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Abstract. Under some conditions we prove that every generalized Jordan triple derivation
on a Lie triple system is a generalized derivation. Specially, we conclude that every Jordan
triple 6-derivation on a Lie triple system is a 6-derivation.
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1. INTRODUCTION

Throughout this paper R will represent an associative ring. Given an integer
n > 1, aring R is said to be n-torsion free, if for x € R, nz = 0 implies that z = 0.
Recall that a ring R is prime if for a,b € R, aRb = (0) implies that either a = 0 or
b =0, and is semiprime in case a € R, aRa = (0) implies that « = 0. An additive
mapping D: R — R is called a derivation if D(ab) = D(a)b+aD(b) holds for all pairs
a,b € R. An additive mapping D: R — R is called a Jordan derivation if D(a?) =
D(a)a+aD(a) holds for all a € R. Obviously, every derivation is a Jordan derivation.
The converse is, in general, not true. I.N.Herstein [7] proved that every Jordan
derivation on a 2-torsion free prime ring is a derivation. M. Bresar [3] extended this
result to 2-torsion free semiprime rings. An additive mapping D: R — R is called
a Jordan triple derivation if D(aba) = D(a)ba + aD(b)a + abD(a) holds for all pairs
a,b € R. M. Bresar [4] has proved that any Jordan triple derivation on a 2-torsion
free semiprime ring is a derivation. Let 6, ¢ be automorphisms of R. An additive
mapping §: R — R is called a (6, ¢)-derivation if §(zy) = §(x)0(y) + ¢(2)d(y) holds
for all z,y € R. An additive mapping §: R — R is called a Jordan (0, ¢)-derivation
if 6(22) = §(z)0(z) + ¢(x)d(x) holds for all z € R. An additive mapping §: R — R
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is called a Jordan triple (6, p)-derivation if §(zyz) = 6(x)0(y)0(x) + ©(x)dé(y)0(x) +
w(x)e(y)o(z) holds for all z,y € R. It is easy to see that every (0, ¢)-derivation is
a Jordan (triple) (6, p)-derivation. A result of [5] states that every Jordan (8, ¢)-
derivation is a Jordan triple (6, p)-derivation. An additive mapping £: R — R is
called a generalized (0, p)-derivation if there exists a (6, p)-derivation 6: R — R
such that {(zy) = &£(x)0(y) + ¢(2)d(y) holds for all z,y € R (see [6], [11]). In [13],
Liu and Shiue proved that every Jordan (triple) (6, ¢)-derivation on a 2-torsion free
semiprime ring is a (6, p)-derivation. Also, they introduced a concept of generalized
Jordan (0, ¢)-derivation and generalized Jordan triple (6, )-derivation (see also [10]).
An additive mapping £: R — R is called a generalized Jordan (0, ¢)-derivation if
£(2?) = £(x)0(x) + p(x)d(x) holds for all z € R where §: R — R is a Jordan (6, ¢)-
derivation. An additive mapping £: R — R is called a generalized Jordan triple
(0, p)-derivation if £(zyx) = £(2)0(y)0(x) + o(x)d(y)8(z) + ¢(x)e(y)d(z) holds for
all pairs z,y € R where §: R — R is a Jordan triple (6, ¢)-derivation. A result of [1]
states that every generalized Jordan (6, ¢)-derivation is a generalized Jordan triple
(0, ¢)-derivation. Liu and Shiue [13] proved that every generalized Jordan (triple)
(0, p)-derivation on a 2-torsion free semiprime ring is a generalized (6, )-derivation
(see also [14]).

The concept of Lie triple system was first introduced by N. Jacobson [8], [9] (see
also [12]). A Lie triple system is a R-module £ with a R-trilinear mapping LxLx L >
(z,y,2) — [z,y, 2] € L satisfying the following axioms

(a) [z,z,y] =0,
(b) [a:,y,z] + [y,Z,J?] + [vavy] =0,
(©) [u,v,[z,y,2]] = [[u,v,2],y, 2] + [&, [u, v, 9], 2] + [2, y, [u, v, 2]],
for all w,v,x,y, z € L. It follows from (a) that [z,y, 2] = —[y,x, 2] for all z,y,z € L.
It is clear that every Lie algebra with product [.,.] is a Lie triple system with
respect to [z, y, z] := [[z,y], z]. Conversely, any Lie triple system £ can be considered

as a subspace of a Lie algebra (Bertram [2], Jacobson [9]).
In the rest of this paper, we let £ be an R-module which is a Lie triple system
and 0, p: L — L be R-linear mappings.

