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Abstract. A misclassified size-biased modified power series distribution (MSBMPSD)
where some of the observations corresponding to x = 2 are misclassified as x = 1 with
probability α, is defined. We obtain its recurrence relations among ordinary, central and
factorial moments and also for some of its particular cases like the size-biased generalized
negative binomial (SBGNB) and the size-biased generalized Poisson (SBGP) distributions.
We also discuss the effect of the misclassification on the variance for MSBMPSD and il-
lustrate an example for size-biased generalized negative binomial distribution. Finally, an
example is presented for the size-biased generalized Poisson distribution to illustrate the
results, and a goodness of fit test is also done using the method of moments.
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1. Introduction

In certain experimental investigations involving discrete distributions external fac-

tors may induce a measurement error in the form of misclassification. For instance,

a situation may arise where certain values are erroneously reported; such a situation

termed as modified or misclassified has been studied by Cohen ([4], [5], [6]) for the

Poisson and the binomial random variables, Jani and Shah [16] for modified power

series distribution (MPSD) where some of the values of one are sometimes reported

as zero, and recently by Patel and Patel ([18], [19]) in the case of generalized power

series distribution (GPSD) and MPSD for a more general situation where sometimes

the value (c + 1) is reported erroneously as c.
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Cohen [4] altered data from Bortkiewicz’s [3] classical example on deaths from the

kick of a horse in the Prussian Army, to illustrate the practical application of his

results. He assumed that twenty of 200 given records which should have shown one

death were in error by reporting no deaths. The same example was considered by

Williford and Binghan [24].

In this paper, we are concerned with the situation where sometimes the value two

is reported erroneously as one in relation to size-biased MPSD. As we know, weighted

distributions arise when the observations generated from a stochastic process are not

given equal chance of being recorded; instead, they are recorded according to some

weight function. When the weight function depends on the lengths of the units of

interest, the resulting distribution is called length biased. More generally, when the

sampling mechanism selects units with probability proportional to some measure of

the unit size, the resulting distribution is called size-biased. Such distributions arise

in the life length and were studied by various authors (see [1], [21], [9], [10], [11],

[12], [13], [14]).

Gupta [8] defined the MPSD with the probability function given by

(1.1) P1[X = x] = a(x)
(g(θ))x

f(θ)
, x ∈ T

where a(x) > 0 and T is a subset of the set of non-negative integers, g(θ), f(θ) are

positive, finite and differentiable. In the case g(θ) is invertible it reduces to Patil’s

[20] GPSD and if in addition T is the entire set of non-negative integers it reduces to

the power series distribution (PSD) given by Noack [17]. The class of distributions

(1.1) includes among others the GNB and GP distributions.

Gupta [8] obtained the mean (µ(θ)) and the variance (µ2) of (1.1) given by

µ(θ) =
g(θ)f ′(θ)

f(θ)g′(θ)
,(1.2)

µ2 =
g(θ)

g′(θ)

∂µ(θ)

∂θ
.(1.3)

A size-biased MPSD is obtained by taking the weight of (1.1) as X , given by

(1.4) P2[X = x] =
b(x)(g(θ))x

f∗(θ)

where b(x) = xa(x) and f∗(θ) = µ(θ)f(θ).

As stated above we have studied the situation such that the probabilities in the

distribution (1.4) are modified by a constant quantity α (0 6 α 6 1) by increasing

the probability of one value of the variable.
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In this paper we are concerned with the situation where sometimes the value two

is reported erroneously as one in relation to SBMPSD. In Section 2, we obtain the

recurrence relations between the raw moments, the central moments and the factorial

moments of misclassified SBMPSD. In Section 3, the effect of the misclassification

on the variance is considered. To illustrate the situation under consideration some of

its particular cases like the size-biased generalized negative binomial (SBGNB) and

the size-biased generalized Poisson (SBGP) distributions are studied in Sections 4

and 5. The method of moments for estimation of parameters of size-biased GPD

and misclassified size-biased GPD is discussed in Section 6. Finally, an example is

presented for the size-biased generalized Poisson distribution (SBGPD) to illustrate

the results in Section 7.

