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1. Introduction and preliminaries

The concept of the fuzzy set was introduced by Zadeh [14] in his classical pa-

per. Fuzzy sets have applications in many fields such as information [10] and control

[12]. G.Balasubramanian [1] introduced the concept of the fuzzy Gδ-set. The con-

cept of fuzzy Gδ-continuity was introduced and studied by E.Roja, M.K.Uma and

G.Balasubramanian [7]. Dontchev [2] introduced the notion of the contra continu-

ous mapping. Ekici and Kerre [3], Thangaraj [13] introduced the concept of fuzzy

contra continuous mappings. The concept of fuzzy contra strongly precontinuity was

established by Biljana Krsteska and Erdal Ekici [4]. The purpose of this paper is to

introduce the concept of fuzzy contra Gδ-continuity in the sense of A. P. Sostak [11].

Some interesting properties and interrelations between the concepts introduced are

established. Also, some properties concerning fuzzy Gδ-compactness, almost fuzzy

Gδ-compactness and fuzzy S-closed spaces are studied.

Definition 1.1 [1]. Let (X, T ) be a fuzzy topological space and λ a fuzzy set in

X . Then λ is called a fuzzy Gδ-set if λ =
∞
∧

i=1

λi where λi ∈ T for i ∈ I.
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Definition 1.2 [1]. Let (X, T ) be a fuzzy topological space and λ a fuzzy set in

X . Then λ is called a fuzzy Fσ-set if λ =
∞
∨

i=1

λi where 1 − λi ∈ T for i ∈ I.

Definition 1.3 [7]. Let (X, T ) be a fuzzy topological space and λ a fuzzy set in

X . Then intσ(λ) =
∨

{µ : µ 6 λ, µ is a fuzzy Gδ-set} is called the fuzzy Gδ-interior

of λ and clσ(λ) =
∧

{µ : µ > λ, µ is a fuzzy Fσ-set} is called the fuzzy Gδ-closure

of λ.

Definition 1.4 [8]. Let (X, T ) be a fuzzy topological space and λ a fuzzy set in

X . Then λ is said to be a fuzzy regular Gδ-set if λ = intσ(clσ(λ)).

Definition 1.5 [8]. Let (X, T ) be a fuzzy topological space and λ a fuzzy set in

X ; λ is said to be a fuzzy regular Fσ-set if λ = clσ(intσ(λ)).

Definition 1.6. [5]. A fuzzy point xt in X is a fuzzy set taking value t ∈ I0

at x and zero elsewhere; xt ∈ λ if and only if t 6 λ(x). A fuzzy set λ is quasi-

coincident with a fuzzy set µ, denoted by λ q µ, if there exists x ∈ X such that

λ(x) + µ(x) > 1. Otherwise λ is not quasi-coincident with a fuzzy set µ, denoted by

λ 6q µ if λ(x) + µ(x) 6 1.

Throughout this paper, let X be a non-empty set, I = [0, 1] and I0 = (0, 1]. For

〈∈ I, T (x) = 〈 for all x ∈ X .

Definition 1.7 [11]. A function T : IX → I is called a smooth fuzzy topology

on X if it satisfies the following conditions:

a) T
(

0
)

= T
(

1
)

= 1,

b) T (µ1 ∧ µ2) > T (µ1) ∧ T (µ2) for any µ1, µ2 ∈ IX ,

c) T
(

∨

i∈Γ

µi

)

>
∧

i∈Γ

T (µi) for any {µi}i∈Γ ∈ IX .

The pair (X, T ) is called a smooth fuzzy topological space.

R em a r k 1.1. Let (X, T ) be a smooth fuzzy topological space. Then, for each

r ∈ I0, Tr = {µ ∈ IX : T (µ) > r} is Chang’s fuzzy topology on X .

Proposition 1.1 [9]. Let (X, T ) be a smooth fuzzy topological space. For each

r ∈ I0, λ ∈ IX , an operator CT : IX × I0 → IX is defined as follows:

CT (λ, r) =
∧

{µ : µ > λ, T (1 − µ) > r}.

For λ, µ ∈ IX and r, s ∈ I0 it satisfies the following conditions:

(1) CT (0, r) = 0,

(2) λ 6 CT (λ, r),

(3) CT (λ, r) ∨ CT (µ, r) = CT (λ ∨ µ, r),
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(4) CT (λ, r) 6 CT (λ, s), if r 6 s,

(5) CT (CT (λ, r), r) = CT (λ, r).

Proposition 1.2 [9]. Let (X, T ) be a smooth fuzzy topological space. For each

r ∈ I0, λ ∈ IX , an operator IT : IX × I0 → IX is defined as follows:

IT (λ, r) =
∨

{µ : µ 6 λ, T (µ) > r}.

For λ, µ ∈ IX and r, s ∈ I0 it satisfies the following conditions:

(1) IT (1 − λ, r) = 1 − CT (λ, r),

(2) IT (1, r) = 1,

(3) λ > IT (λ, r),

(4) IT (λ, r) ∧ IT (µ, r) = IT (λ ∧ µ, r),

(5) IT (λ, r) > IT (λ, s), if r 6 s,

(6) IT (IT (λ, r), r) = IT (λ, r).

