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Abstract. In this paper, the effects on the signless Laplacian spectral radius of a graph
are studied when some operations, such as edge moving, edge subdividing, are applied to
the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic
graphs with n vertices and k pendant vertices is identified. Furthermore, we determine the
graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic
graphs with n vertices and k pendant vertices, respectively.
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1. Introduction

Throughout the paper, G = (V, E) is a connected undirected simple graph with

V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. Especially, if m = n or m = n + 1,

then G is called a unicyclic or bicyclic graph, respectively. The notation N(v) is

used to denote the neighbors of vertex v. The degree of vertex v, written by d(v),

is d(v) = |N(v)|. Specially, we use ∆(G) to indicate the maximum degree of G. If

d(v) = 1, then v is called a pendant vertex of G. Let the adjacency matrix, degree

matrix of G be A(G) = [aij ], D(G) = diag{d(v1), d(v2), . . . , d(vn)}, respectively. The

Laplacian matrix of G is L(G) = D(G) − A(G) and the signless Laplacian matrix

of G is Q(G) = D(G) + A(G). Denote the spectral radii of A(G), L(G) and Q(G)
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by ̺(G), λ(G), and µ(G), respectively. For the relation between λ(G) and µ(G), it

is well known that

Proposition 1.1 ([15], [14]). λ(G) 6 µ(G), the equality holds if and only if G is

bipartite.

If G is connected, by the Perron-Frobenius Theorem of non-negative matrices,

µ(G) has multiplicity one and there exists a unique positive unit eigenvector corre-

sponding to µ(G). We refer to such an eigenvector as the Perron vector of µ(G).

Our terminology and notation are standard except as indicated. For terminology

and notation not defined here, we refer the readers to [1], [2], [4]–[6], [10], [12], [13],

[17], [18] and the references therein.

It is well known that graph spectrum has great important application in many

fields. Several graph spectra, i.e., spectra of A(G), L(G) and Q(G), have been

defined in [3]. The spectra of A(G), L(G) are well studied (for instance see [4], [6],

[8], [12], [13]), but the spectrum of Q(G) seems to be less well known. It is not

until recent years, some researchers found that the spectrum of Q(G) has a strong

connection with the structure of the graph (see [7], [10]). Thus, more and more

mathematicians became interested in it and devoted themselves to the study [2], [5],

[7], [10].

The problem concerning graphs with maximal or minimal spectral radius over a

given class of graphs proposed in [1] has been studied extensively. In this direction,

Wu et al. [17] determined the unique tree with the largest spectral radius in the

class of trees with n vertices and k pendant vertices, and Guo [9] identified the

graphs with the largest spectral radius in the class of unicyclic and bicyclic graphs

with n vertices and k pendant vertices, respectively. Very recently, Geng et al. [6]

obtained the unique tricyclic graph with the largest spectral radius in the class of

tricyclic graphs with n vertices and k pendant vertices. In this paper, we shall

consider the similar problem for signless Laplacian spectral radius and Laplacian

spectral radius. We determine the unique graph with the largest signless Laplacian

spectral radius among all unicyclic graphs with n vertices and k pendant vertices,

and the graphs with the largest Laplacian spectral radii among all unicyclic graphs

and bicyclic graphs with n vertices and k pendant vertices, respectively.

The paper is organized as follows. In the second section, we obtain some properties

for the signless Laplacian spectral radius of a graph when some operations, such as

edge moving, edge subdividing, are applied to the graph. In the third section, we

determine the graphs with the largest signless Laplacian spectral radius and the

largest Laplacian spectral radius among all unicyclic graphs having n vertices and

k pendant vertices, respectively. In the fourth section, we identify the graph with
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the largest Laplacian spectral radius among all bicyclic graphs having n vertices and

k pendant vertices.

2. Some properties of the signless Laplacian spectral radius

Let Pn and Cn be the path and cycle on n vertices, respectively. Let G − u or

G − uv denote the graph that obtained from G by deleting the vertex u ∈ V (G) or

the edge uv ∈ E(G). Similarly, G + uv is a graph that arises from G by adding an

edge uv 6∈ E(G), where u, v ∈ V (G).

Let X(G) be the line graph of G. It is well known that (for example, see [13],

p. 23):

(1) µ(G) = 2 + ̺(X(G)).

In the study of spectral theory, the effects on the spectrum are observed when

some operations, such as edge moving, edge subdividing, are applied to the graph.

For example, the following lemmas are stated for the spectral radius of the adjacency

matrix.

Lemma 2.1 ([12]). Let uv be an edge of a graph G satisfying d(u) > 2 and

d(v) > 2, and suppose that two new paths P : uu1u2 . . . uk and Q : vv1v2 . . . vm

of length k and m (k > m > 1) are attached to G, respectively, to form Mk,m,

where u1, u2, . . . , uk and v1, v2, . . . , vm are distinct new vertices. Then, we have

̺(Mk,m) > ̺(Mk+1,m−1).

