D. Anitha Devi; Elango Roja; Mallasamudram Kuppusamy Uma Contra G_{δ} -continuity in smooth fuzzy topological spaces

Mathematica Bohemica, Vol. 134 (2009), No. 3, 285-300

Persistent URL: http://dml.cz/dmlcz/140662

Terms of use:

© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

CONTRA G_{δ} -CONTINUITY IN SMOOTH FUZZY TOPOLOGICAL SPACES

D. ANITHA DEVI, E. ROJA, M. K. UMA, Tamil Nadu

(Received May 30, 2008)

Abstract. In this paper the concept of fuzzy contra G_{δ} -continuity in the sense of A. P. Sostak (1985) is introduced. Some interesting properties and characterizations are investigated. Also, some applications to fuzzy compact spaces are established.

Keywords: fuzzy contra G_{δ} -continuity, fuzzy strong G_{δ} -continuity, fuzzy perfect G_{δ} -continuity, fuzzy G_{δ} -compact space, fuzzy S-closed space

MSC 2010: 54A40, 03E72

1. INTRODUCTION AND PRELIMINARIES

The concept of the fuzzy set was introduced by Zadeh [14] in his classical paper. Fuzzy sets have applications in many fields such as information [10] and control [12]. G. Balasubramanian [1] introduced the concept of the fuzzy G_{δ} -set. The concept of fuzzy G_{δ} -continuity was introduced and studied by E. Roja, M. K. Uma and G. Balasubramanian [7]. Dontchev [2] introduced the notion of the contra continuous mapping. Ekici and Kerre [3], Thangaraj [13] introduced the concept of fuzzy contra continuity was established by Biljana Krsteska and Erdal Ekici [4]. The purpose of this paper is to introduce the concept of fuzzy contra G_{δ} -continuity in the sense of A. P. Sostak [11]. Some interesting properties and interrelations between the concepts introduced are established. Also, some properties concerning fuzzy G_{δ} -compactness, almost fuzzy G_{δ} -compactness and fuzzy S-closed spaces are studied.

Definition 1.1 [1]. Let (X,T) be a fuzzy topological space and λ a fuzzy set in X. Then λ is called a fuzzy G_{δ} -set if $\lambda = \bigwedge_{i=1}^{\infty} \lambda_i$ where $\lambda_i \in T$ for $i \in I$.

Definition 1.2 [1]. Let (X,T) be a fuzzy topological space and λ a fuzzy set in X. Then λ is called a fuzzy F_{σ} -set if $\lambda = \bigvee_{i=1}^{\infty} \lambda_i$ where $1 - \lambda_i \in T$ for $i \in I$.

Definition 1.3 [7]. Let (X, T) be a fuzzy topological space and λ a fuzzy set in X. Then $\operatorname{int}_{\sigma}(\lambda) = \bigvee \{ \mu \colon \mu \leq \lambda, \mu \text{ is a fuzzy } G_{\delta} \text{-set} \}$ is called the fuzzy $G_{\delta} \text{-interior}$ of λ and $cl_{\sigma}(\lambda) = \bigwedge \{ \mu : \mu \ge \lambda, \mu \text{ is a fuzzy } F_{\sigma} \text{-set} \}$ is called the fuzzy G_{δ} -closure of λ .

Definition 1.4 [8]. Let (X,T) be a fuzzy topological space and λ a fuzzy set in X. Then λ is said to be a fuzzy regular G_{δ} -set if $\lambda = \operatorname{int}_{\sigma}(\operatorname{cl}_{\sigma}(\lambda))$.

Definition 1.5 [8]. Let (X,T) be a fuzzy topological space and λ a fuzzy set in X; λ is said to be a fuzzy regular F_{σ} -set if $\lambda = cl_{\sigma}(int_{\sigma}(\lambda))$.

Definition 1.6. [5]. A fuzzy point x_t in X is a fuzzy set taking value $t \in I_0$ at x and zero elsewhere; $x_t \in \lambda$ if and only if $t \leq \lambda(x)$. A fuzzy set λ is quasicoincident with a fuzzy set μ , denoted by $\lambda q \mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. Otherwise λ is not quasi-coincident with a fuzzy set μ , denoted by $\lambda \not q \mu \text{ if } \lambda(x) + \mu(x) \leq 1.$

Throughout this paper, let X be a non-empty set, I = [0, 1] and $I_0 = (0, 1]$. For $\langle \in I, T(x) = \langle \text{ for all } x \in X. \rangle$

Definition 1.7 [11]. A function $T: I^X \to I$ is called a smooth fuzzy topology on X if it satisfies the following conditions:

- a) $T(\overline{0}) = T(\overline{1}) = 1$,
- b) $T(\mu_1 \wedge \mu_2) \ge T(\mu_1) \wedge T(\mu_2)$ for any $\mu_1, \mu_2 \in I^X$, c) $T\left(\bigvee_{i \in \Gamma} \mu_i\right) \ge \bigwedge_{i \in \Gamma} T(\mu_i)$ for any $\{\mu_i\}_{i \in \Gamma} \in I^X$.

The pair (X, T) is called a smooth fuzzy topological space.

Remark 1.1. Let (X,T) be a smooth fuzzy topological space. Then, for each $r \in I_0, T_r = \{\mu \in I^X : T(\mu) \ge r\}$ is Chang's fuzzy topology on X.

Proposition 1.1 [9]. Let (X,T) be a smooth fuzzy topological space. For each $r \in I_0, \lambda \in I^X$, an operator $C_T \colon I^X \times I_0 \to I^X$ is defined as follows:

$$C_T(\lambda, r) = \bigwedge \{ \mu \colon \mu \ge \lambda, T(\overline{1} - \mu) \ge r \}.$$

For $\lambda, \mu \in I^X$ and $r, s \in I_0$ it satisfies the following conditions:

(1) $C_T(\overline{0},r) = \overline{0},$ (2) $\lambda \leq C_T(\lambda, r),$ (3) $C_T(\lambda, r) \lor C_T(\mu, r) = C_T(\lambda \lor \mu, r),$

- (4) $C_T(\lambda, r) \leq C_T(\lambda, s)$, if $r \leq s$,
- (5) $C_T(C_T(\lambda, r), r) = C_T(\lambda, r).$

Proposition 1.2 [9]. Let (X,T) be a smooth fuzzy topological space. For each $r \in I_0, \lambda \in I^X$, an operator $I_T: I^X \times I_0 \to I^X$ is defined as follows:

$$I_T(\lambda, r) = \bigvee \{ \mu \colon \mu \leq \lambda, T(\mu) \ge r \}.$$

For $\lambda, \mu \in I^X$ and $r, s \in I_0$ it satisfies the following conditions:

- (1) $I_T(\overline{1} \lambda, r) = \overline{1} C_T(\lambda, r),$
- (2) $I_T(\overline{1},r) = \overline{1},$
- (3) $\lambda \ge I_T(\lambda, r),$
- (4) $I_T(\lambda, r) \wedge I_T(\mu, r) = I_T(\lambda \wedge \mu, r),$
- (5) $I_T(\lambda, r) \ge I_T(\lambda, s)$, if $r \le s$,
- (6) $I_T(I_T(\lambda, r), r) = I_T(\lambda, r).$

Definition 1.8 [6]. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a mapping. Then

- (1) f is called fuzzy continuous iff $S(\mu) \leq T(f^{-1}(\mu))$ for each $\mu \in I^Y$;
- (2) f is called fuzzy open iff $T(\lambda) \leq S(f(\lambda))$ for each $\lambda \in I^X$;
- (3) f is called fuzzy closed iff $T(\overline{1} \lambda) \leq S(\overline{1} f(\lambda))$ for each $\lambda \in I^X$.