Definition 1.8 [6]. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a mapping. Then

(1) f is called fuzzy continuous iff S(µ) 6 T (f−1(µ)) for each µ ∈ IY ;

(2) f is called fuzzy open iff T (λ) 6 S(f(λ)) for each λ ∈ IX ;

(3) f is called fuzzy closed iff T (1 − λ) 6 S(1 − f(λ)) for each λ ∈ IX .

2. Fuzzy contra Gδ-continuity

Definition 2.1. Let (X, T ) be a smooth fuzzy topological space. For λ ∈ IX

and r ∈ I0, λ is called an r-fuzzy Gδ-set iff λ =
∧

i∈Γ

λi where {λi}i∈Γ ∈ IX is such

that T (λi) > r.

Definition 2.2. Let (X, T ) be a smooth fuzzy topological space. For λ ∈ IX

and r ∈ I0, λ is called an r-fuzzy Fσ-set iff λ =
∨

i∈Γ

λi where {λi}i∈Γ ∈ IX is such

that T (1 − λi) > r.

Definition 2.3. Let (X, T ) be a smooth fuzzy topological space. For each λ ∈

IX , r ∈ I0, the r-fuzzy σ closure of λ, denoted by CT (σ)(λ, r), is defined by

CT (σ)(λ, r) =
∧

{µ : µ > λ, µ is an r-fuzzy Fσ-set}.

Definition 2.4. Let (X, T ) be a smooth fuzzy topological space. For each λ ∈

IX , r ∈ I0, the r-fuzzy σ interior of λ, denoted by IT (σ)(λ, r), is defined by

IT (σ)(λ, r) =
∨

{µ : µ 6 λ, µ is an r-fuzzy Gδ-set}.
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R em a r k 2.1. Let (X, T ) be a smooth fuzzy topological space. For each λ ∈ IX ,

r ∈ I0,

(1) λ is an r-fuzzy Fσ-set iff λ = CT (σ)(λ, r),

(2) λ is an r-fuzzy Gδ-set iff λ = IT (σ)(λ, r).

Definition 2.5. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a mapping. Then

(1) f is called fuzzy Gδ-continuous if f
−1(µ) is an r-fuzzy Gδ-set for each S(µ) > r,

µ ∈ IY and r ∈ I0;

(2) f is called fuzzy irresolute Gδ-continuous if f
−1(µ) is an r-fuzzy Gδ-set for each

r-fuzzy Gδ-set µ ∈ IY and r ∈ I0;

(3) f is called fuzzy irresolute Gδ if f(λ) is an r-fuzzy Gδ-set for each r-fuzzy Gδ-set

λ ∈ IX and r ∈ I0;

(4) f is called fuzzy contra irresolute Gδ-continuous if
f−1(µ) is an r-fuzzy Gδ-set

for each r-fuzzy Fσ-set µ ∈ IY and r ∈ I0.

Definition 2.6. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a mapping. Then f is called fuzzy contra contin-

uous iff T (f−1(µ)) > S(1 − µ), µ ∈ IY .

Definition 2.7. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. f : (X, T ) → (Y, S) is called fuzzy contra Gδ-continuous iff f−1(µ) is an

r-fuzzy Fσ-set for each S(µ) > r, µ ∈ IY and r ∈ I0.

By using the concept of the neighbourhood and Q-neighbourhood structures [11],

the Q∗ neighbourhood structure is defined as follows:

Definition 2.8. Let (X, T ) be a smooth fuzzy topological space. Its Q∗ neigh-

bourhood structure is a mapping Q∗ : X × IX → I (X denotes the totality of all

fuzzy points in X), defined by

Q∗(xt
0, λ) = sup{µ : µ is an r-fuzzy Gδ-set, µ 6 λ, xt

0 ∈ µ} and

λ = inf
xt

0
qλ

Q∗(xt
0, λ) is r-fuzzy Gδ.

Proposition 2.1. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a mapping. Then the following statements are

equivalent:

(1) f is fuzzy contra Gδ-continuous.

(2) For each fuzzy point xt
0 in X , µ ∈ IY , S(1 − µ) > r and r ∈ I0 with f(xt

0) ∈ µ,

there exists an r-fuzzy Gδ-set λ ∈ IX with xt
0 ∈ λ such that λ 6 f−1(µ).
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(3) For each fuzzy point xt
0 in X , µ ∈ IY , S(1 − µ) > r and r ∈ I0 with f(xt

0) ∈ µ,

there exists an r-fuzzy Gδ-set λ ∈ IX with xt
0 ∈ λ such that f(λ) 6 µ.

P r o o f. (1) ⇒ (2) Let f be a fuzzy contra Gδ-continuous function. Let xt
0

be a fuzzy point in X , µ ∈ IY and S(1 − µ) > r with f(xt
0) ∈ µ. Then xt

0 ∈

f−1(µ) = IT (σ)(f
−1(µ), r). Let λ = IT (σ)(f

−1(µ), r). Then λ is an r-fuzzy Gδ-set

and λ = IT (σ)(f
−1(µ), r) 6 f−1(µ). Then

(2.1) λ 6 f−1(µ).