Suppose v is a vertex of a connected graph G with at least two vertices. Let

Gk,l (l > k > 1) be the graph obtained from G by attaching two new paths P :

v(= v0)v1v2 . . . vk and Q : v(= u0)u1u2 . . . ul of length k and l, respectively, at v,

where v1, v2, . . . , vk and u1, u2, . . . , ul are distinct new vertices. Let Gk−1,l+1 =

Gk,l − vk−1vk + ulvk. It has been proved that

Lemma 2.2 ([12]). Let G be a connected graph on n > 2 vertices. If l > k > 1,

then

̺(Gk,l) > ̺(Gk−1,l+1).

By G ⊂ G′, we mean that G is a subgraph of G′ and G 6∼= G′. It is well known

that (for example, see [13], p. 17–18):
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Lemma 2.3. If G ⊂ G′ and G′ is a connected graph, then ̺(G) < ̺(G′).

By Lemma 2.3, it immediately follows

Proposition 2.1. If G ⊂ G′ and G′ is a connected graph, then µ(G) < µ(G′).

P r o o f. Since G ⊂ G′ and G′ is a connected graph, then X(G) ⊂ X(G′) and

X(G′) is a connected graph. This implies that ̺(X(G)) < ̺(X(G′)). Bearing in

mind the equality (1), then the result follows. �

Lemma 2.4 ([4]). Suppose Mn×n is a symmetric, nonnegative matrix, y is an

n-tuple positive vector and µ′ is a positive real number. IfMy 6 µ′y andMy 6= µ′y,

then ̺1(M) < µ′, where ̺1(M) is the largest eigenvalue of M .

With the help of the above lemmas, we can obtain the similar results on µ(G) for

the general connected graphs.

1. Edge moving operation

Theorem 2.1. Let G be a connected graph on n > 2 vertices. If l > k > 1, then

µ(Gk,l) > µ(Gk−1,l+1).

P r o o f. We consider the next two cases.

Case 1. k = 1. Without loss of generality, suppose e1 = vv1, e2 = vu1, e3 =

u1u2, . . . , el+1 = ul−1ul, et = ulv1. Then G1,l, G0,l+1, X(G1,l), X(G0,l+1) are the

graphs as shown in Fig. 1. Let G1 = X(G1,l)\{wve1
: w 6= ve2

}, then G1 ⊂ X(G1,l),

thus ̺(G1) < ̺(X(G1,l)) follows from Lemma 2.3.

G v
u1 u2 ul−1 ule2

v1

el+1

G1,l

G v
u1 u2 ul−1 ule2 v1

el+1 et

G0,l+1

X(G)
ve2

ve3
vel

vel+1

ve1

X(G1,l)

X(G)
ve2

ve3
vel+1

vet

X(G0,l+1)

Fig. 1

Subcase 1.1. l = 1. It is easy to see that G1
∼= X(G0,l+1), this implies that

̺(X(G0,l+1)) = ̺(G1) < ̺(X(G1,l)). Thus, the result follows from equality (1).
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Subcase 1.2. l > 2. By Lemma 2.2, we have ̺(X(G0,l+1)) < ̺(G1) < ̺(X(G1,l)).

Thus, the result follows from equality (1).

Case 2. k > 2. Without loss of generality, suppose e1 = vv1, e2 = v1v2,. . . ,

ek = vk−1vk and ek+1 = vu1, ek+2 = u1u2,. . . , ek+l = ul−1ul, et = ulvk. Then Gk,l,

Gk−1,l+1, X(Gk,l), X(Gk−1,l+1) are the graphs as shown in Fig. 2. By Lemma 2.1,

it follows that ̺(X(Gk−1,l+1)) < ̺(X(Gk,l)). Bearing in mind the equality (1), the

result follows.

G v
u1 ul−1 ul

v1

vk

e1

ek

ek+1 ek+l

Gk,l

G v
u1 ul−1 ul vk

v1

vk−1

e1
ek+1 ek+l et

Gk−1,l+1

X(G)
vek+1

vek+l−1
vek+l

ve1

vek

X(Gk,l)

X(G)
vek+1

vek+l−1
vek+l

vet

ve1

vek−1

X(Gk−1,l+1)

Fig. 2

By combining the above discussion, the assertion follows. �

By Proposition 1.1 and Theorem 2.1, we have

Corollary 2.1 ([8]). Let G be a connected bipartite graph on n > 2 vertices. If

l > k > 1, then λ(Gk,l) > λ(Gk−1,l+1).

Lemma 2.5 ([18]). Let G = (V (G), E(G)) be a connected simple graph with

uvi ∈ E(G) and wvi 6∈ E(G) for i = 1, . . . , k. Let G′ = (V ′(G), E′(G)) be a new

graph obtained from G by deleting edges uvi and adding edges wvi for i = 1, . . . , k.

Let x = (x1, x2, . . . , xn)T be a Perron vector of µ(G). If xw > xu, then µ(G) < µ(G′).

2. Edge subdividing operation

Let G be a connected graph, and uv ∈ E(G). The graph G∗

u,v is obtained from G

by subdividing the edge uv, i.e., adding a new vertex w and edges wu, wv in G−uv.

An internal path, say v1v2 . . . vs+1 (s > 1), is a path joining v1 and vs+1 (which need

not be distinct) such that v1 and vs+1 have degree greater than 2, while all other
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vertices v2, . . . , vs are of degree 2. A pendant path of a graph is a path with one of

its end vertices having degree one and all the internal vertices having degree two.

Clearly, a pendant path of length one is a pendant edge.