2. Fuzzy contra G_{δ} -continuity

Definition 2.1. Let (X,T) be a smooth fuzzy topological space. For $\lambda \in I^X$ and $r \in I_0$, λ is called an *r*-fuzzy G_{δ} -set iff $\lambda = \bigwedge_{i \in \Gamma} \lambda_i$ where $\{\lambda_i\}_{i \in \Gamma} \in I^X$ is such that $T(\lambda_i) \ge r$.

Definition 2.2. Let (X,T) be a smooth fuzzy topological space. For $\lambda \in I^X$ and $r \in I_0$, λ is called an *r*-fuzzy F_{σ} -set iff $\lambda = \bigvee_{i \in \Gamma} \lambda_i$ where $\{\lambda_i\}_{i \in \Gamma} \in I^X$ is such that $T(\overline{1} - \lambda_i) \ge r$.

Definition 2.3. Let (X,T) be a smooth fuzzy topological space. For each $\lambda \in I^X$, $r \in I_0$, the *r*-fuzzy σ closure of λ , denoted by $C_{T(\sigma)}(\lambda, r)$, is defined by

$$C_{T(\sigma)}(\lambda, r) = \bigwedge \{ \mu \colon \mu \ge \lambda, \mu \text{ is an } r\text{-fuzzy } F_{\sigma}\text{-set} \}.$$

Definition 2.4. Let (X,T) be a smooth fuzzy topological space. For each $\lambda \in I^X$, $r \in I_0$, the *r*-fuzzy σ interior of λ , denoted by $I_{T(\sigma)}(\lambda, r)$, is defined by

$$I_{T(\sigma)}(\lambda, r) = \bigvee \{ \mu \colon \mu \leq \lambda, \mu \text{ is an } r\text{-fuzzy } G_{\delta}\text{-set} \}.$$

R e m a r k 2.1. Let (X, T) be a smooth fuzzy topological space. For each $\lambda \in I^X$, $r \in I_0$,

- (1) λ is an *r*-fuzzy F_{σ} -set iff $\lambda = C_{T(\sigma)}(\lambda, r)$,
- (2) λ is an *r*-fuzzy G_{δ} -set iff $\lambda = I_{T(\sigma)}(\lambda, r)$.

Definition 2.5. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a mapping. Then

- (1) f is called fuzzy G_{δ} -continuous if $f^{-1}(\mu)$ is an r-fuzzy G_{δ} -set for each $S(\mu) \ge r$, $\mu \in I^{Y}$ and $r \in I_{0}$;
- (2) f is called fuzzy irresolute G_{δ} -continuous if $f^{-1}(\mu)$ is an r-fuzzy G_{δ} -set for each r-fuzzy G_{δ} -set $\mu \in I^{Y}$ and $r \in I_{0}$;
- (3) f is called fuzzy irresolute G_{δ} if $f(\lambda)$ is an r-fuzzy G_{δ} -set for each r-fuzzy G_{δ} -set $\lambda \in I^X$ and $r \in I_0$;
- (4) f is called fuzzy contra irresolute G_{δ} -continuous if $f^{-1}(\mu)$ is an r-fuzzy G_{δ} -set for each r-fuzzy F_{σ} -set $\mu \in I^{Y}$ and $r \in I_{0}$.

Definition 2.6. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a mapping. Then f is called fuzzy contra continuous iff $T(f^{-1}(\mu)) \ge S(\overline{1}-\mu), \ \mu \in I^Y$.

Definition 2.7. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. $f: (X,T) \to (Y,S)$ is called fuzzy contra G_{δ} -continuous iff $f^{-1}(\mu)$ is an r-fuzzy F_{σ} -set for each $S(\mu) \ge r$, $\mu \in I^Y$ and $r \in I_0$.

By using the concept of the neighbourhood and Q-neighbourhood structures [11], the Q^* neighbourhood structure is defined as follows:

Definition 2.8. Let (X,T) be a smooth fuzzy topological space. Its Q^* neighbourhood structure is a mapping $Q^* \colon X \times I^X \to I$ (X denotes the totality of all fuzzy points in X), defined by

$$Q^*(x_0^t, \lambda) = \sup\{\mu \colon \mu \text{ is an } r\text{-fuzzy } G_{\delta}\text{-set}, \ \mu \leq \lambda, \ x_0^t \in \mu\} \text{ and} \\ \lambda = \inf_{x_0^t q \lambda} Q^*(x_0^t, \lambda) \text{ is } r\text{-fuzzy } G_{\delta}.$$

Proposition 2.1. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a mapping. Then the following statements are equivalent:

- (1) f is fuzzy contra G_{δ} -continuous.
- (2) For each fuzzy point x_0^t in X, $\mu \in I^Y$, $S(\overline{1} \mu) \ge r$ and $r \in I_0$ with $f(x_0^t) \in \mu$, there exists an r-fuzzy G_{δ} -set $\lambda \in I^X$ with $x_0^t \in \lambda$ such that $\lambda \le f^{-1}(\mu)$.

(3) For each fuzzy point x_0^t in X, $\mu \in I^Y$, $S(\overline{1} - \mu) \ge r$ and $r \in I_0$ with $f(x_0^t) \in \mu$, there exists an r-fuzzy G_{δ} -set $\lambda \in I^X$ with $x_0^t \in \lambda$ such that $f(\lambda) \le \mu$.

Proof. (1) \Rightarrow (2) Let f be a fuzzy contra G_{δ} -continuous function. Let x_0^t be a fuzzy point in $X, \mu \in I^Y$ and $S(\overline{1} - \mu) \geq r$ with $f(x_0^t) \in \mu$. Then $x_0^t \in f^{-1}(\mu) = I_{T(\sigma)}(f^{-1}(\mu), r)$. Let $\lambda = I_{T(\sigma)}(f^{-1}(\mu), r)$. Then λ is an r-fuzzy G_{δ} -set and $\lambda = I_{T(\sigma)}(f^{-1}(\mu), r) \leq f^{-1}(\mu)$. Then

(2.1)
$$\lambda \leqslant f^{-1}(\mu).$$

 $(2) \Rightarrow (3)$ By $(2.1), \lambda \leqslant f^{-1}(\mu)$. That is, $f(\lambda) \leqslant f(f^{-1}(\mu)) \leqslant \mu$. Hence the result.