(2)⇒ (3) By (2.1), λ 6 f−1(µ). That is, f(λ) 6 f(f−1(µ)) 6 µ. Hence the result.

(3) ⇒ (1) Let λ ∈ IY and S(λ) > r. Suppose that f(xt
0) 6 1 − λ for each fuzzy

point xt
0 in X . By (3), there exists an r-fuzzy Gδ-set µ ∈ IX with xt

0 ∈ µ and

f(µ) 6 1−λ. Hence xt
0 ∈ µ 6 f−1(f(µ)) 6 f−1(1−λ). By definition 2.8, f−1(1−λ)

is an r-fuzzy Gδ-set. But f−1(1 − λ) = 1 − f−1(λ). Hence f−1(λ) is an r-fuzzy

Fσ-set. Therefore f is fuzzy contra Gδ-continuous.

R em a r k 2.2. A fuzzy contra Gδ-continuous function need not be a fuzzy Gδ-

continuous function. This is illustrated in the following example.

E x am p l e 2.1. Define smooth fuzzy topologies T, S : IX → I as follows:

T (λ) =











1, λ = 0 or 1,

0.5, λ = 0.4,

0, otherwise,

S(λ) =























1, λ = 0 or 1,

0.5, λ = 0.3,

0.5, λ = 0.6,

0 otherwise.

We can obtain the following:

CT (σ)(λ, r) =











0, λ = 0, r ∈ I0,

0.6, 0 < λ 6 0.6, 0 < r 6 0.5,

1, otherwise,

CS(σ)(λ, r) =























0, λ = 0, r ∈ I0,

0.4, 0 < λ 6 0.4, 0 < r 6 0.5,

0.7, 0.4 < λ 6 0.7, 0 < r 6 0.5,

1, otherwise.
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The mapping f = idx : (X, T ) → (X, S) is fuzzy contra Gδ-continuous but not fuzzy

Gδ-continuous because for S(λ = 0.6) = 0.5, f−1(λ = 0.6) is 0.5-fuzzy Fσ but not

0.5-fuzzy Gδ.

Definition 2.9. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a mapping. Then f is said to be fuzzy strongly

Gδ-continuous iff f−1(µ) is both r-fuzzy Gδ and r-fuzzy Fσ for every µ ∈ IY and

r ∈ I0.

Definition 2.10. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a mapping. Then f is said to be fuzzy perfectly

Gδ-continuous iff f
−1(µ) is both r-fuzzy Gδ and r-fuzzy Fσ for each S(µ) > r, µ ∈ IY

and r ∈ I0.

Proposition 2.2. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a mapping. Then the following statements are

equivalent:

(1) f is fuzzy perfectly Gδ-continuous.

(2) f is fuzzy Gδ-continuous and fuzzy contra Gδ-continuous.

P r o o f. (1) ⇒ (2) Let S(µ) > r for all µ ∈ IY and r ∈ I0. Since f is fuzzy

perfectly Gδ-continuous, f
−1(µ) is both r-fuzzy Gδ and r-fuzzy Fσ. Hence f is both

fuzzy Gδ-continuous and fuzzy contra Gδ-continuous.

(2) ⇒ (1) Let S(µ) > r for all µ ∈ IY and r ∈ I0. Since f is fuzzy Gδ-continuous

and fuzzy contra Gδ-continuous, f
−1(µ) is r-fuzzy Gδ and r-fuzzy Fσ. Since f−1(µ)

is both r-fuzzy Gδ and r-fuzzy Fσ, f is fuzzy perfectly Gδ-continuous. �

R em a r k 2.3. From the above definitions, it can be concluded that the following

diagram of implications is true.

fuzzy contra Gδ-continuous

fuzzy strongly Gδ-continuous +3 fuzzy perfectly Gδ-continuous

��

KS

fuzzy Gδ-continuous

The following examples show that the converse statements need not be true.
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E x am p l e 2.2. Define smooth fuzzy topologies T, S : IX → I as follows:

T (λ) =











1, λ = 0 or 1,

0.5, λ = 0.4,

0, otherwise,

S(λ) =























1, λ = 0 or 1,

0.5, λ = 0.3,

0.5, λ = 0.6,

0, otherwise.

We can obtain

CT (σ)(λ, r) =











0, λ = 0, r ∈ I0,

0.6, 0 < λ 6 0.6, 0 < r 6 0.5,

1, otherwise,

CS(σ)(λ, r) =























0, λ = 0, r ∈ I0,

0.4, 0 < λ 6 0.4, 0 < r 6 0.5,

0.7, 0.4 < λ 6 0.7, 0 < r 6 0.5,

1, otherwise.

The mapping f = idx : (X, T ) → (X, S) is fuzzy contra Gδ-continuous but not

fuzzy perfectly Gδ-continuous because for S(λ = 0.6) = 0.5, f−1(λ = 0.6) is 0.5-fuzzy

Fσ but not 0.5-fuzzy Gδ.