Theorem 2.2. Let uv be an edge of the connected graph G.

(1) If uv belongs to a pendant path of G, then µ(G∗

u,v) > µ(G).

(2) If uv belongs to an internal path of G, then µ(G∗

u,v) < µ(G).

P r o o f. (1) Since G ⊂ G∗

u,v, then µ(G∗

u,v) > µ(G) follows from Proposition 2.1.

(2) For convenience, we assume v1v2 . . . va (a > 2) is an internal path of G and

x = (x1, x2, . . . , xn)T is the Perron vector of µ(G), where xi (> 0) corresponds to

the vertex vi (1 6 i 6 n). Without loss of generality, suppose that x1 6 xa, and

xt = min{xt, xt+1, . . . , xa} such that xt < xi for 1 6 i 6 t − 1. We divide the proof

into the next two cases.

Case 1. t = 1. Let G′ = G − v1v2 + v1w + wv2, where w 6∈ V (G). It is easy

to see that G∗

u,v
∼= G′. Let y = (y1, yw, y2, . . . , yn)T , where yw = y1 = x1 and

yi = xi for 2 6 i 6 n. This implies that y is an (n + 1)-tuple positive vector. Let

s =
∑

vj∈N(v1)

xj − x2, where N(v1) is the set of neighbors of v1 in G. Then,

(Q(G′)y)1 = d(v1)x1 + s + yw = s + (d(v1) + 1)x1,

(µ(G)y)1 = µ(G)y1 = µ(G)x1 = d(v1)x1 + s + x2.

Since x1 6 x2, then (Q(G′)y)1 6 (µ(G)y)1. Moreover, we have

(Q(G′)y)w = 2yw + x1 + x2 = 3x1 + x2,

(µ(G)y)w = µ(G)yw = µ(G)x1 = d(v1)x1 + s + x2.

Since d(v1) > 3, s > 0, thus (Q(G′)y)w < (µ(G)y)w .

For the other vertex vj (j 6= 1, w), we have (Q(G′)y)j = (µ(G)y)j . Combining the

above discussion, we can conclude that Q(G′)y 6 µ(G)y and Q(G′)y 6= µ(G)y, thus

µ(G∗

u,v) = µ(G′) < µ(G) follows from Lemma 2.4.

Case 2. 1 < t < a. Let G′ = G−vt−1vt +vt−1w+wvt, where w 6∈ V (G). It is easy

to see that G∗(u, v) ∼= G′. Let y = (y1, . . . , yt−1, yw, yt, . . . , yn)T , where yw = xt and

yi = xi for 1 6 i 6 n. This implies that y is an (n + 1)-tuple positive vector. Then

(Q(G′)y)w = 2yw + xt−1 + xt = xt−1 + 3xt,

(µ(G)y)w = µ(G)yw = µ(G)xt = 2xt + xt−1 + xt+1.
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Since xt 6 xt+1, thus (Q(G′)y)w 6 (µ(G)y)w. Moreover, we have

(Q(G′)y)t = 2xt + yw + xt+1 = 3xt + xt+1,

(µ(G)y)t = µ(G)yt = µ(G)xt = 2xt + xt−1 + xt+1.

Since xt < xt−1, thus (Q(G′)y)t < (µ(G)y)t.

For the other vertex vj (j 6= t, w), we have (Q(G′)y)j = (µ(G)y)j . Combining the

above discussion, we can conclude that Q(G′)y 6 µ(G)y and Q(G′)y 6= µ(G)y, thus

µ(G∗

u,v) = µ(G′) < µ(G) follows from Lemma 2.4.

By combining the above arguments, we have µ(G∗

u,v) < µ(G). This completes the

proof. �

Corollary 2.2. Suppose uv is an edge of the connected bipartite graph G.

(1) If uv belongs to a pendant path of G, then λ(G∗

u,v) > λ(G).

(2) If uv belongs to an internal path of G and G∗

u,v is also a bipartite graph, then

λ(G∗

u,v) < λ(G).

P r o o f. We only prove (1), because (2) can be proved similarly. It is easy to see

that G∗

u,v is also bipartite as G is bipartite, then λ(G∗

u,v) = µ(G∗

u,v) > µ(G) = λ(G)

follows from Proposition 1.1 and Theorem 2.2. Thus (1) holds. �

3. The largest µ(G) (resp. λ(G)) in the class of unicyclic graphs with

n vertices and k pendant vertices

Let G be a connected graph and let T be a tree such that T is attached to a

vertex v of G. The vertex v is called the root of T . Throughout this paper, we

assume that T does not include the root. Given u, v ∈ V (G), the symbol d(u, v) is

used to denote the distance between u and v, i.e., the length of (number of edges

in) the shortest path that connects u and v in G. Paths Pl1 , . . . , Plk are said to have

almost equal lengths if l1, . . . , lk satisfy |li − lj | 6 1 for 1 6 i 6 j 6 k.