(3) \Rightarrow (1) Let $\lambda \in I^Y$ and $S(\lambda) \ge r$. Suppose that $f(x_0^t) \le \overline{1} - \lambda$ for each fuzzy point x_0^t in X. By (3), there exists an r-fuzzy G_{δ} -set $\mu \in I^X$ with $x_0^t \in \mu$ and $f(\mu) \le \overline{1} - \lambda$. Hence $x_0^t \in \mu \le f^{-1}(f(\mu)) \le f^{-1}(\overline{1} - \lambda)$. By definition 2.8, $f^{-1}(\overline{1} - \lambda)$ is an r-fuzzy G_{δ} -set. But $f^{-1}(\overline{1} - \lambda) = \overline{1} - f^{-1}(\lambda)$. Hence $f^{-1}(\lambda)$ is an r-fuzzy F_{σ} -set. Therefore f is fuzzy contra G_{δ} -continuous.

Remark 2.2. A fuzzy contra G_{δ} -continuous function need not be a fuzzy G_{δ} continuous function. This is illustrated in the following example.

Example 2.1. Define smooth fuzzy topologies $T, S: I^X \to I$ as follows:

$$T(\lambda) = \begin{cases} 1, & \lambda = \overline{0} \text{ or } \overline{1}, \\ 0.5, & \lambda = \overline{0.4}, \\ 0, & \text{otherwise,} \end{cases}$$
$$S(\lambda) = \begin{cases} 1, & \lambda = \overline{0} \text{ or } \overline{1}, \\ 0.5, & \lambda = \overline{0.3}, \\ 0.5, & \lambda = \overline{0.6}, \\ 0 & \text{otherwise.} \end{cases}$$

We can obtain the following:

$$C_{T(\sigma)}(\lambda, r) = \begin{cases} \overline{0}, & \lambda = \overline{0}, \ r \in I_0, \\ \overline{0.6}, & \overline{0} < \lambda \leqslant \overline{0.6}, \ 0 < r \leqslant 0.5, \\ \overline{1}, & \text{otherwise}, \end{cases}$$

$$C_{S(\sigma)}(\lambda, r) = \begin{cases} \overline{0}, & \lambda = \overline{0}, \ r \in I_0, \\ \overline{0.4}, & \overline{0} < \lambda \leqslant \overline{0.4}, \ 0 < r \leqslant 0.5, \\ \overline{0.7}, & \overline{0.4} < \lambda \leqslant \overline{0.7}, \ 0 < r \leqslant 0.5, \\ \overline{1}, & \text{otherwise.} \end{cases}$$

The mapping $f = \operatorname{id}_x \colon (X,T) \to (X,S)$ is fuzzy contra G_{δ} -continuous but not fuzzy G_{δ} -continuous because for $S(\lambda = \overline{0.6}) = 0.5$, $f^{-1}(\lambda = \overline{0.6})$ is 0.5-fuzzy F_{σ} but not 0.5-fuzzy G_{δ} .

Definition 2.9. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a mapping. Then f is said to be fuzzy strongly G_{δ} -continuous iff $f^{-1}(\mu)$ is both r-fuzzy G_{δ} and r-fuzzy F_{σ} for every $\mu \in I^{Y}$ and $r \in I_{0}$.

Definition 2.10. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a mapping. Then f is said to be fuzzy perfectly G_{δ} -continuous iff $f^{-1}(\mu)$ is both r-fuzzy G_{δ} and r-fuzzy F_{σ} for each $S(\mu) \ge r, \mu \in I^Y$ and $r \in I_0$.

Proposition 2.2. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a mapping. Then the following statements are equivalent:

(1) f is fuzzy perfectly G_{δ} -continuous.

(2) f is fuzzy G_{δ} -continuous and fuzzy contra G_{δ} -continuous.

Proof. (1) \Rightarrow (2) Let $S(\mu) \geq r$ for all $\mu \in I^Y$ and $r \in I_0$. Since f is fuzzy perfectly G_{δ} -continuous, $f^{-1}(\mu)$ is both r-fuzzy G_{δ} and r-fuzzy F_{σ} . Hence f is both fuzzy G_{δ} -continuous and fuzzy contra G_{δ} -continuous.

(2) \Rightarrow (1) Let $S(\mu) \geq r$ for all $\mu \in I^Y$ and $r \in I_0$. Since f is fuzzy G_{δ} -continuous and fuzzy contra G_{δ} -continuous, $f^{-1}(\mu)$ is r-fuzzy G_{δ} and r-fuzzy F_{σ} . Since $f^{-1}(\mu)$ is both r-fuzzy G_{δ} and r-fuzzy F_{σ} , f is fuzzy perfectly G_{δ} -continuous.

R e m a r k 2.3. From the above definitions, it can be concluded that the following diagram of implications is true.

The following examples show that the converse statements need not be true.

Example 2.2. Define smooth fuzzy topologies $T, S: I^X \to I$ as follows:

$$T(\lambda) = \begin{cases} 1, & \lambda = \overline{0} \text{ or } \overline{1}, \\ 0.5, & \lambda = \overline{0.4}, \\ 0, & \text{otherwise,} \end{cases}$$

$$S(\lambda) = \begin{cases} 1, & \lambda = \overline{0} \text{ or } \overline{1}, \\ 0.5, & \lambda = \overline{0.3}, \\ 0.5, & \lambda = \overline{0.6}, \\ 0, & \text{otherwise.} \end{cases}$$

We can obtain

$$C_{T(\sigma)}(\lambda, r) = \begin{cases} \overline{0}, & \lambda = \overline{0}, \ r \in I_0, \\ \overline{0.6}, & \overline{0} < \lambda \leqslant \overline{0.6}, \ 0 < r \leqslant 0.5, \\ \overline{1}, & \text{otherwise}, \end{cases}$$

$$C_{S(\sigma)}(\lambda, r) = \begin{cases} \overline{0}, & \lambda = \overline{0}, \ r \in I_0, \\ \overline{0.4}, & \overline{0} < \lambda \leqslant \overline{0.4}, \ 0 < r \leqslant 0.5, \\ \overline{0.7}, & \overline{0.4} < \lambda \leqslant \overline{0.7}, \ 0 < r \leqslant 0.5, \\ \overline{1}, & \text{otherwise.} \end{cases}$$

The mapping $f = \operatorname{id}_x \colon (X, T) \to (X, S)$ is fuzzy contra G_{δ} -continuous but not fuzzy perfectly G_{δ} -continuous because for $S(\lambda = \overline{0.6}) = 0.5$, $f^{-1}(\lambda = \overline{0.6})$ is 0.5-fuzzy F_{σ} but not 0.5-fuzzy G_{δ} .

Example 2.3. Define smooth fuzzy topologies $T, S: I^X \to I$ as follows:

$$T(\lambda) = \begin{cases} 1, & \lambda = \overline{0}, \overline{1}, \\ 0.5, & \lambda = \overline{0.3}, \\ 0.5, & \lambda = \overline{0.4}, \\ 0, & \text{otherwise}, \end{cases}$$

$$S(\lambda) = \begin{cases} 1, & \lambda = \overline{0} \text{ or } \overline{1}, \\ 0.5 & \lambda = \overline{0.3}, \\ 0, & \text{otherwise.} \end{cases}$$

We can obtain

$$C_{T(\sigma)}(\lambda, r) = \begin{cases} \overline{0}, & \lambda = \overline{0}, \ r \in I_0, \\ \overline{0.6}, & \overline{0} < \lambda \leqslant \overline{0.6}, \ 0 < r \leqslant 0.5, \\ \overline{0.7}, & \overline{0.6} < \lambda \leqslant \overline{0.7}, \ 0 < r \leqslant 0.5, \\ \overline{1}, & \text{otherwise}, \end{cases}$$
$$C_{S(\sigma)}(\lambda, r) = \begin{cases} \overline{0}, & \lambda = \overline{0}, \ r \in I_0, \\ \overline{0.7}, & \overline{0} < \lambda \leqslant \overline{0.7}, \ 0 < r \leqslant 0.5, \\ \overline{1}, & \text{otherwise}. \end{cases}$$

The mapping $f = \operatorname{id}_x \colon (X,T) \to (X,S)$ is fuzzy G_{δ} -continuous but not fuzzy perfectly G_{δ} -continuous, because for $S(\lambda = \overline{0.3}) = 0.5$, $f^{-1}(\lambda = \overline{0.3})$ is 0.5-fuzzy G_{δ} but not 0.5-fuzzy F_{σ} .