2. Misclassified size-biased modified power series distribution

Suppose X is a random variable having the SBMPSD (1.4) from which a random

sample is drawn. Assume that some of the observations corresponding to x = 2 are

erroneously reported as x = 1, and let this probability of misclassifying be α. Then

the resulting distribution of X , the so called misclassified size-biased modified power

series distribution (MSBMPSD), can be written in the form

(2.1) P3[X = x] =











g(b(1) + αb(2)g)/fµ, x = 1,

(1 − α)b(2)g2/fµ, x = 2,

b(x)gx/(fµ), x ∈ S

where S = T/{1, 2} is a subset of the set I of non-negative integers not containing

one and two, b(x), f = f(θ), g = g(θ), µ = µ(θ) are stated above and 0 6 α 6 1, the

α being the proportion of misclassified observations. It is interesting to note that

for α = 0 the distribution (2.1) reduces to simple SBMPSD (1.4). Further, if g(θ)

is invertible, it reduces to the misclassified size-biased GPSD and in addition if T is

regarded as an entire set I of non-negative integers, it will be called the misclassified

size-biased PSD.

In this section we obtain the mean and the variance and establish certain recur-

rence relations for the raw, the central and the factorial moments of the distribution

(2.1). Here the notation with ∗ corresponds to size-biased MPSD.

2.1 Mean of the distribution. The mean of (2.1) is obtained as

Mean = µ′

1 =
g(b(1) + αb(2)g)

fµ
+

2(1 − α)b(2)g2

fµ
+

∑ xb(x)gx

fµ
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where
∑

stands for the sum over x ∈ S here and onwards. Also, from (2.1) we have

fµ = g(b(1) + αb(2)g) + (1 − α)b(2)g2 +
∑

b(x)gx.

Differentiating w.r.t. θ and multiplying both sides by g/g′, after simplification we

get the mean of (2.1) as

(2.2) Mean = µ′

1 = µ′∗

1 − (αb(2)g2)/fµ

where µ′∗

1 = µ + f/f ′ · ∂µ/∂θ is the mean of (1.4) and f ′ = (∂/∂θ)f(θ), g′ =

(∂/∂θ)g(θ).

2.2 Recurrence relation among raw moments. The r-th raw moment of

(2.1) is given as

(2.3) µ′

r =
1

fµ

[

g(b(1) + αb(2)g) + 2r(1 − α)b(2)g2 +
∑

xrb(x)gx
]

.

Differentiating (2.3) w.r.t. θ and simplifying we get

(2.4) µ′

r+1 =
g

g′
∂µ′

r

∂θ
+ α(µ′

r − 1)
g2b(2)

fµ
+ µ′

1µ
′

r.

Higher moments can also be obtained with r = 2, 3, . . .. From (2.3) it is easy to

establish a relation between the r-th moment (µ′

r) of the misclassified size-biased

MPSD (2.1) and the r-th moment µ′∗

r of the size-biased MPSD (1.4) as

(2.5) µ′

r = µ′∗

r + α(1 − 2r)
b(2)g2

fµ

from which the higher order moments (r > 1) µ′

2, µ
′

3, . . . are obtained.

2.3. Recurrence relation among central moments. The r-th central mo-

ment of (2.1) is given as

µr =
1

fµ

[

(1 − µ′

1)
rg(b(1) + αb(2)g) + (1 − α)(2 − µ′

1)
rb(2)g2 +

∑

(x − µ′

1)
rb(x)gx

]

.

Differentiating w.r.t. θ and simplifying, we get

(2.6) µr+1 =
( g

g′

)[∂µr

∂θ
+ rµr−1

(∂µ′

1

∂θ

)]

+ αb(2)g2[µr − (1 − µ′

1)
r]/fµ.
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Putting r = 1 in (2.6) and noting that µ0 = 1 and µ1 = 0, we get the variance

(µ2) of (2.1) as

(2.7) µ2 =
g

g′

(∂µ′

1

∂θ

)

+ α(µ′

1 − 1)b(2)
g2

fµ
.

Using (2.7) in (2.6) we obtain a recurrence relation for central moments as

(2.8) µr+1 =
g

g′
∂µr

∂θ
+ rµr−1µ2 + αb(2)g2

[µr − (1 − µ′

1)
r − rµr−1(µ

′

1 − 1)

fµ

]

where r = 2, 3, . . . for higher order moments.

2.4 Recurrence relation among factorial moments. The r-th factorial mo-

ment of (2.1) is obtained as

(2.9) µ′

[r] =
1[r]g(b(1) + αb(2)g)

fµ
+

2[r](1 − α)b(2)g2

fµ
+

∑

x[r]b(x)gx

fµ
.