For integers n, k, let Un(k) denote the class of connected unicyclic graphs with

n vertices and k pendant vertices, and let Un(t, k) be the class of connected unicyclic

graphs on n vertices and k pendant vertices with the unique cycle of length t. The

notation Wn(t, k) denotes the unicyclic graph on n vertices obtained from a cycle,

say Ct, by attaching k paths of almost equal lengths to one vertex of Ct. Obviously,

Wn(t, k) ∈ Un(t, k) ⊆ Un(k).
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Lemma 3.1. Suppose t and k are integers with t > 3 and 1 6 k 6 n − t. If G ∈

Un(t, k), then µ(G) 6 µ(Wn(t, k)), with equality holding if and only if G ∼= Wn(t, k).

P r o o f. Choose G ∈ Un(t, k) such that the signless Laplacian spectral radius

of G is as large as possible. Denote the vertex set of G by {v1, . . . , vn} and the Perron

vector of µ(G) by x = (x1, . . . , xn)T , where xi (> 0) corresponds to the vertex vi

(1 6 i 6 n).

We first prove that G is a graph obtained by attaching some tree to only one

vertex of Ct. On the contrary, assume that there exist trees T1, T2 attached to v1,

v2 of Ct, respectively. Without loss of generality, suppose x1 6 x2. Note that there

must be some vertex u ∈ V (T1) ∩ N(v1) such that u 6∈ N(v2), let

G1 = G − v1u + v2u,

then G1 ∈ Un(t, k). By Lemma 2.5, µ(G) < µ(G1), a contradiction.

Thus, G is a graph obtained by attaching some tree T to one vertex, say v1, of Ct.

We now prove that each vertex v of T has degree d(v) 6 2. On the contrary, assume

there exists one vertex vi ∈ V (T ) such that d(vi) > 3 and d(vi, v1) is as small as

possible.

If x1 > xi, since d(vi) > 3, then there must exist one vertex u ∈ N(vi) such that

d(v1, u) > d(v1, vi). Clearly, u 6∈ N(v1). Let

G1 = G − uvi + uv1,

then G1 ∈ Un(t, k). By Lemma 2.5, µ(G) < µ(G1), a contradiction.

If x1 < xi, we consider the next two cases.

Case 1. d(vi, v1) = 1. Assume Ct = v1v2v3 . . . vtv1. Clearly, v2 6∈ N(vi). Let

G1 = G−v1v2 +viv2, G2 = G1−viv2−v2v3 +viv3, G3 = G2−v2, G4 = G2 +v2vs,

where vs is a pendant vertex of G.

By Lemma 2.5, µ(G) < µ(G1). Since k > 1, then d(v1) > 3. Thus, v1vtvt−1 . . . v3vi

or viv1vtvt−1 . . . v3vi is in an internal path of G3. By Theorem 2.2, µ(G1) < µ(G3) <

µ(G4). Thus, we can conclude that µ(G) < µ(G4). But G4 ∈ Un(t, k), a contradic-

tion to the choice of G.

Case 2. d(vi, v1) > 2. Suppose P = v1v2 . . . vlvi is the unique path of length l

from v1 to vi, then l > 2 by d(vi, v1) > 2. Let

G1 = G − vivl − vlvl−1 + vivl−1, G2 = G1 − vl, G3 = G1 + vlvs,

where vs is a pendant vertex of G.
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Clearly, G3 ∈ Un(t, k). By the choice of vi, v1v2 . . . vl−1vi is an internal path

of G2. By Theorem 2.2, we have µ(G) < µ(G2) < µ(G3), a contradiction.

Thus, G is a graph obtained by attaching k paths to the vertex v1 of Ct. Finally,

we prove that G ∼= Wn(t, k), i.e., the k paths have almost equal lengths. On the

contrary, assume that there exist two paths, say Pl1 and Pl2 , such that l1 − l2 > 2

and l2 > 2. Denote Pl1 = u1 . . . ul1 and Pl2 = w1 . . . wl2 , where u1 = v1 = w1. Let

G1 = G − ul1−1ul1 + wl2ul1 ,

then G1 ∈ Un(t, k). By Theorem 2.1, µ(G) < µ(G1), a contradiction to the choice

of G.

By combining the above arguments, we have G ∼= Wn(t, k). This completes the

proof. �

Lemma 3.2. Suppose t and k are integers with t > 4 and 1 6 k 6 n − t. Then,

µ(Wn(t, k)) < µ(Wn(t − 1, k)).

P r o o f. By the definition, Wn(t, k) is the graph obtained by attaching k paths

of almost equal lengths to v1 of Ct. Assume Ct = v1v2v3 . . . vtv1. Let

G1 = Wn(t, k) − v1v2 − v2v3 + v1v3, G2 = G1 − v2, G3 = G1 + v2vs,

where vs is a pendant vertex of Wn(t, k).

Since k > 1, then d(v1) > 3. Thus, v1v3v4 . . . vtv1 is an internal path of G2. By

Theorem 2.2, µ(Wn(t, k)) < µ(G2) < µ(G3). Moreover, note that G3 ∈ Un(t − 1, k),

thus we can conclude that µ(Wn(t, k)) < µ(G3) 6 µ(Wn(t−1, k) by Lemma 3.1. �

For G ∈ Un(k), it has been proved (see [9]) that ̺(G) 6 ̺(Wn(3, k)), with equality

holding if and only if G ∼= Wn(3, k). The next theorem shows the similar result to

µ(G) for G ∈ Un(k)

Theorem 3.1. Suppose k is an integer with 1 6 k 6 n − 3. If G ∈ Un(k), then

µ(G) 6 µ(Wn(3, k)),

and the equality holds if and only if G ∼= Wn(3, k).