Example 2.4. Define smooth fuzzy topologies $T, S: I^X \to I$ as follows:

$$T(\lambda) = \begin{cases} 1, & \lambda = \overline{0} \text{ or } \overline{1}, \\ 0.5, & \lambda = \overline{0.4}, \\ 0.6, & \lambda = \overline{0.6}, \\ 0, & \text{otherwise}, \end{cases}$$
$$S(\lambda) = \begin{cases} 1, & \lambda = \overline{0} \text{ or } \overline{1}, \\ 0.5, & \lambda = \overline{0.3}, \\ 0.5, & \lambda = \overline{0.4}, \\ 0.6, & \lambda = \overline{0.5}, \\ 0, & \text{otherwise}. \end{cases}$$

We can obtain

$$C_{T(\sigma)}(\lambda, r) = \begin{cases} \overline{0}, & \lambda = \overline{0}, \ r \in I_0, \\ \overline{0.4}, & \overline{0} < \lambda \leqslant \overline{0.4}, \ 0 < r \leqslant 0.5, \\ \overline{0.6}, & \overline{0.4} < \lambda \leqslant \overline{0.6}, \ 0 < r \leqslant 0.5, \\ \overline{1}, & \text{otherwise}, \end{cases}$$
$$C_{S(\sigma)}(\lambda, r) = \begin{cases} \overline{0}, & \lambda = \overline{0}, \ r \in I_0, \\ \overline{0.5}, & \overline{0} < \lambda \leqslant \overline{0.5}, \ 0 < r \leqslant 0.5, \\ \overline{0.6}, & \overline{0.5} < \lambda \leqslant \overline{0.6}, \ 0 < r \leqslant 0.5, \\ \overline{0.7}, & \overline{0.6} < \lambda \leqslant \overline{0.7}, \ 0 < r \leqslant 0.5, \\ \overline{1}, & \text{otherwise}. \end{cases}$$

The mapping $f = \operatorname{id}_x \colon (X,T) \to (X,S)$ is fuzzy perfectly G_{δ} -continuous but not fuzzy strongly G_{δ} -continuous since for $S(\lambda = \overline{0.4}) = 0.5$, $f^{-1}(\lambda = \overline{0.4})$ is both 0.5fuzzy G_{δ} and 0.5-fuzzy F_{σ} . Therefore the mapping is fuzzy perfectly G_{δ} -continuous. Now, for $S(\lambda = \overline{0.3}) = 0.5$, $f^{-1}(\lambda = \overline{0.3})$ is neither 0.5-fuzzy G_{δ} nor 0.5-fuzzy F_{σ} . Therefore the mapping is not fuzzy strongly G_{δ} -continuous.

Proposition 2.3. Let (X,T), (Y,S) and (Z,R) be smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ and $g: (Y,S) \to (Z,R)$ be two mappings. Then the following statements hold.

- (1) $g \circ f$ is fuzzy contra G_{δ} -continuous if g is fuzzy continuous and f is fuzzy contra G_{δ} -continuous.
- (2) $g \circ f$ is fuzzy contra G_{δ} -continuous if g is fuzzy contra G_{δ} -continuous and f is fuzzy irresolute G_{δ} -continuous.
- (3) If f is fuzzy contra G_{δ} -continuous and g is fuzzy contra continuous then $g \circ f$ is fuzzy G_{δ} -continuous.
- (4) If f is a fuzzy irresolute G_{δ} -surjective mapping and $g \circ f$ is a fuzzy contra G_{δ} -continuous mapping then g is a fuzzy contra G_{δ} -continuous mapping.
- (5) If $g \circ f$ is a fuzzy contra G_{δ} -continuous mapping and g is a fuzzy open injective mapping then f is a fuzzy contra G_{δ} -continuous mapping.

Proof. (1) Let $R(\lambda) \ge r$ for all $\lambda \in I^Z$ and $r \in I_0$. Since g is fuzzy continuous, $S(g^{-1}(\lambda)) \ge R(\lambda) \ge r$. Since f is fuzzy contra G_{δ} -continuous, $f^{-1}(g^{-1}(\lambda))$ is an r-fuzzy F_{σ} -set. The relation $(g \circ f)^{-1}(\lambda) = f^{-1}(g^{-1}(\lambda))$, yields that $g \circ f$ is fuzzy contra G_{δ} -continuous.

(2) Let $R(\lambda) \ge r$ for all $\lambda \in I^Z$ and $r \in I_0$. Since g is fuzzy contra G_{δ} -continuous, $g^{-1}(\lambda)$ is an r-fuzzy F_{σ} -set. Since f is fuzzy irresolute G_{δ} -continuous, $f^{-1}(g^{-1}(\lambda))$ is an r-fuzzy F_{σ} -set. The relation $(g \circ f)^{-1}(\lambda) = f^{-1}(g^{-1}(\lambda))$, yields that $g \circ f$ is fuzzy contra G_{δ} -continuous.

(3) Let $R(\overline{1}-\lambda) \ge r$ for all $\lambda \in I^Z$ and $r \in I_0$. Since g is fuzzy contra continuous, $S(g^{-1}(\lambda)) \ge r$. Since f is fuzzy contra G_{δ} -continuous, $f^{-1}(g^{-1}(\lambda))$ is an r-fuzzy F_{σ} -set. But $(g \circ f)^{-1}(\lambda) = f^{-1}(g^{-1}(\lambda))$, hence it follows that $g \circ f$ is fuzzy G_{δ} continuous.

(4) Let $R(\overline{1} - \lambda) \ge r$ for all $\lambda \in I^Z$ and $r \in I_0$. Since $g \circ f$ is fuzzy contrating G_{δ} -continuous, $(g \circ f)^{-1}(\lambda)$ is an r-fuzzy G_{δ} -set. Since f is a fuzzy irresolute G_{δ} -surjective mapping, $f(g \circ f)^{-1}(\lambda)$ is an r-fuzzy G_{δ} -set. But $g^{-1}(\lambda) = f(g \circ f)^{-1}(\lambda)$, hence it follows that g is fuzzy contrat G_{δ} -continuous.