Differentiating (2.9) w.r.t. θ and using the identity x.x[r] = x[r+1] + rx[r], after a

simplification we get

(2.10) µ′

[r+1] =
g

g′

∂µ′

[r]

∂θ
+ [µ′∗

[1] − r]µ′

[r] −
α1[r]b(2)g2

fµ

where µ′∗

[1] is the first factorial moment of the size-biased MPSD(1.4).

Again in view of (2.2), this can be put in the form

(2.11) µ′

[r+1] =
( g

g′

)(∂µ′

[r]

∂θ

)

+ [µ′

[1] − r]µ′

[r] +
α(µ′

[r] − 1[r])b(2)g2

fµ

where r = 2, 3, . . . and µ′

[1], µ
′

[2] are µ′

[1] = µ′

1 and µ′

[2] = µ′

2 − µ
′2
1 where µ′

1 and µ′

2

are obtained from (2.4) with r = 0 and r = 1.
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3. Variance comparison

In this section we discuss how the variance of (2.1) is effected when the reporting

observations are erroneously misclassified. From (2.5) we have

µ′

1 = µ′∗

1 − αb(2)g2/fµ,(3.1)

µ′

2 = µ′∗

2 − 3αb(2)g2/fµ.(3.2)

Hence, the variance of the distribution (2.1) is given by

µ2 = µ∗

2 + α
(

2µ′∗

1 − 3 −
αb(2)g2

fµ

)b(2)g2

fµ

where µ∗

2 = (g/g′ · ∂µ′∗

1 /∂θ) is the variance of the size-biased MPSD (1.4).

This gives a relation between the variance µ2 of (2.1) and the variance µ∗

2 of (1.4)

as

(3.3) µ2 = µ∗

2 + ϕ(α, θ)

where ϕ(α, θ) is a function of α and θ only given by

(3.4) ϕ(α, θ) = α
[

2µ′∗

1 − 3 −
αb(2)g2

fµ

]b(2)g2

fµ
.

The above relation between the two variances shows that the variance of the

size-biased MPSD has been affected by a term ϕ(α, θ) and is due to reporting the

observations erroneously. We note that this misclassification has a reasonably mod-

erate effect on the variance and can be easily seen from the graph (see Figure 1).

This suggests that the variance of the distribution increases due to misclassification.

Now if we take the ratio of the two variances we have

(3.5) Z =
µ2

µ∗

2

= 1 +
ϕ(α, θ)

µ∗

2

.

This ratio Z shows that µ2 may be equal to, greater than or less than µ∗

2 depending

upon the value of α and θ; that is, on the term ϕ(α, θ). This term would be useful

in studying the effect of misclassification on the variance. This effect can be studied

in two ways:

i) When the value of θ is fixed.

ii) When the value of α is fixed.
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Here we discuss the case (i) only. Similarly the case (ii) can be dealt with. Thus

when the value of θ is fixed, the ratio Z will be a function of α only. That is to say

Z = ϕ(α). Hence we have

(3.6)
∂Z

∂α
=

[

b(2)g2

fµ

(

2µ′∗

1 − 3 −
2αb(2)g2

fµ

)]

/µ∗

2

and

∂2Z

∂α2
= −2

(

b(2)g2

fµ

)2

/µ∗

2 < 0.

From this we note that the curve Z = ϕ(α) seems to be concave towards the origin.

Equating ∂Z
∂α
to zero gives the value of α as

(3.7) α = (2µ′∗

1 − 3)/(2b(2)g2/fµ)

and hence the maximum value of Z becomes

(3.8) Zmax = 1 +
(2µ′∗

1 − 3)2

(4µ∗

2)
.

It is clear from (3.8) that the ratio Zmax is always greater than unity. This indicates

that the variance has been increased due to the misclassification and it has reasonably

a moderate effect on the variance (see Figure 1). Thus we conclude that the variance

of the distribution increases due to the erroneous way of reporting the observations.

