖y − γ‖ < R.

As a consequence of Theorem 3.1, we have the following corollary.

Corollary 3.1. Assume that (C1) holds, 0 6 α < 1, and γ∗ = 0.

(i) If β < 1, then BVP (1.5), (1.2) has at least one positive solution for each

µ ∈ (0,∞).

(ii) If β > 1, then there exists µ̄ > 0 such that BVP (1.5), (1.2) has at least one

positive solution for each µ ∈ (0, µ̄).

In the remainder of this section, we will prove Theorem 3.1 and Corollary 3.1.

P r o o f o f T h e o r e m 3.1. Define an operator T : C[0, 1] → C[0, 1] by

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s) + γ(s)) ds.

It is easy to verify that T is compact and that finding a fixed point of T is equivalent

to finding a solution of the BVP consisting of the equation

(3.1) u′′′ = f(t, u+ γ), t ∈ (0, 1),

and BC (1.2).

We observe that, to prove the theorem, it suffices to show that BVP (3.1), (1.2)

has a positive solution u ∈ C2[0, 1]∩C3(0, 1) satisfying 0 < ‖u‖ < R. In fact, if this

is true, we let y(t) = u(t) + γ(t). Then, y ∈ C2[0, 1] ∩ C3(0, 1), y(t) > γ(t) on (0, 1],

0 < ‖y − γ‖ < R,

y′′′ = u′′′ + γ′′′ = f(t, u+ γ) + e(t) = f(t, y) + e(t), t ∈ (0, 1),

and y(t) satisfies (1.2). Thus, y(t) is a positive solution of BVP (1.1), (1.2) with the

required properties.
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From (H4), there exists n0 ∈ N such that

(3.2) R >
1

n0
+ δg(R)

(

1 +
h(R+ γ∗)

g(R+ γ∗)

)
∫ 1

0

G(p, s)ϕ(s)g(a(s)) ds.

Let N0 = {n0, n0 + 1, . . .}. For any fixed n ∈ N0, consider the family of problems

u′′′ = λfn(t, u+ γ), t ∈ (0, 1),(3.3)

u(0) =
1

n
, u′(p) =

∫ 1

q

w(s)u′′(s) ds = 0,

where λ ∈ (0, 1) and fn(t, x) = f(t,max{x, 1/n}) for (t, x) ∈ (0, 1) × R.

Clearly, solving BVP (3.3), (3.4) is equivalent to finding a solution of the integral

equation

(3.5) u(t) =
1

n
+ λ

∫ 1

0

G(t, s)fn(s, u(s) + γ(s)) ds =
1

n
+ λTnu(t),

where

Tnu(t) =

∫ 1

0

G(t, s)fn(s, u(s) + γ(s)) ds.

We claim that

(3.6) for any λ ∈ (0, 1), any solution u(t) of (3.5) satisfies ‖u‖ 6= R.

If this is not the case, assume that u(t) is a solution of (3.5) for some λ ∈ (0, 1) with

‖u‖ = R. Since λTnu(t) > 0 on [0, 1], we have u(t) > 1/n, which in turn implies

that u(t) + γ(t) > u(t) + γ∗ = u(t) > 1/n. Then, (3.5) becomes

u(t) =
1

n
+ λ

∫ 1

0

G(t, s)f(s, u(s) + γ(s)) ds.

By Lemma 2.2, we see that u(p) = ‖u‖ and u(t) > a(t)‖u‖ on [0, 1]. From (H1) and

(H2), it follows that

R = ‖u‖ = u(p) =
1

n
+ λ

∫ 1

0

G(p, s)f(s, u(s) + γ(s)) ds

6
1

n0
+

∫ 1

0

G(p, s)ϕ(s)g(u(s) + γ(s))

(

1 +
h(u(s) + γ(s))

g(u(s) + γ(s))

)

ds

6
1

n0
+

(

1 +
h(‖u‖ + γ∗)

g(‖u‖+ γ∗)

)
∫ 1

0

G(p, s)ϕ(s)g(a(s)‖u‖ + γ∗) ds

=
1

n0
+

(

1 +
h(R+ γ∗)

g(R+ γ∗)

)
∫ 1

0

G(p, s)ϕ(s)g(a(s)R) ds

6
1

n0
+ δg(R)

(

1 +
h(R + γ∗)

g(R+ γ∗)