(5) Let $S(\lambda) \ge r$ for all $\lambda \in I^Y$ and $r \in I_0$. Since g is fuzzy open, $R(g(\lambda)) \ge r$. Since $g \circ f$ is fuzzy contra G_{δ} -continuous, $(g \circ f)^{-1}(g(\lambda))$ is an r-fuzzy F_{σ} -set. But $f^{-1}(\lambda) = (g \circ f)^{-1}(g(\lambda))$, hence it follows that f is fuzzy contra G_{δ} -continuous. \Box Remark 2.4. Composition of two fuzzy contra G_{δ} -continuous functions need not be fuzzy G_{δ} -continuous. This is illustrated in the following example:

Example 2.5. Define smooth fuzzy topologies $T, S, R: I^X \to I$ as follows:

$$T(\lambda) = \begin{cases} 1, & \lambda = \overline{0} \text{ or } \overline{1}, \\ 0.5, & \lambda = \overline{0.4}, \\ 0, & \text{otherwise,} \end{cases}$$
$$S(\lambda) = \begin{cases} 1, & \lambda = \overline{0} \text{ or } \overline{1}, \\ 0.5, & \lambda = \overline{0.4}, \\ 0.5, & \lambda = \overline{0.6}, \\ 0 & \text{otherwise,} \end{cases}$$
$$R(\lambda) = \begin{cases} 1, & \lambda = \overline{0} \text{ or } \overline{1}, \\ 0.5, & \lambda = \overline{0.6}, \\ 0, & \text{otherwise.} \end{cases}$$

We can obtain

$$C_{T(\sigma)}(\lambda, r) = \begin{cases} \overline{0}, & \lambda = \overline{0}, \ r \in I_0, \\ \overline{0.6}, & \overline{0} < \lambda \leqslant \overline{0.6}, \ 0 < r \leqslant 0.5, \\ \overline{1}, & \text{otherwise}, \end{cases}$$

$$C_{S(\sigma)}(\lambda, r) = \begin{cases} \overline{0}, & \lambda = \overline{0}, \ r \in I_0, \\ \overline{0.4}, & \overline{0} < \lambda \leqslant \overline{0.4}, \ 0 < r \leqslant 0.5, \\ \overline{0.6}, & \overline{0.4} < \lambda \leqslant \overline{0.6}, \ 0 < r \leqslant 0.5, \\ \overline{1}, & \text{otherwise}, \end{cases}$$

$$C_{R(\sigma)}(\lambda, r) = \begin{cases} \overline{0}, & \lambda = \overline{0}, \ r \in I_0, \\ \overline{0.4}, & \overline{0} < \lambda \leqslant \overline{0.4}, \ 0 < r \leqslant 0.5, \\ \overline{1}, & \text{otherwise}. \end{cases}$$

The mapping $f = \operatorname{id}_x \colon (X,T) \to (X,S)$ is fuzzy contra G_{δ} -continuous because for $S(\lambda = \overline{0.6}) = 0.5, f^{-1}(\lambda = \overline{0.6})$ is 0.5 fuzzy F_{σ} . The mapping $g = \operatorname{id}_x \colon (X,S) \to (X,R)$ is fuzzy contra G_{δ} -continuous because for $R(\lambda = \overline{0.6}) = 0.5, g^{-1}(\lambda = \overline{0.6})$ is 0.5 fuzzy F_{σ} . The mapping $g \circ f \colon (X,T) \to (X,R)$ is not fuzzy G_{δ} -continuous because for $R(\lambda = \overline{0.6}) = 0.5, g^{-1}(\lambda = \overline{0.6})$ because for $R(\lambda = \overline{0.6}) = 0.5, (g \circ f)^{-1}(\lambda = \overline{0.6})$ is *r*-fuzzy F_{σ} .

Proposition 2.4. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a mapping. Suppose that one of the following conditions holds:

(1) $f^{-1}(C_{S(\sigma)}(\mu, r)) \leq I_{T(\sigma)}(C_{T(\sigma)}(f^{-1}(\mu), r), r)$ for each $\mu \in I^{Y}$ and $r \in I_{0}$.

(2) $C_{T(\sigma)}(I_{T(\sigma)}(f^{-1}(\mu), r), r) \leq f^{-1}(I_{S(\sigma)}(\mu, r))$ for each $\mu \in I^Y$ and $r \in I_0$.

(3) $f(C_{T(\sigma)}(I_{T(\sigma)}(\lambda, r), r)) \leq I_{S(\sigma)}(f(\lambda), r)$ for each $\lambda \in I^X$ and $r \in I_0$.

(4) $f(C_{T(\sigma)}(\lambda, r)) \leq I_{S(\sigma)}(f(\lambda), r)$ for each $\lambda \in I^X$ and $r \in I_0$.

Then f is fuzzy contra G_{δ} -continuous.

Proof. $(1) \Rightarrow (2)$ This can be proved using the complement.

(2) \Rightarrow (3) Let $\lambda \in I^X$. Suppose that $f(\lambda) = \mu, \mu \in I^Y$, then $\lambda \leq f^{-1}(\mu)$. By (2), $C_{T(\sigma)}(I_{T(\sigma)}(\lambda, r), r) \leq C_{T(\sigma)}(I_{T(\sigma)}(f^{-1}(\mu), r), r) \leq f^{-1}(I_{S(\sigma)}(\mu, r))$. Therefore $f(C_{T(\sigma)}(I_{T(\sigma)}(\lambda, r), r)) \leq I_{S(\sigma)}(\mu, r) = I_{S(\sigma)}(f(\lambda), r)$. Hence

$$f(C_{T(\sigma)}(I_{T(\sigma)}(\lambda, r), r)) \leq I_{S(\sigma)}(f(\lambda), r).$$

(3) \Rightarrow (4) Let $\lambda \in I^X$ be any *r*-fuzzy G_{δ} -set. Then $\lambda = I_{T(\sigma)}(\lambda, r)$. Now $f(C_{T(\sigma)}(\lambda, r)) = f(C_{T(\sigma)}(I_{T(\sigma)}(\lambda, r), r))$. Further, by (3), $f(C_{T(\sigma)}(I_{T(\sigma)}(\lambda, r), r)) \leq I_{S(\sigma)}(f(\lambda), r)$. Hence $f(C_{T(\sigma)}(\lambda, r)) \leq I_{S(\sigma)}(f(\lambda), r)$.

Suppose that (4) holds. Let $S(\mu) \ge r$ for $\mu \in I^Y$ and $r \in I_0$. According to the assumption, $f(C_{T(\sigma)}(f^{-1}(\mu),r)) \le I_{S(\sigma)}(f(f^{-1}(\mu)),r)$ for $f^{-1}(\mu) \in I^X$. That is, $f(C_{T(\sigma)}(f^{-1}(\mu),r)) \le I_{S(\sigma)}(\mu,r) \le \mu$. So $C_{T(\sigma)}(f^{-1}(\mu),r) \le f^{-1}(\mu)$. But $f^{-1}(\mu) \le C_{T(\sigma)}(f^{-1}(\mu),r)$. Therefore $f^{-1}(\mu) = C_{T(\sigma)}(f^{-1}(\mu),r)$. Thus $f^{-1}(\mu)$ is an *r*-fuzzy F_{σ} -set. Hence *f* is fuzzy contra G_{δ} -continuous.

Proposition 2.5. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a mapping. Suppose that one of the following conditions holds:

(1) $f(C_{T(\sigma)}(\lambda, r)) \leq I_{S(\sigma)}(f(\lambda), r)$ for each $\lambda \in I^X$ and $r \in I_0$.

