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Abstract. We present an existence theorem for monotonic solutions of a quadratic in-
tegral equation of Abel type in C[0,1]. The famous Chandrasekhar’s integral equation is
considered as a special case. The concept of measure of noncompactness and a fixed point
theorem due to Darbo are the main tools in carrying out our proof.
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1. INTRODUCTION

Quadratic integral equations have many useful applications in describing numerous
events and problems of the real world. For example, quadratic integral equations
are often applicable in the theory of radiative transfer, kinetic theory of gases, in
the theory of neutron transport and in the traffic theory. Especially, the so-called
quadratic integral equation of Chandrasekhar type can be very often encountered in
many applications (cf. [6], [8], [10]-[16], [19]).

In this paper we study the nonlinear integral equation

[t x(t)) /t g(k(t, s))
0

(1.1) z(t) = a(t) + o) (t—s)o

z(s)ds, te€[0,1], 0<a <Ll

Let us recall that the function f = f(¢,z) involved in Eq. (1.1) generates the super-
position operator F' defined by the formula

(1.2) (Fz)(t) = f(t,2(1)),
where x = z(t) is an arbitrary function defined on [0, 1] (cf. [1], [17]).
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Using the technique associated with measures of noncompactness we show that
equation (1.1) has solutions belonging to C[0,1] and being nondecreasing on the
interval [0, 1].

Our paper is motivated by [5], [8], [11] concerning quadratic integral equations of
Volterra type and results in [2], [12], [20], [21] concerning Chandrasekher’s integral
equation and some of its generalizations.

2. AUXILIARY FACTS AND RESULTS

This section is devoted to collecting some definitions and results which will be
needed further on. Assume that (E, || - ||) is a real Banach space with zero element 0.
Let B(z,r) denote the closed ball centered at « with radius r. The symbol B, stands
for the ball B(0,r).

If X is a subset of E, then X and Conv X denote the closure and convex closure
of X, respectively. The symbols AX and X +Y denote the usual algebraic operators
on sets. Moreover, we denote by M g the family of all nonempty and bounded subsets
of E and by Ng its subfamily consisting of all relatively compact subsets.

Next we give the concept of a measure of noncompactness [9]:

Definition 1. A mapping p: Mg — [0,+00) is said to be a measure of non-
compactness in F if it satisfies the following conditions:
1) The family ker uy = {X € Mg: u(X) = 0} is nonempty and ker u C Ng.
2) X CY = puX)<ul).
3) 1u(X) = p(Conv X) = u(X).
4) pAX+1=-)Y) < X))+ 1 -MNu(Y)for 0< A< 1.
5) If X,, € Mg, X, = X, Xpy1 C X, forn =1,2,3,... and lim u(X,) =0

n—oo

then ﬂ Xn # 0.
n=1

The family ker 1 described above is called the kernel of the measure of noncom-
pactness p.

In what follows we will work in the Banach space C'[0, 1] consisting of all real func-
tions defined and continuous on [0, 1]. For convenience, we write I and C'(I) instead
of [0, 1] and C[0, 1], respectively. The space C(I) is equipped with the standard norm

]| = max{[z(¢)|: t > 0}.

Now, we recollect the construction of the measure of noncompactness in C(I)
which will be used in the next section (see [6], [7]).
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Let us fix a nonempty and bounded subset X of C(I). For x € X and € > 0 let
us denote by w(z,e) the modulus of continuity of the function z, i.e.,

w(z,e) =sup{|z(t) —z(s)|: t,s €I, |t —s|] < e}
Further, let us put
w(X,e) =sup{w(z,e): x € X}, wo(X) = 1irr(1)<u(X7 £).

Define
d(z) = sup{|z(s) — x(t)| — [z(s) —x(t)]: t,s €I, t < s}
and
d(X) =sup{d(x): z € X}.
Observe that all functions belonging to X are nondecreasing on [ if and only if
d(X) =0.
Now, let us define the function x on the family M¢(r) by the formula

H(X) = wo(X) + d(X).

The function x4 is a measure of noncompactness in the space C(I) [7].
We will make use of the following fixed point theorem due to Darbo [3]. To quote
this theorem, we need the following definition.

Definition 2. Let M be a nonempty subset of a Banach space F and let P:
M — FE be a continuous operator which transforms bounded sets onto bounded
ones. We say that P satisfies the Darbo condition (with a constant & > 0) with
respect to a measure of noncompactness p if for any bounded subset X of M we
have

n(PX) < kp(X).