Definition 1.1. An R-linear mapping D: £ — L is called a (0, )-derivation if
D([z,y,2]) = [D(),0(y),0(2)] + [p(x), D(y),0(2)] + [p(x), p(y), D(2)]

forall x,y,z € L. If ¢ = 0, a (0, p)-derivation is called a 6-derivation. If o =0 = I,
where I is the identity map on L, a (0, ¢)-derivation is called a derivation (see [12]).

Let u,v € £ and D,, ,: £ — L be the mapping defined by
Dy (z) = [u,v, z]
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for all x € L. It is clear that D, , is R-linear and we get from (c) that the mapping
D, is a derivation on L.

Following Jing and Lu [10], we introduce a concept of Jordan triple (6, )-
derivation.

Definition 1.2. An R-linear mapping D: £ — L is called a Jordan triple (6, ¢)-
derivation if

D([z,y,x]) = [D(x),0(y), 0(x)] + [#(z), D(y), 0(x)] + [p(x), p(y), D(z)]

for all z,y € L. If p = 0, a Jordan triple (0, p)-derivation is called a Jordan triple
0-derivation. If ¢ = 6 = I, a Jordan triple (6, p)-derivation is called a Jordan triple

derivation.

Following Liu and Shiue [13], we introduce a concept of generalized (,)-
derivations and generalized Jordan triple (6, p)-derivations on Lie triple systems.

Definition 1.3. Let §: £L — L be a (6, p)-derivation. An R-linear mapping
D: L — L is called a generalized (0, ¢)-derivation with respect to § if

D([z,y,2]) = [6(x),0(y), 0(2)] + [p(2),d(y), 0(2)] + [p(z), p(y), D(2)]
for all z,y,z € L.

Definition 1.4. Let 6: £ — £ be a Jordan triple (6, ¢)-derivation. An R-linear
mapping D: £ — L is called a generalized Jordan triple (0, @)-derivation with respect
to ¢ if

D([z,y,2]) = [6(x), 0(y), 0(x)] + [¢(x), (), 0(x)] + [p(x), ¢ (y), D(z)]

for all z,y € L.

2. MAIN RESULTS

It is clear that every (6, p)-derivation on a Lie triple system is a Jordan triple
(0, p)-derivation. In this section under some conditions we prove that every gen-
eralized Jordan triple (6, )-derivation on a Lie triple system L is a generalized
(0, p)-derivation. So we conclude that every Jordan triple §-derivation on L is a
f-derivation.

Throughout this section 6, ¢, D,§: L — L are R-linear mappings and Ag:g: L x
L x L — L is a mapping defined by

Ay (@,y,2) = [6(),0(),0(2)] + [p(x), (1), 0()] + [p(2), ¢(y), D(2)]
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for all z,y, z € L. It is clear that the mapping Ag’,g is R-trilinear and Ag’,g (z,z,y) =
[0(x), (0 — ¢)(x),0(y)] for all z,y € L. We denote Ag:‘fp by Ag,@'

Lemma 2.1. Let R be a 3-torsion free ring and let D: L — L be a generalized
Jordan triple (8, p)-derivation with respect to the Jordan triple (6, p)-derivation 4.
If

(2.1) [(x), p(y), (D =06)(2)] +[p(y), p(2), (D —6)(2)] + [¢(2), p(z), (D~ 0)(y)] = 0

for all x,y,z € L, then

(2.3) B(x,y,2z) + B(y,z,x) + B(z,2,y) = 0

for all x,y,z € L, where B := Ag’i — Ag,w'

Proof. It is clear that (D — &)([z,y,x]) = [p(x),¢(y),(D — §)(z)] for all
x,y,z € L. We must show that the R-trilinear mapping

FoLxLxL— L, (2,y,2) — (D=0)([z,9,2]) = [p(2), (), (D = 0)(2)]

vanishes identically. We have F'(z,y,2) = 0 and by (a), F(z,z,y) = 0forallz,y € L.
Since F' is R-trilinear and F(z + y,z,2 +y) = 0, we get that F(y,z,2) = 0 for all
x,y € L. Therefore F(x,y,z) = F(y,z,2) = F(z,z,y) and it follows from (b) and
(2.1) that

3F(z,y,2) = F(z,y,2) + F(y,z,2) + F(z,2,y) = 0,

for all z,y,z € L. So F is identically 0 since there is no 3-torsion. To prove (2.3), we
have from (2.2) that

B(x7ya Z) = (D - 5)[3371% Z]
for all z,y,z € L. Since D — ¢ is additive, we get (2.3) from (b). O

Remark 2.2. If D: £ — L is a generalized Jordan triple (6, ¢)-derivation with
respect to the Jordan triple (6, ¢)-derivation § satisfying (2.2), then one checks that
(2.1) holds.