(2) $C_{T(\sigma)}(f^{-1}(\mu), r) \leq f^{-1}(I_{S(\sigma)}(\mu, r))$ for each $\mu \in I^Y$ and $r \in I_0$.

(3) $f^{-1}(C_{S(\sigma)}(\mu, r)) \leq I_{T(\sigma)}(f^{-1}(\mu), r)$ for each $\mu \in I^Y$ and $r \in I_0$.

Then f is fuzzy contra G_{δ} -continuous.

Proof. (1) \Rightarrow (2) Let $f(\lambda) = \mu$ for $\mu \in I^Y$. Then $\lambda \leq f^{-1}(\mu)$. By (1), $f(C_{T(\sigma)}(\lambda, r)) \leq f(C_{T(\sigma)}(f^{-1}(\mu), r)) \leq I_{S(\sigma)}(f(f^{-1}(\mu)), r) \leq I_{S(\sigma)}(\mu, r)$. Therefore $C_{T(\sigma)}(f^{-1}(\mu), r) \leq f^{-1}(I_{S(\sigma)}(\mu, r))$.

 $(2) \Rightarrow (3)$ This can be proved using the complement.

Suppose that (3) holds. Let $S(\overline{1}-\mu) \ge r$ for $\mu \in I^Y$ and $r \in I_0$. Then $C_{S(\sigma)}(\mu, r) = \mu$. By (3), $f^{-1}(\mu) = f^{-1}(C_{S(\sigma)}(\mu, r)) \le I_{T(\sigma)}(f^{-1}(\mu), r)$. But $I_{T(\sigma)}(f^{-1}(\mu), r) \le f^{-1}(\mu)$. Thus $f^{-1}(\mu) = I_{T(\sigma)}(f^{-1}(\mu), r)$. Therefore $f^{-1}(\mu)$ is an r-fuzzy G_{δ} -set. Hence f is a fuzzy contra G_{δ} -continuous mapping.

Proposition 2.6. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a bijective mapping. The mapping f is fuzzy contra G_{δ} -continuous if $C_{S(\sigma)}(f(\lambda),r) \leq f(I_{T(\sigma)}(\lambda,r))$ for each $\lambda \in I^X$ and $r \in I_0$.

Proof. Suppose that $S(\overline{1} - \mu) \ge r$ for each $\mu \in I^Y$ and $r \in I_0$. Then $C_{S(\sigma)}(\mu, r) = \mu$. For each $\lambda \in I^X$ and $r \in I_0$, put $f(\lambda) = \mu$. Since f is surjective, from the assumption it follows that $f(I_{T(\sigma)}(f^{-1}(\mu)), r) \ge C_{S(\sigma)}(f(f^{-1}(\mu)), r) = C_{S(\sigma)}(\mu, r) = \mu$. Therefore $f^{-1}(f(I_{T(\sigma)}(f^{-1}(\mu)), r)) \ge f^{-1}(\mu)$. Since f is a injective mapping, $I_{T(\sigma)}(f^{-1}(\mu), r) = f^{-1}(f(I_{T(\sigma)}(f^{-1}(\mu)), r))) \ge f^{-1}(\mu) = \lambda$. But $I_{T(\sigma)}(f^{-1}(\mu), r) \le f^{-1}(\mu)$. Thus $f^{-1}(\mu) = I_{T(\sigma)}(f^{-1}(\mu), r)$. Therefore $f^{-1}(\mu)$ is an r-fuzzy G_{δ} -set. Hence f is a fuzzy contra G_{δ} -continuous mapping.

3. Application to fuzzy compact spaces

Definition 3.1. A smooth fuzzy topological space (X, T) is called fuzzy compact iff every *T*-cover $\{\eta_j: T(\eta_j) \ge r, j \in J\}$ of each $\mu \in I^X$ with $T(\overline{1}-\mu) \ge r$ and $r \in I_0$ has a finite subcollection such that for each $x_t \in \overline{1} - \mu$ there exists $j_0 \in J$ such that $x_t \in \eta_{j_0}$.

Definition 3.2. Let (X,T) be a smooth fuzzy topological space and $\mu \in I^X$, $r \in I_0$. Then the family $\{\eta_j: \eta_j \text{ is an } r\text{-fuzzy } G_{\delta}\text{-set}, j \in J\}$ is called a fuzzy $G_{\delta}\text{-cover}$ of μ iff for each $x_t \in \mu$ there exists $j_0 \in J$ such that $x_t \in \eta_{j_0}$.

Definition 3.3. Let (X,T) be a smooth fuzzy topological space and $\mu \in I^X$, $r \in I_0$. Then the family $\{\eta_j : \eta_j \text{ is an } r\text{-fuzzy } F_{\sigma}\text{-set}, j \in J\}$ is called a fuzzy $F_{\sigma}\text{-cover}$ of μ iff for each $x_t \in \mu$ there exists $j_0 \in J$ such that $x_t \in \eta_{j_0}$.

Definition 3.4. A smooth fuzzy topological space (X, T) is called fuzzy G_{δ} compact iff every fuzzy G_{δ} -cover $\{\eta_j: \eta_j \text{ is an } r\text{-fuzzy } G_{\delta}\text{-set}, j \in J\}$ of each $\lambda \in I^X$ with $T(\overline{1} - \lambda) \ge r$ and $r \in I_0$ has a finite subcollection such that for each $x_t \in \overline{1} - \lambda$,
there exists $j_0 \in J$ such that $x_t \in \eta_{j_0}$.

Definition 3.5. A smooth fuzzy topological space (X, T) is called fuzzy almost G_{δ} -compact iff every fuzzy G_{δ} -cover $\{\eta_j: \eta_j \text{ is an } r$ -fuzzy G_{δ} -set, $j \in J\}$ of each $\lambda \in I^X$ with $T(\overline{1} - \lambda) \ge r$ and $r \in I_0$ has a finite subcollection such that for each $x_t \in \overline{1} - \lambda$ there exists $j_0 \in J$ such that $x_t \in C_{T(\sigma)}(\eta_{j_0}, r)$.

Proposition 3.1. The image of a fuzzy almost G_{δ} -compact space under a fuzzy contra G_{δ} -continuous, fuzzy G_{δ} -continuous and onto mapping is fuzzy compact.

