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Abstract. We study sub-Bergman Hilbert spaces in the weighted Bergman space A
2
α. We

generalize the results already obtained by Kehe Zhu for the standard Bergman space A
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1. Introduction

Let D denote the unit disk in the complex plane. For α > −1 we define the

weighted Bergman space A2
α as the space of all analytic functions f in D such that

∫

D

|f(z)|2 dAα(z) < +∞

where dAα(z) = (α + 1)π−1(1 − |z|2)α dxdy denotes the normalized area measure.

It is well-known that A2
α is a Hilbert space of analytic functions. The weighted

Bergman projection Pα : L2(D, dAα) → A2
α is defined by

Pαf(z) =

∫

D

f(w)Kα(z, w) dAα(w),

where

Kα(z, w) =
1

(1 − zw)2+α
, (z, w) ∈ D× D

is the reproducing kernel for the space A2
α. For ϕ ∈ L∞(D), the weighted Toeplitz

operator on A2
α is defined by

Tαϕ f = Pα(ϕf).
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When α = 0, we omit the superscript and simply write Tϕ instead of T
0
ϕ; using this

convention, P , dA, and K(z, w) stand respectively for Pα, dAα, and Kα(z, w) in the

standard (unweighted) Bergman space case α = 0.

LetH1 and H2 be two Hilbert spaces, and let T : H1 → H2 be a bounded operator.

The range of T with the inner product

〈Tx, T y〉H2
= 〈x, y〉H1

, x, y ∈ H1 ⊖ kerT,

is denoted byM(T ). The Hilbert space

H(T ) = M((I − TT ∗)1/2)

is called the complemented space toM(T ).

Recall that H∞ = H∞(D) denotes the Banach space of all bounded analytic

functions on the unit disk; we denote its unit ball by (H∞)1. We consider a function

ϕ ∈ (H∞)1 and study the spaces H(Tαϕ ) and H(Tαϕ ). These are Hilbert spaces in

the weighted Bergman space A2
α, and are called sub-Bergman Hilbert spaces. For

simplicity, we denote them by Hα(ϕ) and Hα(ϕ) respectively. For α = 0, these

spaces were studied by Kehe Zhu in his two subsequent papers [5] and [6]. Indeed,

Zhu’s work was inspired by the pioneering work of Donald Sarason in introducing

the phrase “sub-Hardy Hilbert spaces“ in [2]. For the history and importance of the

sub-Hardy and sub-Bergman Hilbert spaces we refer the reader to the just mentioned

papers.

In [5], Zhu proved that H(ϕ) equals H(ϕ) and that both the spaces contain H∞.

He then was able to show that if ϕ = B is a finite Blaschke product, thenH(B) = H2,

the Hardy space on the unit disk (see [6]). Here we will see that

H∞ ⊂ Hα(ϕ) = Hα(ϕ),

for α positive, moreover, if ϕ equals a finite Blaschke product B, then

Hα(B) = Hα(B) = A2
α−1.

We should mention that S. Sultanic in a recent paper obtained the same results by

using a very computational method (see [4]).

2. The spaces Hα(ϕ) and Hα(ϕ)

This section is devoted to the proof of the fact that the sub-Bergman Hilbert spaces

Hα(ϕ) and Hα(ϕ) coincide as sets, and that their norms are equivalent. Moreover,

both the spaces contain H∞.
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Proposition 2.1. Let ϕ ∈ (H∞)1 and α > −1. The reproducing kernels of

Hα(ϕ) and Hα(ϕ) are given, respectively, by

Kα
ϕ(z, w) =

1 − ϕ(z)ϕ(w)

(1 − zw)α+2
, z, w ∈ D

and

Kα
ϕ(z, w) =

∫

D

1 − |ϕ(u)|2

(1 − zu)α+2(1 − uw)α+2
dAα(u).

P r o o f. Suppose that for w ∈ D, Kα
w are the reproducing kernels of A

2
α. Ac-

cording to I–3 of [2], the reproducing kernels of Hα(ϕ) are given by

(I − Tαϕ T
α
ϕ )Kα

w, w ∈ D.

Note that for every z ∈ D we have

TαϕK
α
w(z) =

∫

D

Kα(z, u)ϕ(u)Kα
w(u) dAα(u)

=

∫

D

Kα
z (u)ϕ(u)Kα(w, u) dAα(u)

= TαϕK
α
z (w) = ϕ(w)Kα

w(z)

so that TαϕK
α
w = ϕ(w)Kα

w, and hence

Kα
ϕ(z, w) = (I − Tαϕ T

α
ϕ )Kα

w(z)

= (1 − ϕ(w)ϕ)Kα
w(z)

=
1 − ϕ(z)ϕ(w)

(1 − zw)α+2
, z, w ∈ D.