Further, it would be interesting to see that this ratio, when graphed on the (α, Z)

axis, will provide an invertible parabola very concave to origin having its vertex at

the point

(3.9)
[ (2µ′∗

1 − 3)

(2b(2)g2/fµ)
; 1 +

(2µ′∗

1 − 3)2

(2
√

µ∗

2)
2

]

,

when the value of θ is fixed. This parabola would be more useful in studying the

behavioral effect of misclassification on the variance. Of course, one has to treat sep-

arately various possible specific cases with respect to their situations being observed

in practice.
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4. Some applications

We illustrate here the situation under consideration defined by (2.1) in which some

of the observations corresponding to the value two are sometimes reported erro-

neously as one, for some of its special cases like the size-biased generalized negative

binomial distribution (SBGNBD), the size-biased generalized Poisson distribution

(SBGPD), and apply them to the results obtained in Sections 2 and 3.

4.1 Misclassified size-biased GNBD. Jain and Consul [15] defined the gener-

alized negative binomial distribution as

(4.1) P4[X = x] =
mΓ(m + βx)

x! Γ(m + βx − x + 1)
θx(1 − θ)m+βx−x; x ∈ T

where 0 < θ < 1; m > 0; |βθ| < 1.

It reduces to (1.1) with a(x) = mΓ(m + βx)/x! Γ(m + βx − x + 1), g(θ) = θ(1 −

θ)β−1, f(θ) = (1 − θ)−m.

Suppose X has a size-biased GNBD given by

(4.2) P5[X = x] =
Γ(m + βx)(1 − θβ)θx−1(1 − θ)m+βx−x

(x − 1)! Γ(m + βx − x + 1)
; x ∈ T

which is (1.4) with b(x) = x · a(x) = mΓ(m + βx)/(x − 1)! Γ(m + βx − x + 1) and

µ(θ) = mθ/(1 − θβ),

g(θ) = θ(1 − θ)β−1, f(θ) = (1 − θ)−m.

Let us assume that the value two is sometimes reported as one in (4.2) and let the

probability of misclassifying these observations be α. Then the resulting distribution

of X , the so called misclassified size-biased GNBD, can be defined as

(4.3) P6[x : α, θ] =































θ(1 − θ)β−1[m + αm(m + 2β − 1)θ(1 − θ)β−1]

(1 − θ)−mmθ/(1 − θβ)
, x = 1,

(1 − α)m(m + 2β − 1)[θ(1 − θ)β−1]2

(1 − θ)−mmθ/(1 − θβ)
, x = 2,

mΓ(m + βx)

(x − 1)!Γ(m + βx − x + 1)

[θ(1 − θ)β−1]x

(1 − θ)−mmθ/(1 − θβ)
, x ∈ S

where 0 < θ < 1, 0 6 α 6 1, m > 0 and |θβ| < 1.

8



Using the values of b(x), µ(θ), g(θ) and f(θ) in the foregoing results we obtain

results for (4.3):

Mean = µ′

1 =
mθ

(1 − θβ)
+

(1 − θ)

(1 − θβ)2
− αθ(m + 2β − 1)(1 − θ)2β+m−2(1 − θβ);(4.4)

(4.5)

Variance = µ2 =
θ(1 − θ)

(1 − θβ)4
[m − mθβ − θβ + 2β − 1]

+ α(m + 2β − 1)θ(1 − θ)β−1[2mθ(1 − θβ) + 2(1 − θ) − 3(1 − θβ)2

− αθ(m + 2β − 1)(1 − θ)2β+m−2(1 − θβ)3](1 − θ)β+m−1(1 − θβ)−1.

Recurrence relation among raw moments

(4.6) µ′

r+1 = θ(1 − θ)(1 − θβ)−1 ∂µ′

r

∂θ

+ α(µ′

r − 1)(m + 2β − 1)θ(1 − θβ)(1 − θ)2β+m−2 + µ′

1µ
′

r.

Recurrence relation among central moments

(4.7) µr+1 = θ(1 − θ)(1 − θβ)−1 ∂µr

∂θ
+ rµr−1µ2 + α(m + 2β − 1)

× θ(1 − θβ)(1 − θ)2β+m−2[µr − (1 − µ′

1)
r − rµr−1(µ

′

1 − 1)].

Recurrence relation among factorial moments

(4.8) µ′

[r+1] = θ(1 − θ)(1 − θβ)−1
∂µ′

[r]

∂θ

+ [µ′

[1] − r]µ′

[r] + α(m + 2β − 1)θ(1 − θβ)(1 − θ)2β+m−2[µ′

[r] − 1[r]].

The variance ratio Z = µ2/µ∗

2 becomes

(4.9)

Z = 1 + α(m + 2β − 1)(1 − θ)2β+m−3(1 − θβ)3

×
2mθ(1 − θβ) + 2(1 − θ) − 3(1 − θβ)2 − α(m + 2β − 1)θ(1 − θ)2β+m−2(1 − θβ)3

m − mθβ − θβ + 2β − 1
.