Proof. Let (X,T) be a fuzzy almost G_{δ} -compact space and (Y,S) a smooth fuzzy topological space. Let $f: (X,T) \to (Y,S)$ be a fuzzy contra G_{δ} -continuous fuzzy G_{δ} -continuous and onto mapping. Let $\mu \in I^{Y}$ with $S(\overline{1} - \mu) \ge r, r \in I_{0}$ and $\{\eta_{j} \colon S(\eta_{j}) \ge r, j \in J\}$ form an S-cover of μ . For $\lambda \in I^{X}$ put $f(\lambda) = \mu$. Then $\mu = f(\lambda) = \bigvee_{j \in J} \eta_{j}$. Now, $\lambda = f^{-1}(f(\lambda)) = f^{-1}(\bigvee_{j \in J} \eta_{j}) = \bigvee_{j \in J} f^{-1}(\eta_{j})$. Since f is fuzzy contra G_{δ} -continuous and fuzzy G_{δ} -continuous, $f^{-1}(\eta_{j})$ is r-fuzzy F_{σ} and r-fuzzy G_{δ} . Let $y_{t} \in \overline{1} - \mu$ and put $y_{t} = f(x_{t})$. Then $x_{t} \in \overline{1} - \lambda$. Since (X, T) is fuzzy almost G_{δ} -compact, every fuzzy G_{δ} -cover $\{f^{-1}(\eta_{j}) \colon f^{-1}(\eta_{j})$ is an r-fuzzy G_{δ} -set, $j \in J\}$ has a finite subcollection such that for $x_{t} \in \overline{1} - \lambda$ there exists $j_{0} \in J$ such that $x_{t} \in C_{T(\sigma)}(f^{-1}(\eta_{j_{0}}), r) = f^{-1}(\eta_{j_{0}})$. That is, $f(x_{t}) \in \eta_{j_{0}}$. Hence $y_{t} \in \eta_{j_{0}}$. Therefore (Y, S) is fuzzy compact.

Proposition 3.2. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a fuzzy strongly G_{δ} -continuous function. If (X,T) is fuzzy almost G_{δ} -compact then (Y,S) is fuzzy compact.

Proof. Since f is fuzzy strongly G_{δ} -continuous, f is both fuzzy G_{δ} -continuous and fuzzy contra G_{δ} -continuous. Hence by Proposition 3.1, (Y, S) is fuzzy compact.

Proposition 3.3. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces, let $f: (X,T) \to (Y,S)$ be a fuzzy contra irresolute G_{δ} -continuous onto mapping. If (X,T) is fuzzy G_{δ} -compact, then (Y,S) is fuzzy almost G_{δ} -compact.

Proof. Let $\mu \in I^Y$ be such that $S(\overline{1} - \mu) \ge r$, $r \in I_0$ and let $\{\eta_j : \eta_j \text{ is an } r$ -fuzzy G_{δ} -set, $j \in J\}$ be a fuzzy G_{δ} -cover of μ . For $\lambda \in I^X$ put $f(\lambda) = \mu$. Then $\mu = \bigvee_{j \in J} \eta_j$. It follows that $\mu = \bigvee_{j \in J} C_{s(\sigma)}(\eta_j, r)$. Then $\mu = f(\lambda) = \bigvee_{j \in J} C_{s(\sigma)}(\eta_j, r)$. Now, $\lambda = f^{-1}(f(\lambda)) = f^{-1}\left(\bigvee_{j \in J} C_{s(\sigma)}(\eta_j, r)\right) = \bigvee_{j \in J} f^{-1}(C_{s(\sigma)}(\eta_j, r))$. Since f is fuzzy contra irresolute G_{δ} -continuous, $f^{-1}(C_{S(\sigma)}(\eta_j, r))$ is r-fuzzy G_{δ} . Let $y_t \in \overline{1} - \mu$ and put $y_t = f(x_t)$. Then $x_t \in \overline{1} - \lambda$. Since (X, T) is fuzzy G_{δ} -compact, every fuzzy G_{δ} -cover $\{f^{-1}(C_{s(\sigma)}(\eta_j, r)) : f^{-1}(C_{s(\sigma)}(\eta_j, r))$ is an r-fuzzy G_{δ} -set, $j \in J\}$ has a finite subcollection such that for $x_t \in \overline{1} - \lambda$ there exists $j_0 \in J$ such that $x_t \in f^{-1}(C_{S(\sigma)}(\eta_{j_0}, r))$. That is, $f(x_t) \in C_{S(\sigma)}(\eta_{j_0}, r)$. Hence $y_t \in C_{S(\sigma)}(\eta_{j_0}, r)$. Therefore (Y, S) is fuzzy almost G_{δ} -compact.

Definition 3.6. Let (X,T) be a smooth fuzzy topological space. For $\lambda \in I^X$, $r \in I_0$, λ is said to be an *r*-fuzzy regular G_{δ} -set iff $\lambda = I_{T(\sigma)}(C_{T(\sigma)}(\lambda, r), r)$.

Definition 3.7. Let (X,T) be a smooth fuzzy topological space. For $\lambda \in I^X$, $r \in I_0$, λ is said to be an r-fuzzy regular F_{σ} -set iff $\lambda = C_{T(\sigma)}(I_{T(\sigma)}(\lambda, r), r)$.

 Remark 3.1. (1) Every *r*-fuzzy regular G_{δ} -set is *r*-fuzzy G_{δ} .

(2) Every r-fuzzy regular F_{σ} -set r-fuzzy F_{σ} .

Definition 3.8. Let (X,T) be a smooth fuzzy topological space and $\mu \in I^X$, $r \in I_0$. Then the family $\{\eta_j : \eta_j \text{ is an } r\text{-fuzzy regular } F_{\sigma}\text{-set}, j \in J\}$ is called a fuzzy regular $F_{\sigma}\text{-cover of } \mu$ iff for each $x_t \in \mu$ there exists $j_0 \in J$ such that $x_t \in \eta_{j_0}$.

Definition 3.9. A smooth fuzzy topological space (X, T) is called fuzzy strongly *S*-closed iff every fuzzy F_{σ} -cover of $\lambda \in I^X$ with $T(\overline{1} - \lambda) \ge r$ and $r \in I_0$ has a finite subcover.

Definition 3.10. A smooth fuzzy topological space (X, T) is called fuzzy *S*closed iff every fuzzy regular F_{σ} -cover of $\lambda \in I^X$ with $T(\overline{1} - \lambda) \ge r$ and $r \in I_0$ has a finite subcover.

Proposition 3.4. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a fuzzy contra G_{δ} -continuous onto function. If (X,T) is fuzzy strongly S-closed, then (Y,S) is fuzzy compact.

Proof. Let $\mu \in I^Y$ with $S(\overline{1} - \mu) \ge r$, $r \in I_0$ and $\{\eta_j \colon S(\eta_j) \ge r, j \in J\}$ form an S-cover of μ . For $\lambda \in I^X$ put $f(\lambda) = \mu$. Then $\mu = f(\lambda) = \bigvee_{j \in J} \eta_j$. Now,

 $\lambda = f^{-1}(f(\lambda)) = f^{-1}\left(\bigvee_{j \in J} \eta_j\right) = \bigvee_{j \in J} f^{-1}(\eta_j). \text{ Since } f \text{ is fuzzy contra } G_{\delta}\text{-continuous,}$ $f^{-1}(\eta_j) \text{ is an } r\text{-fuzzy } F_{\sigma} \text{ set. Let } y_t \in \overline{1} - \mu \text{ and put } y_t = f(x_t). \text{ Then } x_t \in \overline{1} - \lambda.$ Since (X, T) is fuzzy strongly S-closed, every fuzzy $F_{\sigma}\text{-cover} \{f^{-1}(\eta_j): f^{-1}(\eta_j) \text{ is an } r\text{-fuzzy } F_{\sigma}\text{-set, } j \in J\}$ has a finite subcollection such that for $x_t \in \overline{1} - \lambda$ there exists $j_0 \in J$ such that $x_t \in f^{-1}(\eta_{j_0}).$ That is, $f(x_t) \in \eta_{j_0}.$ Hence $y_t \in \eta_{j_0}.$ Therefore (Y, S) is fuzzy compact.