E x am p l e 2.3. Define smooth fuzzy topologies T, S : IX → I as follows:

T (λ) =























1, λ = 0, 1,

0.5, λ = 0.3,

0.5, λ = 0.4,

0, otherwise,

S(λ) =











1, λ = 0 or 1,

0.5 λ = 0.3,

0, otherwise.
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We can obtain

CT (σ)(λ, r) =























0, λ = 0, r ∈ I0,

0.6, 0 < λ 6 0.6, 0 < r 6 0.5,

0.7, 0.6 < λ 6 0.7, 0 < r 6 0.5,

1, otherwise,

CS(σ)(λ, r) =











0, λ = 0, r ∈ I0,

0.7, 0 < λ 6 0.7, 0 < r 6 0.5,

1, otherwise.

The mapping f = idx : (X, T ) → (X, S) is fuzzy Gδ-continuous but not fuzzy

perfectly Gδ-continuous, because for S(λ = 0.3) = 0.5, f−1(λ = 0.3) is 0.5-fuzzy Gδ

but not 0.5-fuzzy Fσ.

E x am p l e 2.4. Define smooth fuzzy topologies T, S : IX → I as follows:

T (λ) =























1, λ = 0 or 1,

0.5, λ = 0.4,

0.6, λ = 0.6,

0, otherwise,

S(λ) =



































1, λ = 0 or 1,

0.5, λ = 0.3,

0.5, λ = 0.4,

0.6, λ = 0.5,

0, otherwise.

We can obtain

CT (σ)(λ, r) =























0, λ = 0, r ∈ I0,

0.4, 0 < λ 6 0.4, 0 < r 6 0.5,

0.6, 0.4 < λ 6 0.6, 0 < r 6 0.5,

1, otherwise,

CS(σ)(λ, r) =



































0, λ = 0, r ∈ I0,

0.5, 0 < λ 6 0.5, 0 < r 6 0.5,

0.6, 0.5 < λ 6 0.6, 0 < r 6 0.5,

0.7, 0.6 < λ 6 0.7, 0 < r 6 0.5,

1, otherwise.
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The mapping f = idx : (X, T ) → (X, S) is fuzzy perfectly Gδ-continuous but not

fuzzy strongly Gδ-continuous since for S(λ = 0.4) = 0.5, f−1(λ = 0.4) is both 0.5-

fuzzy Gδ and 0.5-fuzzy Fσ. Therefore the mapping is fuzzy perfectly Gδ-continuous.

Now, for S(λ = 0.3) = 0.5, f−1(λ = 0.3) is neither 0.5-fuzzy Gδ nor 0.5-fuzzy Fσ.

Therefore the mapping is not fuzzy strongly Gδ-continuous.

Proposition 2.3. Let (X, T ), (Y, S) and (Z, R) be smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) and g : (Y, S) → (Z, R) be two mappings. Then the

following statements hold.

(1) g ◦f is fuzzy contra Gδ-continuous if g is fuzzy continuous and f is fuzzy contra

Gδ-continuous.

(2) g ◦ f is fuzzy contra Gδ-continuous if g is fuzzy contra Gδ-continuous and f is

fuzzy irresolute Gδ-continuous.

(3) If f is fuzzy contra Gδ-continuous and g is fuzzy contra continuous then g ◦ f

is fuzzy Gδ-continuous.

(4) If f is a fuzzy irresolute Gδ-surjective mapping and g ◦ f is a fuzzy contra

Gδ-continuous mapping then g is a fuzzy contra Gδ-continuous mapping.

(5) If g ◦ f is a fuzzy contra Gδ-continuous mapping and g is a fuzzy open injective

mapping then f is a fuzzy contra Gδ-continuous mapping.

P r o o f. (1) Let R(λ) > r for all λ ∈ IZ and r ∈ I0. Since g is fuzzy continuous,

S(g−1(λ)) > R(λ) > r. Since f is fuzzy contra Gδ-continuous, f−1(g−1(λ)) is an

r-fuzzy Fσ-set. The relation (g ◦ f)−1(λ) = f−1(g−1(λ)), yields that g ◦ f is fuzzy

contra Gδ-continuous.

(2) Let R(λ) > r for all λ ∈ IZ and r ∈ I0. Since g is fuzzy contra Gδ-continuous,

g−1(λ) is an r-fuzzy Fσ-set. Since f is fuzzy irresolute Gδ-continuous, f
−1(g−1(λ))

is an r-fuzzy Fσ-set. The relation (g ◦ f)−1(λ) = f−1(g−1(λ)), yields that g ◦ f is

fuzzy contra Gδ-continuous.

(3) Let R(1−λ) > r for all λ ∈ IZ and r ∈ I0. Since g is fuzzy contra continuous,

S(g−1(λ)) > r. Since f is fuzzy contra Gδ-continuous, f−1(g−1(λ)) is an r-fuzzy

Fσ-set. But (g ◦ f)−1(λ) = f−1(g−1(λ)), hence it follows that g ◦ f is fuzzy Gδ-

continuous.