P r o o f. Since k > 1 andG ∈ Un(k), then there exists an integer t (> 3) such that

G ∈ Un(t, k). By Lemmas 3.1–3.2, it follows that µ(G) 6 µ(Wn(t, k)) 6 µ(Wn(3, k)),

with equality holding if and only if G ∼= Wn(3, k). This completes the proof of the

assertion. �
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In the following, we shall determine the unique graph with the largest Laplacian

spectral radius in the class of unicyclic graphs with n vertices and k pendant vertices.

By Proposition 1.1 and Lemma 3.1, it follows

Lemma 3.3. Suppose t is a positive even number and k is an integer with 1 6

k 6 n − t. If G ∈ Un(t, k), then λ(G) 6 λ(Wn(t, k)), with equality holding if and

only if G ∼= Wn(t, k).

Lemma 3.4. Suppose t (> 5) is a positive odd number and k is an integer with

1 6 k 6 n − t. If G ∈ Un(t, k), then λ(G) < λ(Wn(t − 1, k)).

P r o o f. Since t is odd, by Proposition 1.1 and Lemmas 3.1–3.2 we have λ(G) <

µ(G) 6 µ(Wn(t, k)) < µ(Wn(t − 1, k)) = λ(Wn(t − 1, k)). Thus, the result follows.

�

Lemma 3.5. Suppose t and k are integers with t > 4 and 1 6 k 6 n − t.

If G ∈ Un(t, k), then λ(G) 6 λ(Wn(4, k)), with equality holding if and only if

G ∼= Wn(4, k).

P r o o f. We divide the proof into the following two cases.

Case 1. t is even. We may assume that t > 6. By Proposition 1.1, Lemmas 3.2 and

3.3, we have λ(G) 6 λ(Wn(t, k)) = µ(Wn(t, k)) < µ(Wn(t−1, k)) < µ(Wn(t−2, k)) =

λ(Wn(t − 2, k)). Since t is even, by repeating the above process, we can conclude

that λ(G) < λ(Wn(4, k)) for t > 6.

Case 2. t is odd. Since t > 5, then λ(G) < λ(Wn(t−1, k)) follows from Lemma 3.4.

Combining with Case 1, we have λ(G) < λ(Wn(t − 1, k)) 6 λ(Wn(4, k)).

By combining the above arguments, the result follows. �

Lemma 3.6 ([8]). Let v be a vertex of a connected graph G and suppose that

v1, . . . , vs are pendant vertices of G which are adjacent to v. Let G∗ be the graph

obtained from G by adding any b
(

1 6 b 6 1
2s(s − 1)

)

edges between v1, . . . , vs.

Then, λ(G) = λ(G∗).

The next lemma gives an upper bound for λ(G), which does not exceed n.

Lemma 3.7 ([16]). λ(G) 6 max{|N(u) ∪ N(v)| : u, v ∈ V (G)}.

The next lemma gives a lower bound for λ(G).

Lemma 3.8 ([14]). If G is a graph with at least one edge, then λ(G) > ∆(G)+1,

where equality holds if and only if ∆(G) = n − 1.
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Theorem 3.2. Suppose k is an integer with 1 6 k 6 n − 4. If G ∈ Un(k), then

λ(G) 6 λ(Wn(4, k)),

where the equality holds if and only if G ∼= Wn(4, k).

P r o o f. Since k > 1 and G ∈ Un(k), then there exists an integer t (> 3) such

that G ∈ Un(t, k). If t > 4, the result follows from Lemma 3.5. Next we shall

consider the case of t = 3.

By the definition, Un(3, k) denotes the class of connected unicyclic graphs on

n vertices having k pendant vertices and a cycle C3 = v1v2v3v1. Choose G ∈ Un(3, k)

such that the Laplacian spectral radius of G is as large as possible.

We first proved that G is a graph by attaching some tree to only one vertex of C3.

On the contrary, assume that there exist trees T1, T2 attached to v1, v2 of C3,

respectively. Note that 1 6 k 6 n − 4. By Lemmas 3.7–3.8 we have

λ(G) 6 max{|N(u)∪N(v)| : u, v ∈ V (G)} 6 k+3 = ∆(Wn(3, k))+1 < λ(Wn(3, k)).

But Wn(3, k) ∈ Un(3, k), it is a contradiction to the choice of G.

Thus, G is a graph obtained by attaching some tree to one vertex, say v1, of C3.

Let T = G − v2v3, then T is a tree. By Lemma 3.6, λ(G) = λ(T ). Next we shall

prove that λ(T ) < λ(Wn(4, k)).

Choose a pendant vertex, say u, of V (T ) such that d(v1, u) is as large as possible

in T . Let G1 = T + uv2. Since T ⊂ G1, then λ(T ) = µ(T ) < µ(G1) follows from

Proposition 2.1.

Note that G1 contains a cycle, say Ca, clearly a > 4 because 1 6 k 6 n − 4, thus

G1 ∈ Un(a, k). By Lemmas 3.1–3.2, µ(G1) 6 µ(Wn(a, k)) 6 µ(Wn(4, k)).