If P satisfies the Darbo condition with & < 1 then it is called a contraction operator
with respect to p.

Theorem 1 [3]. Let Q) be a nonempty, bounded, closed and convex subset of the
space E and let

P:Q—Q
be a contraction with respect to the measure of noncompactness fi.
Then P has a fixed point in the set ().

Remark 1 [9]. Under the assumptions of the above theorem it can be shown
that the set Fix P of fixed points of P belonging to @ is an element of ker p.
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3. MAIN THEOREM

In this section we will study Eq. (1.1) assuming that the following hypotheses are
satisfied:
(a1) a: I — R is a continuous, nondecreasing and nonnegative function on I.

(az) f: I xR — R is continuous and there exists a nonnegative constant ¢ such that

|f(t,x) — f(t,y)| < clo—y|

forallt € I and =,y € R. Moreover, f: I x Ry — R,.
(ag) The superposition operator F' generated by the function f(¢,x) satisfies for any
nonnegative function x the condition

d(Fz) < cd(x),

where c is the same constant as in (az).
(aq) k: I x I — R is continuous on I x I and the function k(t, s) is nondecreasing
for each variable t and s, separately.
(as) g: Imk — R is a continuous nondecreasing function on the compact set Im k.
(ag) The inequality

(3.1) la||T(a+ 1) + (¢ + mr)||g|lr < rT(a+1)

has a positive solution rg such that c||g||ro < T'(a+ 1), where m = Jnax f(t,0).

<1

Now, we are in a position to state and prove our main result.

Theorem 2. Let the hypotheses (a1)—(ag) be satisfied. Then Eq. (1.1) has at
least one solution x € C(I) being nondecreasing on the interval I.

Proof. Let K and F be two operators defined on the space C(I) by

k() = s [ A 1
(Fa)(t) = alt) + f(t, x(t))(Kz)(t).

Solving Eq. (1.1) is equivalent to finding a fixed point of the operator F defined on

the space C(I).

First, we prove that F transforms the space C(I) into itself. To do this it suffices
to show that if x € C(I) then Kz € C(I). Fix e > 0, let x € C(I) and let t1,t2 € I
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be such that to > ¢1 and [to — t1] < &. Then we get

|(Kz)(t2) — (Kz)(t1)]

|1 /t2 g(k(t, s) 1 / k(t1,s) 4
D) Sy (t2— 5)1 o F(a 0 t1 —s)l-a
ta
< 1 / g(k}(tg, 1 / tl, S
D(a) Jo (t2— 5)1 o D) Sy (tz—s)i—@

) )
‘r(l )/tz (i(k(h;lpa z(s)ds — r(l )/tl (i(k(tlslpa z(s)ds
« 0 2 — S « 2 — S
Lt g o L gl
+‘ ) /0 2(s) ds ) / (s)d
1

I'(a K (t2 =)t T(a (t; —s)l@
< 11(04)/0 |g(k(t2(’:2))_;)g1(ka(tl ) 2(s) ds
T, G
+ %a) Otl lg(k(t1,8))[[(t2 — 5)2 7" = (11 — 5)* " Hax(s) ds.

Therefore, if
wgok (€, ) = sup{|g(k(t, s)) — g(k(r,s))|: t,s,7 € [ and [t — 7 < €}
then we obtain

|[(Kx)(t2) — (Ka)(t1)]

[l

< ﬁ&)gok(& )/0 z(tg — S)a_l ds

AL o = = o as [t as)

[l o, lglllzll o o o
< . _ _
STlatD) gok (€, )ty + o+ )[t1 £ + 2(ty — t1)°]

[l 2[lglll=| o
S I‘(a—i— 1)(Ugok(57 )+ F(()é+ 1) (t tl)

] 2lglllzl o
< ok (&, -

S D(a+1) 7 ( )+F(a—|—1)€

In view of the uniform continuity of the function & on I x I we have that wy(e,) — 0
as € — 0. Thus Kz € C(I), and consequently, Fz € C(I). Moreover, for each t € I
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we have

(0 < ot + LD [ IEED ()4

I'(a) (t—s)l-«
1 " g(k(t 5))
< la(®)] + ——[|f(t, 2(t)) — f(t, t, L2 4(s)d
0]+ g1 a(0) = £60)+ 1.0 [ ZES Doy as
cllz] +m /t a-1
< el + —=——lgll||z t—s ds
lall + =5y lalllzll J (=)
cllx)l +m
= lall+ T Nl
Hence ]
cllx|l +m
[Fz]l < lla H+(7+1)||9HH$||-
Thus, if ||z|| < 1o we obtain from assumption (as) the estimate
172 < lall + £ g5 lalio < o

Consequently, the operator F transforms the ball B, into itself.
In what follows we will consider the operator F on the subset Bﬂ; of the ball B,,
defined by
Bl ={x € By,: z(t) 20, for t € I}.

