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Abstract. A basic algebra is an algebra of the same type as an MV-algebra and it is in a
one-to-one correspondence to a bounded lattice having antitone involutions on its principal
filters. We present a simple criterion for checking whether a basic algebra is commutative
or even an MV-algebra.
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1. Introduction

The concept of a basic algebra was introduced in [3] and used in [4] and [5] for

a lattice theoretical approach to MV-algebras (see e.g. [6] for this concept). For

reader’s convenience, we repeat basic definitions.

By a lattice with section antitone involutions we mean a system L = (L;∨,∧,

(a)a∈L, 0, 1) where (L;∨,∧, 0, 1) is a bounded lattice such that for each a ∈ L there

is an antitone involution x 7→ xa in the principal filter [a, 1] (the so-called section),

i.e. xaa = x and x 6 y implies ya 6 xa for x, y ∈ [a, 1].

The family (a)a∈L of section antitone involutions that are partial unary operations

on L can be equivalently replaced by a single binary operation → defined by

x → y := (x ∨ y)y.

Hence, a lattice with section antitone involution can be considered an algebra

(L;∨,∧,→, 0, 1) of type (2, 2, 2, 0, 0), see [3] and [5] for detailes.
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Let us recall that an MV-algebra is an algebra A = (A;⊕,¬, 0) of type (2, 1, 0)

satisfying the identities

(MV1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z;

(MV2) x ⊕ y = y ⊕ x;

(MV3) x ⊕ 0 = x;

(MV4) ¬¬x = x;

(MV5) x ⊕ ¬0 = ¬0;

(MV6) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

This algebra forms an algebraic counterpart of  Lukasiewicz many-valued logic, see

e.g. [6] as the source. This concept was generalized as follows (see e.g. [5]).

By a basic algebra we mean an algebra A = (A;⊕,¬, 0) of type (2, 1, 0) satisfying

the identities

(A1) x ⊕ 0 = x;

(A2) ¬¬x = x;

(A3) x ⊕ 1 = 1 ⊕ x = 1 where 1 = ¬0;

(A4) ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = 1;

(A5) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

A basic algebra A is commutative if it satisfies the commutativity identity

x ⊕ y = y ⊕ x.

It was shown in [5] that a basic algebra is an MV-algebra if it is commutative and

associative, i.e. if, moreover, x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z.

The following essential result was proved in [5], see also [2], [3] or [1]:

Proposition. (a) LetL = (L;∨,∧, (a)a∈L, 0, 1) be a lattice with section antitone

involutions. Then the assigned algebra A (L) = (L;⊕,¬, 0), where

x ⊕ y = (x0 ∨ y)y and ¬x = x0,

is a basic algebra.

(b) Conversely, given a basic algebra A = (A;⊕,¬, 0), we can assign a bounded

lattice with section antitone involutionsL (A) = (A;∨,∧, (a)a∈L, 0, 1), where 1 = ¬0,

x ∨ y = ¬(¬x ⊕ y) ⊕ y, x ∧ y = ¬(¬x ∨ ¬y)

and for each a ∈ A, the mapping x 7→ xa = ¬x ⊕ a is an antitone involution on the

principal filter [a, 1], where the order is given by

x 6 y if and only if ¬x ⊕ y = 1.
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(c) The assignments are in a one-to-one correspondence, i.e. A (L (A)) = A and

L (A (L)) = L .

We can notice that, given a basic algebra A , then x → y = ¬x⊕y, i.e. ¬x = x → 0

and x ⊕ y = (x → 0) → y.

Hence, when investigating basic algebras, we can switch to lattices with section

antitone involution whenever it is useful.

For example, it was shown in [5] that a basic algebra A is an MV-algebra if and

only if it satisfies the so-called Exchange Identity

(EI) x → (y → z) = y → (x → z).

It was proved in [4] that a basic algebra is an MV-algebra if and only if it is a

BCC-algebra with respect to the term operation →.

2. Commutative basic algebras

According to [5] (see also [1]), if a basic algebra A = (A;⊕,¬, 0) is commutative

then the assigned lattice L (A) is distributive. The converse is not true in general.

E x a m p l e 1. Consider the lattice H as shown in Fig. 1. The section antitone

0 = 10

b = b0

1 = 00

a = a0

Fig. 1

involutions on two-element sections [a, 1] and [b, 1] are determined uniquely. The

lattice H is distributive but the assigned basic algebra A (H) is not commutative

since

a ⊕ b = (a0 ∨ b)b = 1b = b and

b ⊕ a = (b0 ∨ a)a = 1a = a.