544



Lemma 2.3. Let R be a 3-torsion free ring and let F': L x L x L — L be an
R-trilinear mapping satisfying F(x,y,x) = F(z,z,y) = 0 and

(2.4) F(z,y,2) + F(y, 2,2) + F(z,2,y) = 0
for all x,y,z € L. Then F is identically 0.

Proof. Since F is R-trilinear and F(z+y,z,z+y) = 0, we get that F(y,z,z) =
0 for all z,y € L. Therefore F(x,y,z) = F(y,z,z) = F(z,z,y) for all z,y,z € L.
Hence it follows from (2.4) that 3F(z,y,z) = 0 for all z,y,z € L. So F is identically
0 since there is no 3-torsion. O

Theorem 2.4. Let R be a 3-torsion free ring and let D: L — L be a Jordan
triple (0, p)-derivation. Then D is a (0, ¢)-derivation if and only if
(i) [D(x), (0 — ¢)(x),0(y)] = 0;
(i) A9D7<P(x, Y, 2) + Agw(y, z,x) + A£¢(z,x,y) =0
for all x,y,z € L.

Proof. Let D be a (6, p)-derivation, then A£¢(m,y,z) = D([z,y,z]) for all
x,y,z € L. So A(?@(x,x,y) = 0 for all z,y € L. This proves (i). Since [z,y, z] +
ly, z,x] + [z,2,y] = 0, (i) is valid for all z,y,z € L.

Conversely, we prove that D is a (6, ¢)-derivation if (i) and (ii) hold. We show

that the R-trilinear mapping
F: LXLXL—L, (2,y,2) — D(x,y,2]) — AF,(x,y,2)

vanishes identically. It follows from (a) and (i) that F'(z,z,y) = 0 and since D: £ —
L is a Jordan triple (6, p)-derivation, we have F(x,y,z) = 0 for all 2,y € L. By (b)
and (ii), F satisfies (2.4). Hence by Lemma 2.3, F' vanishes identically. d

Theorem 2.5. Let R be a 3-torsion free ring and let D: L — L be a generalized
Jordan triple (0, p)-derivation with respect to the Jordan triple (6, p)-derivation §
satistying (2.1). If

(i) [6(z), (6 — ¢)(x),0(y)] = 0;

(i) AY,(2,y,2) + A5 J(y,2,2) + A (2,2,y) =0
for all z,y,z € L, then 0 is a (0, ¢)-derivation and D is a generalized (0, ¢)-derivation
with respect to the (0, p)-derivation 4.

Proof. It follows from Theorem 2.4 that  is a (6, )-derivation. Applying
Lemma 2.1, we get from (2.3) and (ii) that

5,D 5,D 8,D
(25) Agyw(ﬂ%yaz) +A0,<p (y7z7x)+A0,<p (z,x,y) =0

for all x,y, z € L. The rest of the proof is similar to the proof of Theorem 2.4. [J
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Crollary 2.6. Let R be a 3-torsion free ring and let D: £ — L be a generalized
Jordan triple §-derivation with respect to the Jordan triple f-derivation § satisfying

[0(),6(y), (D = 6)(2)] + [0(y), 0(2), (D = 6) ()] + [0(2), (), (D = 6)(y)] = 0

for all x,y,z € L. Then ¢ is a 0-derivation and D is a generalized 6-derivation with
respect to the @-derivation 6.

Proof. It is clear that condition (i) of Theorem 2.5 is valid when 6 = ¢. For
condition (ii) of Theorem 2.5, we have from (b) that

(x, y,2) + AS 0.0(Y, 2, )+ Agﬂ(z, x,y)
= ([0(2),0(y), 0(2)] + [0(y),0(2), 8(2)] + [0(2), 6(x), (y)])
+ ([0(2),0(y), 0(2)] + [8(y), 0(2), 0(2)] + 0(2), 0(),5(y)])
+ ([0(2),0(y), 0(2)] + [0(y), 6(2), 0(x)] + [8(2), 8(x), O(y)]) =

for all z,y,z € L. So condition (ii) of Theorem 2.4 is valid if ¢ = 0. Hence ¢ is a
f-derivation and D is a generalized #-derivation with respect to 6. O

Corollary 2.7. Let R be a 3-torsion free ring. Then D: L — L is a Jordan triple
f-derivation if and only if D is a 6-derivation.

Corollary 2.8. Let R be a 3-torsion free ring. Then D: L — L is a Jordan triple
derivation if and only if D is a derivation.
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