As for the second part, we note that according to I–3 of [2], the reproducing kernel

of Hα(ϕ) has the form

Kα
ϕ,w = (I − Tαϕ T

α
ϕ )Kα

w = T1−|ϕ|2K
α
w.

Since for every z ∈ D we have

Kα
ϕ(z, w) = Kα

ϕ,w(z) = T1−|ϕ|2K
α
w(z)

=

∫

D

1 − |ϕ(u)|2

(1 − zu)α+2(1 − uw)α+2
dAα(u),

the result follows. �
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Proposition 2.1. Let ϕ ∈ (H∞)1 and α > −1. Then every element of Hα(ϕ)

has the representation

f(z) =

∫

D

1 − |ϕ(w)|2

(1 − zw)α+2
g(w) dAα(w),

where g is an analytic function satisfying

∫

D

|g(z)|2
(

1 − |ϕ(z)|2
)

dAα(z) < +∞.

P r o o f. Put dAα,ϕ(z) = (1 − |ϕ(z)|2) dAα(z), and let A2
α,ϕ be the subspace of

L2(D, dAα,ϕ) consisting of all analytic functions. Define an operator

Sαϕ : A2
α,ϕ → A2

α

by Sαϕg = Pα((1 − |ϕ|2)g). It follows that ‖Sαϕ‖A2
α

6 ‖g‖A2
α,ϕ
, moreover, for every

f ∈ A2
α and every g ∈ A2

α,ϕ we have

〈(Sαϕ)∗f, g〉A2
α,ϕ

= 〈f, Pα
(

(1 − |ϕ|2)g
)

〉A2
α

= 〈f, (1 − |ϕ|2)g〉L2(D,dAα) = 〈f, g〉A2
α,ϕ
.

This means that (Sαϕ)∗ is the inclusion operator. Note that for every w ∈ D we

have Sαϕ(Sαϕ)∗Kα
w ∈ M(Sαϕ). On the other hand, given f ∈ M(Sαϕ), there exists

g ∈ A2
α,ϕ ⊖ kerSαϕ such that S

α
ϕg = f . Therefore

〈f, Sαϕ(Sαϕ)∗Kα
w〉M(Sα

ϕ ) = 〈g, (Sαϕ)∗Kα
w〉A2

α,ϕ

= 〈f,Kα
w〉A2

α

= f(w),

which means that Sαϕ(Sαϕ)∗Kα
w are the reproducing kernels ofM(Sαϕ). It now follows

that for every z, w ∈ D we have

Sαϕ(Sαϕ)∗Kα
w(z) = Pα

(

(1 − |ϕ|2)Kα
w

)

(z)

=

∫

D

1 − |ϕ(u)|2

(1 − zu)α+2(1 − uw)α+2
dAα(u).

This together with Proposition 2.1 implies that Sαϕ(Sαϕ)∗Kα
w are the reproducing ker-

nels of Hα(ϕ), too. Now, from the uniqueness property we conclude thatM(Sαϕ) =

Hα(ϕ). In particular, for every f ∈ Hα(ϕ) there is a g ∈ A2
α,ϕ such that f = Sαϕg.

�

The next proposition now follows from I–8 and I–9 of [2].
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Proposition 2.3. Let ϕ ∈ (H∞)1, α > −1 and f ∈ A2
α. Then

(a) f ∈ Hα(ϕ) if and only if Tαϕ f ∈ Hα(ϕ) and in this case

‖f‖2
Hα(ϕ) = ‖f‖2

A2
α

+ ‖Tαϕ f‖
2
Hα(ϕ),

(b) f ∈ Hα(ϕ) if and only if Tαϕ f ∈ Hα(ϕ) and in this case

‖f‖2
Hα(ϕ) = ‖f‖2

A2
α

+ ‖Tαϕ f‖
2
Hα(ϕ),

(c) M(Tαϕ ) ∩Hα(ϕ) = ϕHα(ϕ).

Proposition 2.4. Let ϕ ∈ (H∞)1 and α > 0. Then every ψ ∈ H∞ is a multiplier

on both Hα(ϕ) and Hα(ϕ), moreover, ‖Tαψ ‖ 6 ‖ψ‖∞.