For a fixed value of θ, the value α will be

(4.10) α =
[2mθ(1 − θβ) + 2(1 − θ) − 3(1 − θβ)2]

2(1 − θβ)3(m + 2β − 1)θ(1 − θ)2β+m−2
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for which the maximum value Z comes out as

(4.11) Zmax = 1 +
[2mθ(1 − θβ) + 2(1 − θ) − 3(1 − θβ)2]2

4θ(1 − θ)(m + 2β − 1 − mθβ − θβ)
.

The invertible parabola when graphed on (α, Z) axis will have its vertex at the point

(4.12)
[2mθ(1 − θβ) + 2(1 − θ) − 3(1 − θβ)2]

2(1 − θβ)3(m + 2β − 1)θ(1 − θ)2β+m−2
,

1 +
[2mθ(1 − θβ) + 2(1 − θ) − 3(1 − θβ)2]2

4θ(1 − θ)(m + 2β − 1 − mθβ − θβ)
.

Particular Case: If we put β = 1 we get all the results for the size-biased negative

binomial distribution.

4.2 Misclassified size-biased generalized Poisson distribution. Consul and

Jain [7] defined the generalized Poisson distribution as

(4.13) P7[X = x] =
λ1(λ1 + λ2x)x−1e−(λ1+λ2x)

x!
, λ1 > 0, |λ2| < 1, x = 0, 1, 2, . . . .

Shoukri and Consul [22] modified the form of (4.13) to

(4.14) P8[X = x] =
(1 + βx)x−1θxe−θ(1+βx)

x!
, θ > 0, |θβ| < 1, x = 0, 1, 2, . . .

where θ = λ1 and β = λ2/λ1. It is a particular case of MPSD (1.1) with

a(x) =
(1 + βx)x−1

x!
, g(θ) = θe−θβ, f(θ) = eθ.

Now suppose X has a size-biased GPD given by

(4.15) P9[X = x] =
(1 + βx)x−1(1 − θβ)θx−1e−θ(βx+1)

(x − 1)!
; x = 1, 2, . . .

which is (1.4) with

b(x) = xa(x) =
(1 + βx)x−1

(x − 1)!
, µ(θ) =

θ

(1 − θβ)
, f(θ) = eθ, g(θ) = θe−θβ.

Assume that some of the values two are erroneously reported as one and let α be

the probability of misclassifying them. Then the resulting distribution of X , the so
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called misclassified size-biased GPD, can be defined as

(4.16) P10[X = x] =































(θe−θβ)[1 + α(1 + 2β)(θe−θβ)]/
eθθ

(1 − θβ)
, x = 1,

(1 − α)[1 + 2β](θe−θβ)2

θeθ/(1 − θβ)
, x = 2,

(1 + βx)x−1

(x − 1)!

(θe−θβ)x

θeθ/(1 − θβ)
, x ∈ S

where S was defined earlier; 0 6 α 6 1, θ > −1 and |βθ| < 1.

Using the values of b(x), µ(θ), g(θ) and f(θ) in the forgoing results we obtain the

results for (4.16):

Mean = µ′

1 =
1

(1 − θβ)2
+

θ

(1 − θβ)
− α(1 − θβ)(1 + 2β)(θe−θ(2β+1)),(4.17)

Variance = µ2 =
(2βθ − θ2β + θ)

(1 − θβ)4
(4.18)

+ α[2 + 2θ(1 − θβ) − 3(1 − θβ)2

− α(1 + 2β)(1 − θβ)3(θe−θ(2β+1))]

× [(1 + 2β)θ(1 − θβ)−1e−θ(2β+1)].

Recurrence relation among raw moments

(4.19) µ′

r+1 =
θ

(1 − θβ)

∂µ′

r

∂θ
+ α(1 + 2β)(1 − βθ)θe−θ(2β+1)[µ′

r − 1] + µ′

1µ
′

r.

Recurrence relation among central moments

(4.20) µr+1 =
θ

(1 − θβ)

(∂µr

∂θ

)

+ rµ2µr−1 + α(1 + 2β)θ(1 − θβ)

× [µr − (1 − µ′

1)
r − rµr−1(µ

′

1 − 1)]e−θ(2β+1).