(4) Let R(1 − λ) > r for all λ ∈ IZ and r ∈ I0. Since g ◦ f is fuzzy contra

Gδ-continuous, (g ◦ f)−1(λ) is an r-fuzzy Gδ-set. Since f is a fuzzy irresolute Gδ-

surjective mapping, f(g ◦ f)−1(λ) is an r-fuzzy Gδ-set. But g−1(λ) = f(g ◦ f)−1(λ),

hence it follows that g is fuzzy contra Gδ-continuous.

(5) Let S(λ) > r for all λ ∈ IY and r ∈ I0. Since g is fuzzy open, R(g(λ)) > r.

Since g ◦ f is fuzzy contra Gδ-continuous, (g ◦ f)−1(g(λ)) is an r-fuzzy Fσ-set. But

f−1(λ) = (g ◦ f)−1(g(λ)), hence it follows that f is fuzzy contra Gδ-continuous. �
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R em a r k 2.4. Composition of two fuzzy contra Gδ-continuous functions need

not be fuzzy Gδ-continuous. This is illustrated in the following example:

E x am p l e 2.5. Define smooth fuzzy topologies T, S, R : IX → I as follows:

T (λ) =











1, λ = 0 or 1,

0.5, λ = 0.4,

0, otherwise,

S(λ) =























1, λ = 0 or 1,

0.5, λ = 0.4,

0.5, λ = 0.6,

0 otherwise,

R(λ) =











1, λ = 0 or 1,

0.5, λ = 0.6,

0, otherwise.

We can obtain

CT (σ)(λ, r) =











0, λ = 0, r ∈ I0,

0.6, 0 < λ 6 0.6, 0 < r 6 0.5,

1, otherwise,

CS(σ)(λ, r) =























0, λ = 0, r ∈ I0,

0.4, 0 < λ 6 0.4, 0 < r 6 0.5,

0.6, 0.4 < λ 6 0.6, 0 < r 6 0.5,

1, otherwise,

CR(σ)(λ, r) =











0, λ = 0, r ∈ I0,

0.4, 0 < λ 6 0.4, 0 < r 6 0.5,

1, otherwise.

The mapping f = idx : (X, T ) → (X, S) is fuzzy contra Gδ-continuous because for

S(λ = 0.6) = 0.5, f−1(λ = 0.6) is 0.5 fuzzy Fσ. The mapping g = idx : (X, S) →

(X, R) is fuzzy contra Gδ-continuous because for R(λ = 0.6) = 0.5, g−1(λ = 0.6)

is 0.5 fuzzy Fσ. The mapping g ◦ f : (X, T ) → (X, R) is not fuzzy Gδ-continuous

because for R(λ = 0.6) = 0.5, (g ◦ f)−1(λ = 0.6) is r-fuzzy Fσ.
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Proposition 2.4. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a mapping. Suppose that one of the following

conditions holds:

(1) f−1(CS(σ)(µ, r)) 6 IT (σ)(CT (σ)(f
−1(µ), r), r) for each µ ∈ IY and r ∈ I0.

(2) CT (σ)(IT (σ)(f
−1(µ), r), r) 6 f−1(IS(σ)(µ, r)) for each µ ∈ IY and r ∈ I0.

(3) f(CT (σ)(IT (σ)(λ, r), r)) 6 IS(σ)(f(λ), r) for each λ ∈ IX and r ∈ I0.

(4) f(CT (σ)(λ, r)) 6 IS(σ)(f(λ), r) for each λ ∈ IX and r ∈ I0.

Then f is fuzzy contra Gδ-continuous.

P r o o f. (1) ⇒ (2) This can be proved using the complement.

(2) ⇒ (3) Let λ ∈ IX . Suppose that f(λ) = µ, µ ∈ IY , then λ 6 f−1(µ). By

(2), CT (σ)(IT (σ)(λ, r), r) 6 CT (σ)(IT (σ)(f
−1(µ), r), r) 6 f−1(IS(σ)(µ, r)). Therefore

f(CT (σ)(IT (σ)(λ, r), r)) 6 IS(σ)(µ, r) = IS(σ)(f(λ), r). Hence

f(CT (σ)(IT (σ)(λ, r), r)) 6 IS(σ)(f(λ), r).

(3) ⇒ (4) Let λ ∈ IX be any r-fuzzy Gδ-set. Then λ = IT (σ)(λ, r). Now

f(CT (σ)(λ, r)) = f(CT (σ)(IT (σ)(λ, r), r)). Further, by (3), f(CT (σ)(IT (σ)(λ, r), r)) 6

IS(σ)(f(λ), r). Hence f(CT (σ)(λ, r)) 6 IS(σ)(f(λ), r).

Suppose that (4) holds. Let S(µ) > r for µ ∈ IY and r ∈ I0. According to

the assumption, f(CT (σ)(f
−1(µ), r)) 6 IS(σ)(f(f−1(µ)), r) for f−1(µ) ∈ IX . That

is, f(CT (σ)(f
−1(µ), r)) 6 IS(σ)(µ, r) 6 µ. So CT (σ)(f

−1(µ), r) 6 f−1(µ). But

f−1(µ) 6 CT (σ)(f
−1(µ), r). Therefore f−1(µ) = CT (σ)(f

−1(µ), r). Thus f−1(µ) is

an r-fuzzy Fσ-set. Hence f is fuzzy contra Gδ-continuous.