Obviously, the set B,fg is nonempty, bounded, closed and convex. In view of these
facts and assumptions (a1), (a3) and (as), we deduce that F transforms the set B;t
into itself.

Next, we prove that the operator F is continuous on B,f[). To do this, let us fix
{z,} to be a sequence in B,J,g such that z,, — x. We will prove that Fz,, — Fz. In
fact, for each t € I we have

(Fa)(t) — (Fa)(0)
B f(t,xna Colk(ts) o fa) [ alkts)
\ / (s)d / ) o(s)d

(t—s)l-a™" ['(a)
‘f (t, 2n(t g(l_c(t,f})axn(s) FRACYI0) g(k(t’s))(yxn(s)ds
0 (t—29)

‘f (¢, z(t )/ g(k(t, s)) _ () /t g(k(t, 5))
—x,(s)ds ~x(s)ds
0 0

< %W,xn(t» ~ sttt [ e o) as

[ftz®)] [* gkt s))] s
') o (t—s)i= |7 (5) (s)] ds.
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Thus

cllgllro I
Ta+1)""

This proves that F is continuous in B;g.

lgll(cro +m)

(34) [ Fon - Fal < NpEa

—z| +

[#n — |-

Now, let us take a nonempty set X C B;g. Fix an arbitrarily number € > 0 and
choose x € X and t1,t2 € I such that |ta — t1| < e. Without loss of generality we
may assume that o > ¢1. Then, in view of our assumptions, we obtain

f(tg,ﬂ?(tg)) /t2 g(k(tQaS))
x(s)ds
0

[(Fa)(tz) — (Fz)(t1)| = o) (ts—s)1 @

ft,a(t)) (M g(t,s)
—at) = S [ et
fta,z(t2))) [ g(k(ta, )

2F(a)2 /0 (tg—z)l_“x(S)ds

_ f(t2,x(ta)) /t2 g(k(t1, 5))
—x(s)ds
o (f2—s)i7

@)

I(
ft2,z(t2) [ g(k(ti,s)) fta, x(ta) [ g(k(ti,s))
/0 ( /0 ( x(s)ds
to,

a(tg) +

<al(tz) —al(ty)] +

+

I(a) 1y —syi-a A= T B — sy

t2a
By x(tz))/ g(k(t1, s)) [ty @ 2))/ g(k(t1, s))
x(s)ds — x(s)ds
o ( 0
t1,

+

I'(a) ty — )l ) (tr —s)t=

(t
IN(e
F(t2,2(t)) / g(k(t1, ) f(t (1) / 9k(t5) o as
i o
)

+

T(a) (= sy T ) hi=s)me
< o)+ M0 |/“ b2, 9) — 00 Dl ),

L (tzr,(of) ))| i (tQI’f_@;;l)ij(s)ds

+'f(tr(7'/ i, )] [(12 = 57 = (81 — )] (o) s

|f(t2 J) tl X tQ | b |g tl S |
+ t1—81a| |d5

t fty, z(ty) b (t
+|f(1, (t1, z(tr |/ lg(k(t1, s || )] ds

tl—Sl «

Cllxl\ +m

L an(e) [ 02— 9 as

+C'x'l+>m|| Il ||{/:<2—s>a 1ds+/t1 (=) = (2 = )] i}

t1 tl
'y w(z,€)
“ ||g|mx||/ N e TS ||/ — 5)*lds

<wla,e) +
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cro+m cro+m
< wla, ok (B, NS + ————— k|70 [t8 — t5 + 2(t2 — t1)®
w(a €)+F(a+1)r0w9 k(e,)t3 +F(a—|—1)” o [t9 — t5 + 2(t2 — 1)]
TR ke IR (;)(;rf}l()x’ ) | g||rot
<wlaye)+ T EM o)+ 2l + =1 @)+ (o, o).
’ D(a+1) 7907 Mla+1)t""° ’
Hence,
o ro(cro +m) oll ol lgllro
w(Fz,e) <w(a,e) + Tlatl) [wgok (e, -) +2[|g[le®] + ot D) [Vro (€) + cw(z, €)].
Consequently,
ro(cro +m) lgl|7
D(FX.2) < ola,e) + T o) 42l + A 0+ (o),

where
%“0(6) = sup{|f(t2,x) - f(t1,$)|2 t1,t2 € I,{E € [0,7“0], |t2 - t1| < 6}'