Recurrence relation among factorial moments

(4.21) µ′

[r+1] =
θ

(1 − θβ)

∂µ′

[r]

∂θ
+[µ′

[1]−r]µ′

[r]+α(1+2β)θ(1−θβ)[µ′

[r]−1[r]]e−θ(2β+1).

The variance ratio Z = µ2/µ∗

2 becomes

(4.22) Z = 1 + α[2 + 2θ(1 − θβ) − 3(1 − θβ)2 − αθ(1 + 2β)(1 − θβ)3e−θ(2β+1)]

× θ(1 + 2β)e−θ(1+2β)(1 − θβ)3(2βθ − θ2β + θ)−1.
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For the fixed value of θ, the value of α is

(4.23) α = [2 + 2θ(1 − θβ) − 3(1 − θβ)2]/2(1 + 2β)e−θ(1+2β)θ(1 − θβ)3

for which the maximum value Z is

(4.24) Zmax = 1 +
[2 + 2θ(1 − θβ) − 3(1 − θβ)2]2

4(2βθ + θ − θ2β)
.

The invertible parabola when graphed on the (α, Z) axis will have its vertex at the

point

(4.25)
[2 + 2θ(1 − θβ) − 3(1 − θβ)2]

2(1 + 2β)θe−θ(1+2β)(1 − θβ)3
; 1 +

[2 + 2θ(1 − θβ) − 3(1 − θβ)2]2

4[2βθ + θ − θ2β]
.

Particular Cases: If we put β = 1 we get all the results for the size-biased Borel [2]

distribution and if β = 0 we get results for the size-biased Poisson distribution.

5. An illustration

To see the effect of misclassification on the variance the case of SBGNBD (4.2) with

m = 4 and β = 1 is considered. It is assumed that some of the observations which

correspond to the value two are reported erroneously as value one. The following

tables show the computed values of the variance ratio and the maximum variance

ratio for different values of θ.

α/θ 0.1 0.3 0.5 0.7 0.9
0.1 1.0039 1.0269 1.0070 1.0005 1.0000
0.3 1.0032 1.0793 1.0210 1.0015 1.0000
0.5 0.9913 1.1301 1.0350 1.0024 1.0000
0.7 0.9680 1.1792 1.0489 1.0034 1.0000
0.9 0.9334 1.2267 1.0628 1.0044 1.0000
1.0 0.9119 1.2498 1.0697 1.0049 1.0000

(1) (2) (3) (4) (5)

Table 5.1 Variance Ratio values for SBGNBD with m = 4 and β = 1

θ 0.1 0.11 0.12 0.13 0.14
α 0.188 0.384 0.574 0.763 0.953

Zmax 1.005 1.020 1.043 1.071 1.104

Table 5.2 Maximum Variance Ratio (Zmax) for different values of θ (m = 4, β = 1)

Similarly, Zmax can also be obtained for different values of θ depending upon the

suitable values of m and β.
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The variance ratio values from the above table are plotted in Fig. 1 on the (α, Z)

axis, which yeilds different invertible parabolas concave to origin for small values

of α. This concavity of the parabola diminishes slowly as θ increases with α, till the

value of Z takes the value unity and there after it becomes a curve of straight line

kind. It is seen that for low values of θ, the misclassified variance is significantly

smaller than that of the simple case, but for higher θ values, it increases beyond

the simple variance very slowly. This shows that there is a moderate effect on the

variance. However, near the end points of the interval (0, 1) of θ one may not be

able to say definitely as these comments refer specifically to the SBGNB distribution,

and not to any general misclassified discrete distribution. In fact, one has to look

for such effect separately for various possible situations being found in practice.

α

Z

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
θ = 0.1
θ = 0.3
θ = 0.5
θ = 0.7
θ = 0.9

Figure 1. (α, Z)-graph for SBGNBD distribution with m = 4 and β = 1.

6. Estimation of misclassified size-biased GPD

The method of moments is considered for estimation of parameters α and β when

θ is known in the case of misclassified SBGPD (4.16). Using (4.17) and (4.18), after

simplification we get the equation in λ

(6.1) λ4µ2 − 2(1 − λ) − λθ − [1 + θλ − 3λ2 + λ2µ′

1][1 + θλ − λ2µ′

1] = 0

where 1 − θβ = λ.
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Replacing µ′

1 and µ2 by the corresponding sample values x and S2 respectively,

we get

(6.2) λ4S2 − 2(1 − λ) − λθ − [1 + θλ − 3λ2 + λ2x][1 + θλ − λ2x] = 0.