Proposition 3.5. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces.

Let $f: (X,T) \to (Y,S)$ be a fuzzy contra irresolute G_{δ} -continuous onto function. If (X,T) is fuzzy strongly G_{δ} -compact, then (Y,S) is fuzzy strongly S-closed.

Proof. Let $\mu \in I^Y$ be such that $S(\overline{1} - \mu) \ge r, r \in I_0$, and let $\{\eta_j \colon \eta_j \text{ is an } r$ -fuzzy F_{σ} -set, $j \in J\}$ be a fuzzy F_{σ} -cover of μ . For $\lambda \in I^X$ put $f(\lambda) = \mu$. Then $\mu = f(\lambda) = \bigvee_{j \in J} \eta_j$. Now, $\lambda = f^{-1}(f(\lambda)) = f^{-1}\left(\bigvee_{j \in J} \eta_j\right) = \bigvee_{j \in J} f^{-1}(\eta_j)$. Since f is fuzzy contra irresolute G_{δ} -continuous, $f^{-1}(\eta_j)$ is an r-fuzzy G_{δ} -set. Let $y_t \in \overline{1} - \mu$ and put $y_t = f(x_t)$. Then $x_t \in \overline{1} - \lambda$. Since (X, T) is fuzzy strongly G_{δ} -compact, $\{f^{-1}(\eta_j) \colon f^{-1}(\eta_j) \text{ is an } r$ -fuzzy G_{δ} -set, $j \in J\}$ has a finite subcollection such that for $x_t \in \overline{1} - \lambda$ there exists $j_0 \in J$ such that $x_t \in f^{-1}(\eta_{j_0})$. That is, $f(x_t) \in \eta_{j_0}$. Hence $y_t \in \eta_{j_0}$. Therefore (Y, S) is fuzzy strongly S-closed.

Proposition 3.6. Every fuzzy strongly S-closed space (X, T) is fuzzy S-closed.

Proof. Let (X, T) be a fuzzy strongly S-closed space. For $\lambda \in I^X$ and $r \in I_0$ put $\lambda = \bigvee_{j \in J} \eta_j$, where η_j is an r-fuzzy regular F_{σ} -set. Since every r-fuzzy regular F_{σ} -set is r-fuzzy F_{σ} and (X, T) is fuzzy strongly S-closed, there exists a finite subcollection $\{\eta_j: \eta_j \text{ is an } r\text{-fuzzy } F_{\sigma}\text{-set}, j \in J\}$ such that $\lambda = \bigvee_{j=1}^n \eta_j$. Hence (X, T) is fuzzy S-closed.

Definition 3.11. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. $f: (X,T) \to (Y,S)$ is called fuzzy almost G_{δ} -continuous iff $f^{-1}(\mu)$ is an *r*-fuzzy G_{δ} -set for each *r*-fuzzy regular G_{δ} -set $\mu \in I^Y$.

Proposition 3.7. Let (X,T) and (Y,S) be any two smooth fuzzy topological spaces. Let $f: (X,T) \to (Y,S)$ be a fuzzy almost G_{δ} -continuous and onto function. If (X,T) is fuzzy strongly S-closed, (Y,S) is fuzzy S-closed.

Proof. Let $\mu \in I^Y$ be such that $S(\overline{1}-\mu) \ge r, r \in I_0$ and let $\{\eta_j : \eta_j \text{ is an } r\text{-fuzzy}$ regular F_{σ} -set, $j \in J\}$ be a fuzzy regular F_{σ} -cover of μ . For $\lambda \in I^X$ put $f(\lambda) = \mu$. Then $\mu = f(\lambda) = \bigvee_{j \in J} \eta_j$. Now, $\lambda = f^{-1}(f(\lambda)) = f^{-1}\left(\bigvee_{j \in J} \eta_j\right) = \bigvee_{j \in J} f^{-1}(\eta_j)$. Since f is fuzzy almost G_{δ} -continuous, $f^{-1}(\eta_j)$ is an r-fuzzy F_{σ} -set. Let $y_t \in \overline{1} - \mu$ and put $y_t = f(x_t)$. Then $x_t \in \overline{1} - \lambda$. Since (X, T) is fuzzy strongly S-closed, $\{f^{-1}(\eta_j) : f^{-1}(\eta_j) \text{ is an } r$ -fuzzy F_{σ} -set, $j \in J\}$ has a finite subcollection such that for $x_t \in \overline{1} - \lambda$ there exists $j_0 \in J$ such that $x_t \in f^{-1}(\eta_{j_0})$. That is, $f(x_t) \in \eta_{j_0}$. Hence $y_t \in \eta_{j_0}$. Therefore (Y, S) is fuzzy S-closed.

A c k n o w l e d g e m e n t. The authors are thankful to the referee for many helpful suggestions improving the paper.

References

- [1] Balasubramanian G.: Maximal fuzzy topologies. Kybernetika 31 (1995), 459–464.
- [2] Dontchev J.: Contra-continuous functions and strongly s-closed spaces. Inter. J. Math. Sci. 19 (1996), 303–310.
- [3] Ekici E., Kerre E.: On fuzzy contra continuities. Advances in Fuzzy Mathematics 1 (2006), 35–44.
- [4] Krsteska B., Ekici E.: Fuzzy contra strong precontinuity. Indian J. Math. 50 (2008), 149–161.
- [5] Pu P. M., Liu Y. M.: Fuzzy topology. I: Neighbourhood structure of a fuzzy point and Moor-Smith convergence. J. Math. Anal. Appl. 76 (1980), 571–599.
- [6] Ramadan A. A, Abbas S. E., Yong Chan Kim: Fuzzy irresolute mappings in smooth fuzzy topological spaces. The Journal of Fuzzy Mathematics 9 (2001), 865–877.
- [7] Roja E, Uma M. K., Balasubramanian G.: Some generalization of fuzzy G_{δ} -continuous mappings. Mathematical Forum 17 (2004–2005), 1–16.

- [8] Roja E, Uma M. K., Balasubramanian G.: G_{δ} -connectedness in fuzzy topological spaces. East Asian Math. J. 20 (2004), 87–95.
- [9] Samanta S. K., Chattopadhyay K. C.: Fuzzy topology. Fuzzy Sets Systems 54 (1993), 207–212.
- [10] Smets P.: The degree of belief in a fuzzy event. Inform. Sci. 25 (1981), 1–19.
- [11] Sostak A. P.: On a fuzzy topological structure. Rend. Circ. Matem. Palermo (Ser. II) 11 (1985), 89–103.
- [12] Sugeno M.: An introductory survey of fuzzy control. Inform. Sci. 36 (1985), 59-83.
- [13] *Thangaraj G.*: Contributions to the study on some aspects of fuzzy topological structures. Ph.D. Thesis, University of Madras, 2003.
- [14] Zadeh L. A.: Fuzzy sets. Inf. Control 8 (1965), 338–353.

Authors' addresses: D. Anitha Devi, Department of Mathematics, Shri Sakthi Kailassh Women's College, Salem-636003, Tamil Nadu, India, E. Roja, M. K. Uma, Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India.