Proposition 2.5. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a mapping. Suppose that one of the following

conditions holds:

(1) f(CT (σ)(λ, r)) 6 IS(σ)(f(λ), r) for each λ ∈ IX and r ∈ I0.

(2) CT (σ)(f
−1(µ), r) 6 f−1(IS(σ)(µ, r)) for each µ ∈ IY and r ∈ I0.

(3) f−1(CS(σ)(µ, r)) 6 IT (σ)(f
−1(µ), r) for each µ ∈ IY and r ∈ I0.

Then f is fuzzy contra Gδ-continuous.

P r o o f. (1) ⇒ (2) Let f(λ) = µ for µ ∈ IY . Then λ 6 f−1(µ). By (1),

f(CT (σ)(λ, r)) 6 f(CT (σ)(f
−1(µ), r)) 6 IS(σ)(f(f−1(µ)), r) 6 IS(σ)(µ, r). Therefore

CT (σ)(f
−1(µ), r) 6 f−1(IS(σ)(µ, r)).

(2) ⇒ (3) This can be proved using the complement.

Suppose that (3) holds. Let S(1−µ) > r for µ ∈ IY and r ∈ I0. Then CS(σ)(µ, r) =

µ. By (3), f−1(µ) = f−1(CS(σ)(µ, r)) 6 IT (σ)(f
−1(µ), r). But IT (σ)(f

−1(µ), r) 6

f−1(µ). Thus f−1(µ) = IT (σ)(f
−1(µ), r). Therefore f−1(µ) is an r-fuzzy Gδ-set.

Hence f is a fuzzy contra Gδ-continuous mapping. �
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Proposition 2.6. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a bijective mapping. The mapping f is fuzzy

contra Gδ-continuous if CS(σ)(f(λ), r) 6 f(IT (σ)(λ, r)) for each λ ∈ IX and r ∈ I0.

P r o o f. Suppose that S(1 − µ) > r for each µ ∈ IY and r ∈ I0. Then

CS(σ)(µ, r) = µ. For each λ ∈ IX and r ∈ I0, put f(λ) = µ. Since f is surjective,

from the assumption it follows that f(IT (σ)(f
−1(µ)), r) > CS(σ)(f(f−1(µ)), r) =

CS(σ)(µ, r) = µ. Therefore f−1(f(IT (σ)(f
−1(µ)), r)) > f−1(µ). Since f is a in-

jective mapping, IT (σ)(f
−1(µ), r) = f−1(f(IT (σ)(f

−1(µ)), r))) > f−1(µ) = λ. But

IT (σ)(f
−1(µ), r) 6 f−1(µ). Thus f−1(µ) = IT (σ)(f

−1(µ), r). Therefore f−1(µ) is an

r-fuzzy Gδ-set. Hence f is a fuzzy contra Gδ-continuous mapping.

3. Application to fuzzy compact spaces

Definition 3.1. A smooth fuzzy topological space (X, T ) is called fuzzy compact

iff every T -cover {ηj : T (ηj) > r, j ∈ J} of each µ ∈ IX with T (1−µ) > r and r ∈ I0

has a finite subcollection such that for each xt ∈ 1 − µ there exists j0 ∈ J such that

xt ∈ ηj0 .

Definition 3.2. Let (X, T ) be a smooth fuzzy topological space and µ ∈ IX ,

r ∈ I0. Then the family {ηj : ηj is an r-fuzzy Gδ-set, j ∈ J} is called a fuzzy Gδ-cover

of µ iff for each xt ∈ µ there exists j0 ∈ J such that xt ∈ ηj0 .

Definition 3.3. Let (X, T ) be a smooth fuzzy topological space and µ ∈ IX ,

r ∈ I0. Then the family {ηj : ηj is an r-fuzzy Fσ-set, j ∈ J} is called a fuzzy Fσ-cover

of µ iff for each xt ∈ µ there exists j0 ∈ J such that xt ∈ ηj0 .

Definition 3.4. A smooth fuzzy topological space (X, T ) is called fuzzy Gδ-

compact iff every fuzzy Gδ-cover {ηj : ηj is an r-fuzzy Gδ-set, j ∈ J} of each λ ∈ IX

with T (1−λ) > r and r ∈ I0 has a finite subcollection such that for each xt ∈ 1−λ,

there exists j0 ∈ J such that xt ∈ ηj0 .

Definition 3.5. A smooth fuzzy topological space (X, T ) is called fuzzy almost

Gδ-compact iff every fuzzy Gδ-cover {ηj : ηj is an r-fuzzy Gδ-set, j ∈ J} of each

λ ∈ IX with T (1 − λ) > r and r ∈ I0 has a finite subcollection such that for each

xt ∈ 1 − λ there exists j0 ∈ J such that xt ∈ CT (σ)(ηj0 , r).