Combining the above arguments, we can conclude that

λ(G) = λ(T ) = µ(T ) < µ(G1) 6 µ(Wn(4, k)) = λ(Wn(4, k)).

This completes the proof. �
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4. The largest λ(G) in the class of bicyclic graphs with n vertices

and k pendant vertices

Let G be a bicyclic graph. The base of G, denoted by Ĝ, is the (unique) minimal

connected bicyclic subgraph of G. It is easy to see that Ĝ is the unique bicyclic

subgraph of G containing no pendant vertices, while G can be obtained from Ĝ by

attaching trees to some vertices of Ĝ.

Let Cp and Cq be two vertex-disjoint cycles. Suppose that u ∈ V (Cp) and v ∈

V (Cq). In [9], Guo introduced the graph B(p, l, q) (Fig. 3), which is arisen from Cp

and Cq by joining u and v by a path (u =)v1v2 . . . vl(= v) of length l−1, where l = 1

means identifying u and v.

Let Pp+1, Pq+1 and Pl+1 be three vertex-disjoint paths, where p, l, q > 1 and at

most one of them is 1. Identifying the three initial vertices and terminal vertices of

them, respectively, the resulting graph (Fig. 3), denoted by P (p, l, q), is also reported

in [9].

v u

Pq+1

Pl+1

Pp+1

Cp Cq
v1 vl

Fig. 3. The graphs B(p, l, q) and P (p, l, q).

For integers n, k, let B(n, k) be the class of connected bicyclic graphs with n ver-

tices and k pendant vertices. Now we define the following two kinds of bicyclic graphs

with n vertices and k pendant vertices:

B1(n, k) = {G ∈ B(n, k) : Ĝ = B(p, l, q)},

B2(n, k) = {G ∈ B(n, k) : Ĝ = P (p, l, q)}.

The girth of G is the length of a shortest cycle in G and its length is denoted

by g(G). For convenience, we introduced more notation as follows.

B1(n, k) = {G ∈ B1(n, k) : g(G) > 4}, B2(n, k) = {G ∈ B1(n, k) : g(G) = 3},

B3(n, k) = {G ∈ B2(n, k) : g(G) > 4}, B4(n, k) = {G ∈ B2(n, k) : g(G) = 3}.

It is easy to see that

B(n, k) = B1(n, k) ∪ B2(n, k),

B1(n, k) = B1(n, k) ∪ B2(n, k),

B2(n, k) = B3(n, k) ∪ B4(n, k).
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Let W1 be the graph on n vertices obtained from B(4, 1, 4) by attaching k paths

of almost equal lengths to the vertex of degree 4. Let W2 and W3 be the graphs on

n vertices arisen from P (3, 1, 3) by attaching k paths of almost equal lengths to one

vertex of degree 3 and one vertex of degree 2, respectively. Let W4 and W5 be the

graphs on n vertices obtained from P (2, 2, 2) by attaching k paths of almost equal

lengths to one vertex of degree 3 and one vertex of degree 2, respectively.

Let m(v) denote the average of the degrees of the vertices adjacent to v, i.e.,

m(v) =
∑

u∈N(v)d(u)/d(v).

Lemma 4.1 ([11]).

λ(G) 6 max
{d(u)(d(u) + m(u)) + d(v)(d(v) + m(v))

d(u) + d(v)
: uv ∈ E(G)

}

.

Lemma 4.2. If 1 6 k 6 n − 7, then λ(Wi) < λ(W1) holds for 2 6 i 6 5.

P r o o f. By Lemmas 3.8 and 4.1, we have

λ(W2) 6 max
{d(u)(d(u) + m(u)) + d(v)(d(v) + m(v))

d(u) + d(v)
: uv ∈ E(W2)

}

= max
{k2 + 9k + 32

k + 6
,
k2 + 9k + 25

k + 5
,
k2 + 9k + 19

k + 4

}

6 k + 5 = ∆(W1) + 1 < λ(W1).

By Lemmas 3.7–3.8, we have

λ(W3) 6 max{|N(u) ∪ N(v)| : u, v ∈ V (W3)} = k + 5 = ∆(W1) + 1 < λ(W1).

It can be proved similarly as λ(W3) < λ(W1) that λ(W4) < λ(W1) and λ(W5) <

λ(W1).

By combining the above discussion, the assertions follow. �

Lemma 4.3. If 1 6 k 6 n − 7 and G ∈ B1(n, k), then µ(G) 6 µ(W1), with

equality holding if and only if G ∼= W1.

P r o o f. Choose G ∈ B1(n, k) such that µ(G) is as large as possible. Denote the

vertex set of G by {v1, . . . , vn} and the Perron vector of µ(G) by x = (x1, . . . , xn)T ,

where xi (> 0) corresponds to the vertex vi (1 6 i 6 n).

Suppose Ĝ = B(p, l, q), and v1 . . . vl is the unique path from v1 ∈ V (Cp) to vl ∈

V (Cq). We claim that l = 1. Assume, on the contrary, that l > 1. Without loss of
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generality, suppose that x1 > xl. Clearly, there exists some vertex u ∈ N(vl)∩V (Cq),

and u 6∈ N(v1). Let

G1 = G − vlu + v1u,

then G1 ∈ B1(n, k). By Lemma 2.5, µ(G) < µ(G1), a contradiction. Hence, l = 1.