In view of the uniform continuity of the function g o k on the set I x I and the
continuity of the function @ on I, the last inequality implies

cllgllro
. X) < =————wo(X).
(3.5) “lFX) < g fyeX)
In what follows, fix an arbitrary = € X and t1,t5 € I with to > t;. Then, taking
into account our assumptions, we have
(3.6)
[(Fa)(t2) — (Fa)(tr)| = [(Fz)(t2) — (Fz)(t1)]

f(ta, z(t2)) /t2 g(k(ta, s))
Dla)  Jo (t2—s)t~

a(tz) + z(s)ds

f(tlvx(tl)) h g(k(tla S))
—a(ty) — Ta) /0 (s z(s)ds
_ |:Cl(t2)+ f(tg,l‘(tg)) A 2 g(k(tg,s)) x(s)ds

I'(«) (ta — s)t—
f(t,2(t)) /tl g(k(t1,s))
Lla)  Jo (t1—s)t™®

_ a(tl) _

< {lalts) — a(t)| — [altz) — a(t)])
fltolta) [ olh(t23) o flat) [7 elltas)
‘ / (2~ sy-a ") 4 T e EOE

‘f(tl,x(tl)) /t2 9(k(t2,5)) [t x(t) /t1 9(k(t1,5))
(s)ds x(s)ds
0 0

(t2 — s " T(a) (t — )@

2(s) ds]
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flta,a(ts) [ g(k(t2, ) [t () [ g(k(ts, 5))
‘{[ o @2—@1ax“““‘ Ia) o<m—sw a“”d4
f(tl,:v(tl)) t2 g(k(tQ,S)) tl J)(f,l b1 tl 5
*[ T(a) .A (62— syi-a ) T(@)  Jo tl—sla }}
< {If(t2,2(t2)) — F(tr, 2(t1)] = [f (t2, 2(t2)) — (1, (1))}

1 g(k(ta, 5))
X I‘(a)/o x(s)ds

gktns) [ ek
/0 x(s)ds /0 (ti—s)i® (s)d

(tz _ 5)1—0(

[ s ae- [ S ]}

N f(thx(tl)){

')

Now, we will prove that

4 ghltas) gl
/0 (tr — 5)1-< x(s)ds /0 (= )< (s)ds = 0.

In fact, we have

“ g(k(ts,5)) el
| s [ e

2 g(k(tg, )) :L'(S)ds—/tz g(k(tlﬂ )) l‘(S)dS
0

tQ—S)l «

t18
t2—81 @

+/t19 tl; / tla
0 (t2_81a tl_sla

/Oz (g(k(ta, s)) _g(k(tl’s)))x(s)der/t * g(k(ty, ) z(s) ds

(tz _ 8)17(1

Since k(t,s) is nondecreasing with respect to t, we have that k(t2,s) = k(t1,s);

moreover, g is nondecreasing, hence g(k(t2,s)) > g(k(t1, s)), and therefore

/t2 (9(k(t2,5) = 9Kt 9) | ) 45> 0,
0

(37) (tz _ 5)1—0(
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On the other hand, since the term (t2 —s)*~! — (t; —s)®~ ! is negative for 0 < s < t1,

we have

35 [ttt =90 - alsy s+ [ A0
A e e e T s O

= grttyeo)| [ [

ty —t¢
= g(k(t1,t1)) 2—x(s) > 0.

Finally, (3.7) and (3.8) imply
‘/t2 g(k(t27s)) x(s)ds—/tl g(k(tlvs)) x(s)ds)O
0 0

(tQ _ S)l—a (tl _ 5)1—0(

This together with (3.6) yields

|(Fo)(t2) — (Fz)(t1)| — [(Fz)(t2) — (Fz)(t1)]
= {|f (2, 2(t2)) — f(t1,2(t1))| — [f(t2, 2(t2)) — f(t1,2(t1))]}

L[ alkltn, ) gl
I'(a) /0 (ty — 8)17a$(5)d5 < md(}%)'

The above estimate implies

d(Fz) < Md(m).

Ia+1)
Therefore,
cllgllro
d < ————
Fo) S Fla 11y
and consequently,
cllgliro
3.9 d(FX) < =——d(X).
(39) (FX) < )
Finally, from (3.5) and (3.9) and the definition of the measure of noncompactness ,
we obtain Il
CligliTo
X) < =——u(X).