Proposition 3.1. The image of a fuzzy almost Gδ-compact space under a fuzzy

contra Gδ-continuous, fuzzy Gδ-continuous and onto mapping is fuzzy compact.

P r o o f. Let (X, T ) be a fuzzy almost Gδ-compact space and (Y, S) a smooth

fuzzy topological space. Let f : (X, T ) → (Y, S) be a fuzzy contra Gδ-continuous
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fuzzy Gδ-continuous and onto mapping. Let µ ∈ IY with S(1 − µ) > r, r ∈ I0 and

{ηj : S(ηj) > r, j ∈ J} form an S-cover of µ. For λ ∈ IX put f(λ) = µ. Then

µ = f(λ) =
∨

j∈J

ηj . Now, λ = f−1(f(λ)) = f−1
(

∨

j∈J

ηj

)

=
∨

j∈J

f−1(ηj). Since f

is fuzzy contra Gδ-continuous and fuzzy Gδ-continuous, f−1(ηj) is r-fuzzy Fσ and

r-fuzzy Gδ. Let yt ∈ 1 − µ and put yt = f(xt). Then xt ∈ 1 − λ. Since (X, T )

is fuzzy almost Gδ-compact, every fuzzy Gδ-cover {f
−1(ηj) : f−1(ηj) is an r-fuzzy

Gδ-set, j ∈ J} has a finite subcollection such that for xt ∈ 1 − λ there exists j0 ∈ J

such that xt ∈ CT (σ)(f
−1(ηj0 ), r) = f−1(ηj0 ) . That is, f(xt) ∈ ηj0 . Hence yt ∈ ηj0 .

Therefore (Y, S) is fuzzy compact.

Proposition 3.2. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a fuzzy strongly Gδ-continuous function. If

(X, T ) is fuzzy almost Gδ-compact then (Y, S) is fuzzy compact.

P r o o f. Since f is fuzzy strongly Gδ-continuous, f is both fuzzy Gδ-continuous

and fuzzy contra Gδ-continuous. Hence by Proposition 3.1, (Y, S) is fuzzy compact.

�

Proposition 3.3. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces, let f : (X, T ) → (Y, S) be a fuzzy contra irresolute Gδ-continuous onto map-

ping. If (X, T ) is fuzzy Gδ-compact, then (Y, S) is fuzzy almost Gδ-compact.

P r o o f. Let µ ∈ IY be such that S(1 − µ) > r, r ∈ I0 and let {ηj : ηj is an

r-fuzzy Gδ-set, j ∈ J} be a fuzzy Gδ-cover of µ. For λ ∈ IX put f(λ) = µ. Then

µ =
∨

j∈J

ηj . It follows that µ =
∨

j∈J

Cs(σ)(ηj , r). Then µ = f(λ) =
∨

j∈J

Cs(σ)(ηj , r).

Now, λ = f−1(f(λ)) = f−1
(

∨

j∈J

Cs(σ)(ηj , r)
)

=
∨

j∈J

f−1(Cs(σ)(ηj , r)). Since f is

fuzzy contra irresolute Gδ-continuous, f
−1(CS(σ)(ηj , r)) is r-fuzzy Gδ. Let yt ∈ 1−µ

and put yt = f(xt). Then xt ∈ 1 − λ. Since (X, T ) is fuzzy Gδ-compact, every

fuzzy Gδ-cover {f
−1(Cs(σ)(ηj , r)) : f−1(Cs(σ)(ηj , r)) is an r-fuzzy Gδ-set, j ∈ J}

has a finite subcollection such that for xt ∈ 1 − λ there exists j0 ∈ J such that

xt ∈ f−1(CS(σ)(ηj0 , r)). That is, f(xt) ∈ CS(σ)(ηj0 , r). Hence yt ∈ CS(σ)(ηj0 , r).

Therefore (Y, S) is fuzzy almost Gδ-compact. �

Definition 3.6. Let (X, T ) be a smooth fuzzy topological space. For λ ∈ IX ,

r ∈ I0, λ is said to be an r-fuzzy regular Gδ-set iff λ = IT (σ)(CT (σ)(λ, r), r).

Definition 3.7. Let (X, T ) be a smooth fuzzy topological space. For λ ∈ IX ,

r ∈ I0, λ is said to be an r-fuzzy regular Fσ-set iff λ = CT (σ)(IT (σ)(λ, r), r).
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R em a r k 3.1. (1) Every r-fuzzy regular Gδ-set is r-fuzzy Gδ.

(2) Every r-fuzzy regular Fσ-set r-fuzzy Fσ.

Definition 3.8. Let (X, T ) be a smooth fuzzy topological space and µ ∈ IX ,

r ∈ I0. Then the family {ηj : ηj is an r-fuzzy regular Fσ-set, j ∈ J} is called a fuzzy

regular Fσ-cover of µ iff for each xt ∈ µ there exists j0 ∈ J such that xt ∈ ηj0 .

Definition 3.9. A smooth fuzzy topological space (X, T ) is called fuzzy strongly

S-closed iff every fuzzy Fσ-cover of λ ∈ IX with T (1−λ) > r and r ∈ I0 has a finite

subcover.