)
∫ 1

0

G(p, s)ϕ(s)g(a(s)) ds,

which contradicts (3.2). Hence, (3.6) holds.
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Note that 1/n 6 1/n0 < R and (3.5) can be rewritten as

u(t) = (1 − λ)
1

n
+ λNnu(t),

where Nnu(t) = Tnu(t) + 1/n. Then, by Lemma 2.3, Nn has at least one fixed point

un in Ω = {u ∈ C[0, 1] : ‖u‖ < R}. Thus, for any n ∈ N0, we have proved that the

BVP consisting of the equation

u′′′ = fn(t, u + γ), t ∈ (0, 1),

and BC (3.4) has a solution un(t) with ‖un‖ < R. Since un(t) + γ(t) > un(t) + γ∗ =

un(t) > 1/n, we see that un(t) is actually a solution of BVP (3.1), (3.4) and so

(3.7) un(t) =
1

n
+

∫ 1

0

G(t, s)f(s, un(s) + γ(s)) ds.

From (H3), we see that there exists a continuous nonnegative function ψR+γ∗(t) such

that

f(t, un(t) + γ(t)) > ψR+γ∗(t) on (0, 1).

Let l =
∫ 1

0
b(s)ψR+γ∗(s) ds. Then, again from (H3), l > 0. From Lemma 2.1 and

(3.7), we obtain

(3.8) un(t) > a(t)

∫ 1

0

b(s)ψR+γ∗(s) ds = la(t) on [0, 1].

Clearly, the sequence {un(t)}n∈N0
is uniformly bounded. In what follows, we show

that it is also equicontinuous on [0, 1]. Note that

u′n(t) =

∫ 1

0

Gt(t, s)f(s, un(s) + γ(s)) ds.

From (H1), (H2), and (3.8), we have

|u′n(t)| 6

∫ 1

0

|Gt(t, s)|ϕ(s)g(un(s) + γ(s))
(

1 +
h(un(s) + γ(s))

g(un(s) + γ(s))

)

ds

6

(

1 +
h(‖un‖ + γ∗)

g(‖un‖ + γ∗)

)

∫ 1

0

|Gt(t, s)|ϕ(s)g(la(s) + γ∗) ds

6 δg(l)
(

1 +
h(R+ γ∗)

g(R+ γ∗)

)

∫ 1

0

|Gt(t, s)|ϕ(s)g(a(s)) ds

6 δg(l)
(

1 +
h(R+ γ∗)

g(R+ γ∗)

)

sup
t∈[0,1]

∫ 1

0

|Gt(t, s)|ϕ(s)g(a(s)) ds

=: M <∞

for t ∈ [0, 1]. Therefore, {un(t)}n∈N0
is equicontinuous on [0, 1].
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Now, by the Arzelà-Ascoli theorem, {un(t)}n∈N0
has a subsequence, which con-

verges uniformly to a function u ∈ C[0, 1]. For simplicity, we still denote it by

{un(t)}n∈N0
. Note that un(t) satisfies (3.7), (3.8), and

|f(s, un(s) + γ(s))| 6 δg(l)

(

1 +
h(R+ γ∗)

g(R+ γ∗)

)

ϕ(s)g(a(s)) ∈ L(0, 1).

If we let n → ∞ in (3.7) and (3.8), then, by the Lebesgue Dominated Convergence

Theorem, we obtain

(3.9) u(t) =

∫ 1

0

G(t, s)f(s, u(s) + γ(s)) ds

and

u(t) > la(t) > 0 on (0, 1],

i.e., u(t) is a positive solution of BVP (3.1), (1.2). Moreover, from (3.9), we deduce

that u ∈ C2[0, 1]∩C3(0, 1). Since ‖un‖ < R and u = lim
n→∞

un, we have ‖u‖ 6 R. By

an argument similar to the one used to show that (3.6) holds, we see that ‖u‖ < R.

Thus, 0 < ‖u‖ < R. This completes the proof of the theorem. �

Proof of Corollary 3.1. We will apply Theorem 3.1. To this end, let f(t, x) =

c(t)x−α + µd(t)xβ , g(x) = x−α, h(x) = µxβ , and ϕ(t) = max{c(t), d(t)}. Then,

(H1), (H2) with δ = 1, and (H3) with ψr(t) = r−αc(t) hold. Let

A =

∫ 1

0

G(p, s)ϕ(s)(a(s))−α ds.

Since 0 6 α < 1, we have 0 < A <∞ and (H4) becomes

µ <
Rα+1 −A

A(R+ γ∗)α+β
for some R > 0.

Hence, BVP (1.5), (1.2) has at lease one positive solution for

0 < µ < µ̄ := sup
R>0

Rα+1 −A

A(R + γ∗)α+β
.

Note that µ̄ = ∞ if β < 1 and µ̄ < ∞ if β > 1. This completes the proof of the

corollary. �
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