It is a polynomial of degree four that can be solved using the Newton-Raphson

method and so an estimate of β can be obtained as

(6.3) β̂ =
1 − λ̂

θ
.

An estimate of α is obtained from (6.1) as

(6.4) α̂ =
1 + θλ̂ − λ̂2x

λ̂3(1 + 2β̂)θe−θ(2β̂+1)
.

6.1 Estimation of size-biased GPD. Using the moment method of estimation

for the estimation of the parameters of the Size-Biased GPD, i.e., α and β, we obtain

Mean = µ′

1 =
θ

(1 − θβ)
+

1

(1 − θβ)2
,(6.5)

Variance = µ2 =
2θβ

(1 − θβ)4
+

θ

(1 − θβ)3
.(6.6)

For convenience let 1 − θβ = λ or θβ = 1 − λ; then we obtain

µ′

1 =
θλ + 1

λ2
,(6.7)

µ2 =
2(1 − λ) + θλ

λ4
.(6.8)

This yeilds an equation for λ

(6.9) µ2λ
4 − µ′

1λ
2 + 2λ − 1 = 0.

Replacing µ′

1 and µ2 by the corresponding sample values x and S2 respectively, we

obtain

(6.10) S2λ4 − xλ2 + 2λ − 1 = 0.

It is a polynomial of degree four that can be solved by using the Newton-Raphson

method and so an estimate of λ can be obtained. An estimate of θ is then obtained

as

(6.11) θ̂ =
λ̂2x − 1

λ̂
.
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After estimating θ̂ and λ̂, β̂ is obtained as

(6.12) β̂ =
1 − λ̂

θ̂
.

7. An illustrative example (goodness of fit)

To illustrate the practical application of results obtained in this paper, data from

Singh and Yadav’s [22] classical example on the number of households (f) having at

least one migrant according to the number of migrants (X) has been suitably altered.

For the purpose of this illustration it has been assumed that ten of the records which

should have shown two migrants each were in error by reporting one migrant. Both

the original and the altered data for this example are given in Table 7.1. For the

original data we fit the size-biased GPD (4.15) and for the altered data we fit the

misclassified size-biased GPD (4.16). The moment method of estimation is used for

estimation of parameters in both cases. Also in the case of misclassified size-biased

GPD we assume the parameter ‘θ’ to be known and take the same value of θ as

obtained from the size-biased GPD.

No. of Original data Altered data

Migrants

X Size-Biased GPD Misclassified Size-Biased GPD

Observed Expected Estimates Observed Expected Estimates

frequencies frequencies of parameters frequencies frequencies of parameters

1 375 377.6 385 387.6 θ =0.118889

2 143 139.8 θ̂ = 0.118889 133 129.8 (Known)

3 49 47.9 β̂ = 1.318793 49 47.9 β̂ = 1.318768

4 17 16.3 17 16.3 α̂ = 0.071584

5 2 5.6 2 5.6

6 2 1.9 2 1.9

7 1 0.7 1 0.7

8 1 0.2 1 0.2

Total 590 590 590 590

χ2 0.8322 0.8372

d.f. 2 2

Table 7.1 Number of households (f) having at least one migrant according to the number
of migrants (X) (Singh and Yadav [22])

The estimate β̂ = 1.318768 obtained for the altered data is to be compared with

β̂ = 1.318793 obtained when the calculations are based on the original unaltered
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sample. The estimate α̂ = 0.071584 is to be compared with 10/143 = 0.069930,

which is the proportion of two’s that were misclassified in the process of altering the

original data for this illustration.

As indicated by the low values obtained by χ2, the agreement between the observed

and expected frequencies both in the original and the altered sample is satisfactory.

The value χ2
(2) = 0.8372 for the altered sample is to be compared with χ2

(2) = 0.8322

obtained for the original (unaltered) sample.

R em a r k. If we consider β = 1.318793 (as obtained from the size-biased GPD)

to be known we obtain the values of θ and α as θ̂ = 0.118887 and α̂ = 0.071584 using

(6.3) and (6.4), which are the same as obtained in Table 7.1.

A c k n ow l e d g em e n t. The authors thank very much the anonymous referee

and editor for his/her many helpful suggestions, which substantially simplified the

paper.
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