P r o o f. Assume that ‖ψ‖∞ = 1. By Proposition 2.1, the functions

1 − ψ(z)ψ(w)

(1 − zw)1+α/2
,

1 − ϕ(z)ϕ(w)

(1 − zw)1+α/2

are reproducing kernels of Hα/2−1(ψ) and Hα/2−1(ϕ), respectively. According to

Lemma 3.11 of [5] the product

K(z, w) =
(1 − ψ(z)ψ(w))(1 − ϕ(z)ϕ(w))

(1 + zw)α+2

= (1 − ψ(z)ψ(w))Kα
ϕ(z, w)

is again a reproducing kernel on D. It now follows from a theorem of Beatrous

and Burbea (see [3], or Theorem 2.2 of [5]) that ψ is a contractive multiplier on

Hα(ϕ). To see that ψ is a multiplier on Hα(ϕ) we assume f ∈ Hα(ϕ). According

to Proposition 2.4, ϕf ∈ Hα(ϕ) and hence ψ(ϕf) ∈ Hα(ϕ). Thus ψf ∈ Hα(ϕ), by

Proposition 2.4. Finally, we note that

‖ψf‖2
Hα(ϕ) = ‖ψf‖2

A2
α

+ ‖ψϕf‖2
Hα(ϕ)

= ‖ψ‖2
∞(‖f‖2

A2
α

+ ‖ϕf‖2
Hα(ϕ))

= ‖f‖2
Hα(ϕ).

�
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Theorem 2.5. Let ϕ ∈ (H∞)1 and α > 0. Then Hα(ϕ) = Hα(ϕ) with equiva-

lence of norms.

P r o o f. Assume that ϕ 6= 0, otherwise Hα(ϕ) = Hα(ϕ) = A2
α. By the preceding

proposition, ϕHα(ϕ) ⊂ Hα(ϕ). On the other hand, ϕHα(ϕ) ⊂ ϕA2
α = M(Tαϕ ). It

now follows from Proposition 2.3 that

ϕHα(ϕ) ⊂ M(Tαϕ ) ∩Hα(ϕ) = ϕHα(ϕ).

This implies that Hα(ϕ) ⊂ Hα(ϕ). As for the reverse inclusion, let T denote the

operator of multiplication by ϕ on L2(D, dAα). It is well-known that T is bounded

and T ∗f = ϕf . Now for every f and g in L2(D, dAα) we have

〈T ∗Tf, g〉 =

∫

D

ϕ(z)f(z)ϕ(z) g(z) dAα(z)

= 〈ϕf, ϕg〉

= 〈TT ∗f, g〉.

This shows that T is a normal operator, from which it follows that its restriction to

A2
α is subnormal:

Tαϕ T
α
ϕ = Tαϕ (Tαϕ )∗ 6 (Tαϕ )∗Tαϕ = TαϕT

α
ϕ .

This implies the inclusion Hα(ϕ) ⊂ Hα(ϕ) from which the equality Hα(ϕ) = Hα(ϕ)

follows. Finally, let I1 : Hα(ϕ) → Hα(ϕ) and I2 : Hα(ϕ) → Hα(ϕ) denote the

identity operators. By Proposition 2.3, both I1 and I2 are bounded, so that the

norms on Hα(ϕ) and Hα(ϕ) are equivalent. �

Theorem 2.6. Let ϕ ∈ (H∞)1 and α > 0. Then H∞ ⊂ Hα(ϕ) = Hα(ϕ).

P r o o f. According to the preceding theorem, it remains to verify that H∞ ⊂

Hα(ϕ). To this end, it suffices to show that Hα(ϕ) contains a nonzero constant

function (see Proposition 2.4). Let E denote the proper subspace of A2
α,ϕ generated

by {zn}n>1. Consider g ∈ A2
α,ϕ ⊖ E with ‖g‖A2

α,ϕ
= 1. Put

f(z) = 〈g, 1〉A2
α,ϕ

=

∫

D

g(u)(1 − |ϕ(u)|2) dAα(u).

According to Proposition 2.2, the constant function f belongs to Hα(ϕ). However,

f does not vanish identically, otherwise we get

〈g, 1〉A2
α,ϕ

= 0, g ∈ E⊥

from which we obtain 1 ∈ E, a contradiction. �
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3. Finite Blaschke products

In this section we intend to describeHα(B) andHα(B) whereB is a finite Blaschke

product. For the standard Bergman space A2
α, this was done by Zhu in [6]. He proved

that Hα(B) = Hα(B) = H2, the Hardy space. The following theorem says that for

α > 0, the spaces Hα(B) and Hα(B) equal A2
α−1, the Hilbert space associated with

the reproducing kernel

Kα−1
w (z) =

1

(1 − zw)α+1
.