Now, the above obtained inequality together with the fact that c||g|lro < I'(a + 1)
enables us to apply Theorem 1, hence Eq. (1.1) has at least one solution = € C(I).
This completes the proof.
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4. EXAMPLES

Example 1. If f(t,z) = 1 and g(u) = u, then Eq. (1.1) becomes the well-known
linear Abel integral equation of the second kind

(4.10) x@)::a@)+lé (kius) x(s)ds.

t—s)l-a

Abel integral equations have applications in many fields of physics and experimen-
tal sciences. For example, problems in mechanics, spectroscopy, scattering theory,
elasticity theory and plasma physics often lead to such equations, [18].

Example 2. Ifa =1, f(t,z) = x and g(u) = u, then Eq. (1.1) is the well-known
quadratic integral equation of Volterra type

(4.11) x(t) = a(t) + x(t)/o k(t, s)x(s)ds.

In the case a(t) = 1 and k(t,s) = t(t + s)"1p(s), Eq. (4.11) takes the form

t
t+ s

(4.12) z(t) =1+ a:(t)/o o(s)xz(s)ds.

Eq. (4.12) is a Volterra counterpart of the famous quadratic integral equation of
Chandrasekhar type

t
t+ s

1
(4.13) () = 1+ 2(t) / o(s)a(s) ds.
0

Eq. (4.13) has been considered in many papers and monographs (cf. [2], [8], [12],
[19] for instance). Note that in order to apply our technique to Eq. (4.12) we have
to impose an additional condition that the characteristic function ¢ is continuous
nondecreasing and satisfies ¢(0) = 0. This condition will ensure that the kernel
k(t, s) defined by

0, 5=0,t>0

k(t,s) = t
t+s

is continuous on I x I in accordance with assumption (a4).

p(s), s#0,t>0

Example 3. If g(u) = u, then Eq. (1.1) takes the form

N 00 Y ST N
(4.14) #(t) = alt) + —F ) /O(t_s)l_a (s) ds.
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This equation is a special case of the quadratic integral equation of fractional order

Hrt) [ wlsee) o,
0

(4.15) z(t) = a(t) + () (t —s)l—o

studied by Bana$ and Rzepka in [4]. The authors in [4] used a simpler measure
of noncompactness than that we used here. Also, in our assumptions, we relaxed
the condition in [4] that the function f is nondecreasing with respect to each of the
variables separately.

Example 4. Consider the quadratic integral equation of Abel type

ta(t) /t In(1+ vt +s)
2(1+)0(3) Jo Vi—s

In this example we have a(t) = t? and this function satisfies assumption (a;) and
lla|| = 1. Here k(t,s) = /t +s and this function satisfies assumption (as). Let
g: [0,v/2] — Ry be given by g(y) = In(1 + ), then g satisfies assumption (a5) with
gl = In(1++v2). Also, f(t,z) = Stx(1+¢*)~! and it satisfies assumption (as) since
f: I xRy — Ry and

(4.16) z(t) =12 + z(s)d

[f(t,x) = f(t,9)] < gle— vyl
forall z,y € R and ¢ € I. Moreover, the function f satisfies assumption (az). Indeed,
taking an arbitrary nonnegative function € C(I) and ¢1,t2 € I such that to > ¢4,
we obtain

[(F2)(t2) = (Fz)(t1)] = [(Fz)(t2) — (Fa)(t)]
—If(tm (t2)) = f(tr, x(t0))] = [ (2, x(t2)) — f(t1, 2(t2))]

t
z(t2) — W (tl)‘

- ‘2 1+2)"
to t1
- [2(1 7 ~ 3 +t2)x(t1)}

tQ tl

< m |x(t2) — x(t1)| + ‘2 ) - 21+ ) ‘x(tl)
- e =)~ [ -
2(1+2) 2 1 20 +8) 20+e)""
S ﬁ {lz(t2) — =(t1)] — [2(t2) — z(t)]}

t 1
< — < - .
Sy d@ s 4@

In this case inequality (3.1) has the form (o =3, c =1, m =0)
3 1 3
e Z < et
F(2) + 1 In(1 4+ V2)r < rf(z)
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and this admits

r(3)

I3 -Invi+v2

ro =

as a positive solution since I'() ~ 1.77245 and In /1 + /2 ~ 0.440687. Moreover,

Inv1++v2 F(3)<F

cllgllro = 5
I(d)-Inv1i+v2 ‘2

Theorem 2 guarantees that equation (4.16) has a nondecreasing solution.
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