We now prove that G is the graph that arises from B(p, 1, q) by attaching a tree

to the vertex of degree 4, say v1, in B(p, 1, q). Assume that there exists a vertex vi of

B(p, 1, q) such that vi 6= v1 and there exists a tree T attached to vi. By symmetry,

we may assume that vi ∈ V (Cp).

If x1 > xi, choose u ∈ N(vi) ∩ V (T ), clearly u 6∈ N(v1). Let

G1 = G − viu + v1u,

then G1 ∈ B1(n, k). By Lemma 2.5, µ(G) < µ(G1), a contradiction.

If x1 < xi, suppose {u, v} = N(v1) ∩ V (Cq), clearly u, v 6∈ N(vi). Let

G1 = G − v1u − v1v + viu + viv,

then G1 ∈ B1(n, k). By Lemma 2.5, µ(G) < µ(G1), a contradiction.

Thus, G is a graph obtained by attaching one tree, say T , to the vertex v1 of

B(p, 1, q). We now prove that each vertex of T has degree d(v) 6 2. On the contrary,

assume there exists one vertex vi ∈ V (T ) such that d(vi) > 3.

If x1 > xi, since d(vi) > 3, then there must exist some vertex u ∈ N(vi) such that

d(v1, u) > d(v1, vi). Clearly, u 6∈ N(v1). Let

G1 = G − uvi + v1u

then G1 ∈ B1(n, k). By Lemma 2.5, µ(G) < µ(G1), a contradiction.

If x1 < xi, suppose {u, v} = N(v1) ∩ V (Cq), clearly u, v 6∈ N(vi). Let

G1 = G − v1u − v1v + viu + viv,

then G1 ∈ B1(n, k). By Lemma 2.5, µ(G) < µ(G1), a contradiction.

Thus, G is a graph obtained by attaching k paths to the vertex v1 of B(p, 1, q).

Next we shall prove that p = q = 4. On the contrary, we assume that p > 4 and

Cp = v1v2 . . . vpv1. Let

G1 = G − v1v2 − v2v3 + v1v3, G2 = G1 − v2, G3 = G1 + v2vs,

where vs is a pendant vertex of G.
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Note that v1v3 . . . vpv1 is an internal path of G2, then µ(G) < µ(G2) follows

from Theorem 2.2. Moreover, since G2 ⊂ G3, by Proposition 2.1 it follows that

µ(G2) < µ(G3). Thus, we can conclude that µ(G) < µ(G3). But G3 ∈ B1(n, k), a

contradiction. Thus, p = 4. By the same reason, q = 4.

Finally, we prove that G ∼= W1, i.e., the k paths have almost equal lengths. On

the contrary, if there exist two paths, say Pl1 and Pl2 , such that l1 − l2 > 2 and

l2 > 2. Denote Pl1 = u1 . . . ul1 and Pl2 = w1 . . . wl2 , where u1 = v1 = w1. Let

G1 = G − ul1−1ul1 + wl2ul1 ,

then G1 ∈ B1(n, k). By Theorem 2.1, µ(G) < µ(G1), a contradiction.

By combining the above arguments, we have G ∼= W1. This completes the proof.

�

Corollary 4.1. If 1 6 k 6 n − 7 and G ∈ B1(n, k), then λ(G) 6 λ(W1), with

equality holding if and only if G ∼= W1.

P r o o f. By Proposition 1.1 and Lemma 4.3, we have

λ(G) 6 µ(G) 6 µ(W1) = λ(W1).

Thus, the conclusion follows from Lemma 4.3.

Lemma 4.4. If 1 6 k 6 n − 7 and G ∈ B2(n, k), then λ(G) < λ(W1).

P r o o f. Choose G ∈ B2(n, k) such that λ(G) is as large as possible. Without

loss of generality, we assume that p > q in the proof of this lemma. By the definition,

Ĝ = B(p, l, 3). Suppose that Cq(= C3) = v1v2v3v1, where d(v1) > 3 in B(p, l, 3).

Two cases occur as follows.

Case 1. If there exists a vertex w (w = v2 or v3) of degree 2 in C3 of B(p, l, 3)

such that there exists a tree T attached to w, by Lemmas 3.7–3.8 it follows that

λ(G) 6 max{|N(u) ∪ N(v)| : u, v ∈ V (G)} 6 k + 5 = ∆(W1) + 1 < λ(W1).

Case 2. There exists no tree attached to v2 or/and v3 in Cq (= C3) of B(p, l, 3).

Let

G1 = G − v2v3.

Then, λ(G) = λ(G1) follows from Lemma 3.6. Note that G1 ∈ Un(k + 2) and

k + 2 < n − 4, by Theorem 3.2 we have λ(G1) 6 λ(Wn(4, k + 2)). Choose two

different pendant vertices, say u and v, of V (Wn(4, k + 2)) such that d(vi, u) and
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d(vi, v) are as large as possible inWn(4, k+2), where vi is the unique vertex of degree

greater than 4 in Wn(4, k + 2). Let

G2 = Wn(4, k + 2) + uv.

Since Wn(4, k +2) ⊂ G2, by Proposition 2.1 we have µ(Wn(4, k +2)) < µ(G2). Note

that G2 ∈ B1(n, k), then µ(G2) 6 µ(W1) by Lemma 4.3.