Note that for α = 0, the function (1− zw)−1 is the reproducing kernel for the Hardy

space.

Theorem 3.1. Let B be a finite Blaschke product and α > 0. Then

Hα(B) = Hα(B) = A2
α−1.

P r o o f. We first verify thatHα(B) ⊂ A2
α−1. Let f ∈ Hα(B). By Proposition 2.2

we have

f(z) = Tg(z) =

∫

D

1 − |B(w)|2

(1 − zw)α+2
g(w) dAα(w),

where g is an analytic function satisfying

∫

D

|g(z)|2
(

1 − |B(z)|2
)

dAα(z) < +∞.

According to Lemma 1 of [5], there exists a C > 0 such that

1 − |B(z)|2 6 C(1 − |z|2), z ∈ D,

from which it follows that g ∈ A2
α+1. Moreover, for every z ∈ D we have

(1 − |z|2)−1|f(z)| 6 C(1 − |z|2)−1

∫

D

(1 − |w|2)α+1

|1 − zw|α+2
|g(w)| dA(w).

Put dµ(z) = (1 − |z|2)α+1 dA(z). By Theorem 1.9 of [1] the operator

Λg(z) = (1 − |z|2)−1

∫

D

(1 − |w|2)α+1

|1 − zw|α+2
g(w) dA(w)

is bounded on L2(D, dµ). Therefore we can find a constant C1 such that

∫

D

|f(z)|2(1 − |z|2)−2 dµ(z) 6 C1‖g‖L2(D,dµ) =
C1

α+ 2
‖g‖A2

α+1
.
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This argument shows that f ∈ A2
α−1, or Hα(B) ⊂ A2

α−1. So far we have proved that

Hα(B) equals the range of the operator T : A2
α,B → A2

α−1. We now consider the

operator S : A2
α−1 → A2

α,B defined by

h(z) = Sf(z) =

∫

D

f(w)

(1 − zw)α+2
dAα−1(w).

Note that for f ∈ A2
α−1 we have

f(z) +
zf ′(z)

α+ 1
=

∫

D

f(w)

(1 − zw)α+1
dAα−1(w) +

z

α+ 1

∫

D

(α + 1)wf(w)

(1 − zw)α+2
dAα−1(w)

=

∫

D

f(w)

(1 − zw)α+2
dAα−1(w) = Sf(z),

from which it follows that for f(z) =
∞
∑

n=0
anz

n, we have

Sf(z) =

∞
∑

n=0

n+ α+ 1

α+ 1
anz

n.

By Lemma 1 of [5] we know that 1 − |B(z)|2 ≍ 1 − |z|2, so that

‖Sf‖2
A2

α,B
≍ ‖Sf‖2

A2
α+1

=

∞
∑

n=0

n!Γ(α+ 3)(n+ α+ 1)2

Γ(n+ α+ 3)(α+ 1)2
|an|

2

>

∞
∑

n=0

n!Γ(α+ 1)

Γ(n+ α+ 1)
|an|

2 = ‖f‖2
A2

α−1

,

which means that S is bounded from below. Since S is invertible, the image of the

unit ball of A2
α−1 under S contains a ball of radius r > 0 centered at zero. Therefore

for every unit vector g ∈ A2
α,B we have

‖Tg‖A2
α−1

= sup{|〈Tg, f〉A2
α−1

| : ‖f‖A2
α−1

6 1}

= sup

{∣

∣

∣

∣

∫

D

g(w)Sf(w)(1 − |B(w)|2) dAα(w)

∣

∣

∣

∣

: ‖f‖A2
α−1

6 1

}

> sup

{∣

∣

∣

∣

∫

D

g(w)h(w)(1 − |B(w)|2) dAα(w)

∣

∣

∣

∣

: ‖h‖A2
α,B

6 r

}

> sup

{∣

∣

∣

∣

∫

D

g(w)h(w)(1 − |B(w)|2) dAα(w)

∣

∣

∣

∣

: ‖h‖A2
α,B

= r

}

= r‖g‖A2
α,B

= r.

This means that T is bounded from below so that its range, Hα(B), is closed in

A2
α−1. Since Hα(B) contains H∞ by Theorem 2.6 and H∞ is dense in the weighted

Bergman space A2
α−1, we conclude that Hα(B) = A2

α−1. �
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