We are going to characterize commutative basic algebras. First we state
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Lemma 1. Let A = (A;⊕,¬, 0) be a basic algebra, L (A) the assigned lattice.

Then

(a) x ⊕ y = (x ∧ y0) ⊕ y for every x, y ∈ A;

(b) if x0, y are comparable then x ⊕ y = x ⊕ (y ∧ x0).

P r o o f. (a): By (b) of Proposition, we can apply the de Morgan law to compute

(x ∧ y0) ⊕ y = ((x ∧ y0)0 ∨ y)y = ((x0 ∨ y) ∨ y)y = (x0 ∨ y)y = x ⊕ y.

(b) if y 6 x0 then clearly x ⊕ (y ∧ x0) = x ⊕ y. Assume x0 6 y. Then

x ⊕ y = (x0 ∨ y)y = yy = 1 = (x0)(x
0) = (x0 ∨ x0)(x

0) = x ⊕ x0 = x ⊕ (y ∧ x0).

�

Using the formulas for → (after Proposition), one can easily check that a basic

algebra A is commutative if and only if it satisfies the so-called “law of contraposi-

tion”, i.e.

a → b = ¬b → ¬a.

Namely,

x ⊕ y = ¬x → y = ¬y → x = y ⊕ x.

A simple conclusion is that if a corresponding logic satisfies the law of contraposition

and the double negation law then its lattice is distributive.

We are going to show that the afore mentioned condition can be weakened.

Theorem 1. A basic algebra A = (A;⊕,¬, 0) is commutative if and only if it

satisfies the following two conditions:

(i) (x0)(y
0) = yx for x 6 y;

(ii) x ⊕ (y ∧ x0) = x ⊕ y.

P r o o f. Assume that A is commutative and x 6 y. Then y0 6 x0 and

(x0)(y
0) = (x0 ∨ y0)(y

0) = x ⊕ y0 = y0 ⊕ x = (y ∨ x)x = yx (see also Claim 2 in [1]).

Further, using (a) of Lemma 1,

x ⊕ (y ∧ x0) = (y ∧ x0) ⊕ x = y ⊕ x = x ⊕ y.

Hence, A satisfies both (i) and (ii).

Conversely, let A satisfy (i) and (ii). Denote c = x ∧ y0. Then c0 = x0 ∨ y and

hence y 6 c0. Applying (i) we obtain

c ⊕ y = (c0 ∨ y)y = (c0)y = (y0)c = (y0 ∨ c)c = y ⊕ c.
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Using (a) of Lemma 1 and (ii), we conclude

x ⊕ y = (x ∧ y0) ⊕ y = c ⊕ y = y ⊕ c = y ⊕ (x ∧ y0) = y ⊕ x,

thus A is commutative. �

E x a m p l e 2. Denote by R0 the set of all non-negative real numbers and set

R∞ = R0 ∪ {∞}. For numbers from R0 we apply arithmetic operations and we

define 1
0 = ∞, 1

∞
= 0, ∞ ± b = ∞, b < ∞ for any real number b. Then R∞ is a

chain which can be viewed as a lattice where

x ∨ y = max(x, y), x ∧ y = min(x, y).

Define the section antitone involutions as

ab =
1

a − b
+ b for b 6 a and ∞∞ = ∞.

It is apparent that the mapping x 7→ xb is antitone for any b ∈ R∞ and for x ∈ [b,∞]

we have

xbb =
1

(1/(x − b) + b) − b
+ b = (x − b) + b = x,

thus it is really an involution. Further,

bb =
1

b − b
+ b =

1

0
+ b = ∞ + b = ∞ and

∞b =
1

∞− b
+ b =

1

∞
+ b = 0 + b = b.

Altogether, R∞ = (R∞; max, min, (b)b∈R∞ , 0,∞) is a lattice with section antitone

involutions.

Consider the assigned basic algebra A (R∞). One can easily see that A (R∞)

satisfies (ii) of Theorem 1 due to (b) of Lemma 1 (since R∞ is a chain). On the

contrary, A (R∞) does not satisfy (i) of Theorem 1, e.g. for b = 1 and a = 2 we have

ab =
1

2 − 1
+ 1 = 2, a0 =

1

2
, b0 = 1 but

(b0)(a
0) =

1

1 − 1
2

+
1

2
= 2 +

1

2
6= 2 = ab.

Due to Theorem 1, A (R∞) is not commutative.

117



Theorem 2. The conditions (i) and (ii) of Theorem 1 are independent.