Combining the above discussion and Proposition 1.1, we can conclude that

λ(G) = λ(G1) 6 λ(Wn(4, k + 2)) = µ(Wn(4, k + 2)) < µ(G2) 6 µ(W1) = λ(W1).

By the above arguments, we have λ(G) < λ(W1). This completes the proof. �

Lemma 4.5. If 1 6 k 6 n−7 and G ∈ B3(n, k), then µ(G) 6 max{µ(W2), µ(W3),

µ(W4), µ(W5)}.

P r o o f. Choose G ∈ B3(n, k) such that µ(G) is as large as possible. Denote the

vertex set of G by {v1, . . . , vn} and the Perron vector of µ(G) by x = (x1, . . . , xn)T ,

where xi (> 0) corresponds to the vertex vi (1 6 i 6 n). Without loss of generality,

we assume that l = min{p, l, q} in the proof of this lemma.

We first prove that G is the graph obtained from P (p, l, q) by attaching some tree

to only one vertex of P (p, l, q). On the contrary, assume there exist trees Ti and Tj

attached to vi and vj of P (p, l, q), respectively. By symmetry, we may assume that

xi > xj . Choose u ∈ N(vj) ∩ V (Tj), clearly u 6∈ N(vi). Let

G1 = G − vju + viu.

Then, G1 ∈ B3(n, k). By Lemma 2.5, µ(G) < µ(G1), a contradiction.

Thus, G is the graph arisen from P (p, l, q) by attaching some tree, say T , to

unique vertex, say v1, of P (p, l, q). We now prove that every vertex v of T has degree

d(v) 6 2. On the contrary, assume that there exists vj ∈ V (T ) such that d(vj) > 3.

If xj 6 x1, since d(vj) > 3, then there must exist some vertex u ∈ N(vj) such that

d(v1, u) > d(v1, vj). Clearly, u 6∈ N(v1). Let

G1 = G − uvj + uv1,

then G1 ∈ B3(n, k). By Lemma 2.5, µ(G) < µ(G1), a contradiction.

If xj > x1, suppose u ∈ N(v1) ∩ V (P (p, l, q)), clearly u 6∈ N(vj). Let

G1 = G − v1u + vju,

then G1 ∈ B3(n, k). By Lemma 2.5, µ(G) < µ(G1), a contradiction.
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Thus, G is a graph obtained by attaching k paths to some vertex v1 of P (p, l, q).

We divide the proof into the next two cases.

Case 1. d(v1) = 3 in P (p, l, q).

Subcase 1.1. l = 1. We shall prove that p = q = 3. On the contrary, assume that

p > 4. Suppose Pp+1 = v1v2 . . . vp+1, then d(v1) > 4 and d(vp+1) = 3. Let

G1 = G − v1v2 − v2v3 + v1v3, G2 = G1 − v2, G3 = G1 + v2vs,

where vs is a pendant vertex of G.

Note that v1v3 . . . vp+1 is an internal path of G2 and G2 ⊂ G3, then µ(G) <

µ(G2) < µ(G3) follows from Proposition 2.1 and Theorem 2.2, a contradiction to the

choice of G. Thus, p = 3. By the same reason, q = 3. Thus, G is a graph obtained

by attaching k paths to one vertex of degree 3 of P (3, 1, 3). By Theorem 2.1, we

have G ∼= W2.

Subcase 1.2. l > 2. By the same method as Subcase 1.1, we can prove that

G ∼= W4.

Case 2. d(v1) = 2 in P (p, l, q).

Subcase 2.1. l = 1. By the same method as Subcase 1.1, we can prove that

G ∼= W3.

Subcase 2.2. l > 2. By the same method as Subcase 1.1, we can prove that

G ∼= W5.

By the above arguments, this completes the proof. �

Corollary 4.2. If 1 6 k 6 n − 7 and G ∈ B3(n, k), then λ(G) < λ(W1).

P r o o f. By Proposition 1.1,

max{µ(W2), µ(W3), µ(W4), µ(W5)} = max{λ(W2), λ(W3), λ(W4), λ(W5)}.

Combining with Proposition 1.1, Lemmas 4.2 and 4.5, we have

λ(G) 6 µ(G) 6 max{λ(W2), λ(W3), λ(W4), λ(W5)} < λ(W1).

Thus, the conclusion follows. �

Lemma 4.6. If 1 6 k 6 n − 7 and G ∈ B4(n, k), then λ(G) < λ(W1).

P r o o f. If G ∈ B4(n, k), by Lemmas 3.7–3.8 it follows that

λ(G) 6 max{|N(u) ∪ N(v) : u, v ∈ V (G)} 6 k + 5 = ∆(W1) + 1 < λ(W1).

This completes the proof. �

By Corollaries 4.1–4.2, Lemmas 4.4 and 4.6, we can conclude
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Theorem 4.1. If 1 6 k 6 n − 7 and G ∈ B(n, k), then

λ(G) 6 λ(W1),

where the equality holds if and only if G ∼= W1.
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[3] D.M. Cvetković, M. Doob, H. Sachs: Spectra of Graphs. Theory and Applications. VEB
Deutscher Verlag der Wissenschaften, Berlin, 1980.
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