P r o o f. As pointed out in Example 3, A (R∞) satisfies (ii) but not (i). On the

contrary, A (H) of Example 1 satisfies (i), the verification is almost trivial. However,

A (H) does not satisfy (ii):

a ⊕ (b ∧ a0) = a ⊕ 0 = a 6= b = a ⊕ b.

�

R e m a r k. It is easy to check that every section involution x 7→ xb of A (R∞)

has just one fix-point which is equal to b + 1.

Lemma 2. Let A = (A;⊕,¬, 0) be a basic algebra satisfying (i), let x, y 6 a be

elements of A. Then

(a) if ax = ay then x = y;

(b) ax∧y = ax ∧ ay and ax∨y = ax ∨ ay.

P r o o f. (a) By (i) we have (x0)(a
0) = ax = ay = (y0)(a

0). Using the section

involution in [a0, 1] we obtain x0 = y0, thus x = x00 = y00 = y.

(b) Since the section involutions are antitone, we apply (i) and the de Morgan

laws to compute

ax∨y = ((x ∨ y)0)(a
0) = (x0 ∧ y0)(a

0) = (x0)(a
0) ∨ (y0)(a

0) = ax ∨ ay,

ax∧y = ((x ∧ y)0)(a
0) = (x0 ∨ y0)(a

0) = (x0)(a
0) ∧ (y0)(a

0) = ax ∧ ay.

�

Corollary 1. Let A = (A;⊕,¬, 0) be a basic algebra satisfying (i), where the

involution x 7→ x0 in L (A) has two distinct fix-points. Then A is not commutative.

P r o o f. Assume a 6= b are fix-points of x 7→ x0, i.e. a0 = a, b0 = b. Then

a ⊕ b = (a0 ∨ b)b = (a ∨ b)b and b ⊕ a = (b0 ∨ a)a = (b ∨ a)a = (a ∨ b)a. Clearly

a, b 6 a ∨ b. If a ⊕ b = b ⊕ a then (a ∨ b)a = (a ∨ b)b and, by Lemma 2, a = b, a

contradiction. �

If a basic algebra A is an MV-algebra then there is at most one fix-point for every

section antitone involution of L (A). Hence, we incline to recognize that A (H) of

Example 1 is not commutative since the involution x 7→ x0 has two distinct fix-points

(namely a and b). However, the following example shows that this is not the case.
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E x a m p l e 3. Let L be a lattice with section antitone involutions depicted

in Fig. 2, where the section involutions (in more than two-element sections) are as

follows:

0 = 10

b

b0

1 = 00

c0

c
a

a0

Fig. 2

[a, 1] : a → 1, a0 → c0, c0 → a0, 1 → a,

[b, 1] : b → 1, b0 → c0, c0 → b0, 1 → b,

[c, 1] : c → 1, a0 → b0, b0 → a0, 1 → c.

The only section involution having a fix-point is the trivial one on the trivial section

[1, 1]. On the other hand, the assigned basic algebra A (L) is not commutative since

a ⊕ b = b and b ⊕ a = a.

A basic algebra A is called linearly ordered if the assigned lattice L (A) is a

chain. By (b) of Lemma 1, every linearly ordered basic algebra satisfies (ii). Hence,

we conclude

Corollary 2. A linearly ordered basic algebra is commutative if and only if it

satisfies (i) of Theorem 1.

3. MV-algebras

As mentioned in the introduction, a basic algebra A = (A;⊕,¬, 0) is an MV-

algebra if and only if A is commutative and associative. In what follows, we will

characterize whether A is an MV-algebra in a way similar to that used for commu-

tativity in the previous chapter.
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Theorem 3. A basic algebra A = (A;⊕,¬, 0) is an MV-algebra if and only if it

satisfies the condition

(iii) a(bc) = b(ac) for c 6 b and bc 6 a.

P r o o f. Assume A satisfies (iii). Let x, y, z ∈ A. An immediate reflexion shows

that

x → y = (x ∨ y)y = ((x ∨ y) ∨ y)y = (x ∨ y) → y.

Hence, x → (y → z) can be rewritten as

x → (y → z) = (x ∨ ((y ∨ z) → z)) → ((y ∨ z) → z) = a → (b → z)

where b = y ∨ z > z and a = x ∨ bz > bz, i.e. x → (y → z) = a(bz). By (iii) we have

x → (y → z) = b(az) and, analogously, we can derive y → (x → z) = b(az). Hence

(EI) holds, thus A is an MV-algebra.

The converse follows directly from the fact that every MV-algebra satisfies (EI)

and hence also (iii), see e.g. Theorem 8.5.10 in [5]. �
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