Definition 3.10. A smooth fuzzy topological space (X, T ) is called fuzzy S-

closed iff every fuzzy regular Fσ-cover of λ ∈ IX with T (1− λ) > r and r ∈ I0 has a

finite subcover.

Proposition 3.4. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a fuzzy contra Gδ-continuous onto function. If

(X, T ) is fuzzy strongly S-closed, then (Y, S) is fuzzy compact.

P r o o f. Let µ ∈ IY with S(1 − µ) > r, r ∈ I0 and {ηj : S(ηj) > r, j ∈ J}

form an S-cover of µ. For λ ∈ IX put f(λ) = µ. Then µ = f(λ) =
∨

j∈J

ηj . Now,

λ = f−1(f(λ)) = f−1
(

∨

j∈J

ηj

)

=
∨

j∈J

f−1(ηj). Since f is fuzzy contra Gδ-continuous,

f−1(ηj) is an r-fuzzy Fσ set. Let yt ∈ 1 − µ and put yt = f(xt). Then xt ∈ 1 − λ.

Since (X, T ) is fuzzy strongly S-closed, every fuzzy Fσ-cover {f
−1(ηj) : f−1(ηj) is an

r-fuzzy Fσ-set, j ∈ J} has a finite subcollection such that for xt ∈ 1− λ there exists

j0 ∈ J such that xt ∈ f−1(ηj0). That is, f(xt) ∈ ηj0 . Hence yt ∈ ηj0 . Therefore

(Y, S) is fuzzy compact. �

Proposition 3.5. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces.

Let f : (X, T ) → (Y, S) be a fuzzy contra irresolute Gδ-continuous onto function.

If (X, T ) is fuzzy strongly Gδ-compact, then (Y, S) is fuzzy strongly S-closed.

P r o o f. Let µ ∈ IY be such that S(1 − µ) > r, r ∈ I0, and let {ηj : ηj is an

r-fuzzy Fσ-set, j ∈ J} be a fuzzy Fσ-cover of µ. For λ ∈ IX put f(λ) = µ. Then

µ = f(λ) =
∨

j∈J

ηj . Now, λ = f−1(f(λ)) = f−1
(

∨

j∈J

ηj

)

=
∨

j∈J

f−1(ηj). Since f is

fuzzy contra irresolute Gδ-continuous, f
−1(ηj) is an r-fuzzy Gδ-set. Let yt ∈ 1 − µ

and put yt = f(xt). Then xt ∈ 1 − λ. Since (X, T ) is fuzzy strongly Gδ-compact,

{f−1(ηj) : f−1(ηj) is an r-fuzzy Gδ-set, j ∈ J} has a finite subcollection such that

for xt ∈ 1 − λ there exists j0 ∈ J such that xt ∈ f−1(ηj0). That is, f(xt) ∈ ηj0 .

Hence yt ∈ ηj0 . Therefore (Y, S) is fuzzy strongly S-closed. �
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Proposition 3.6. Every fuzzy strongly S-closed space (X, T ) is fuzzy S-closed.

P r o o f. Let (X, T ) be a fuzzy strongly S-closed space. For λ ∈ IX and r ∈ I0 put

λ =
∨

j∈J

ηj , where ηj is an r-fuzzy regular Fσ-set. Since every r-fuzzy regular Fσ-set

is r-fuzzy Fσ and (X, T ) is fuzzy strongly S-closed, there exists a finite subcollection

{ηj : ηj is an r-fuzzy Fσ-set, j ∈ J} such that λ =
n
∨

j=1

ηj . Hence (X, T ) is fuzzy

S-closed. �

Definition 3.11. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. f : (X, T ) → (Y, S) is called fuzzy almost Gδ-continuous iff f−1(µ) is an

r-fuzzy Gδ-set for each r-fuzzy regular Gδ-set µ ∈ IY .

Proposition 3.7. Let (X, T ) and (Y, S) be any two smooth fuzzy topological

spaces. Let f : (X, T ) → (Y, S) be a fuzzy almost Gδ-continuous and onto function.

If (X, T ) is fuzzy strongly S-closed, (Y, S) is fuzzy S-closed.

P r o o f. Let µ ∈ IY be such that S(1−µ) > r, r ∈ I0 and let {ηj : ηj is an r-fuzzy

regular Fσ-set, j ∈ J} be a fuzzy regular Fσ-cover of µ. For λ ∈ IX put f(λ) = µ.

Then µ = f(λ) =
∨

j∈J

ηj . Now, λ = f−1(f(λ)) = f−1
(

∨

j∈J

ηj

)

=
∨

j∈J

f−1(ηj).

Since f is fuzzy almost Gδ-continuous, f
−1(ηj) is an r-fuzzy Fσ-set. Let yt ∈ 1 − µ

and put yt = f(xt). Then xt ∈ 1 − λ. Since (X, T ) is fuzzy strongly S-closed,

{f−1(ηj) : f−1(ηj) is an r-fuzzy Fσ-set, j ∈ J} has a finite subcollection such that

for xt ∈ 1 − λ there exists j0 ∈ J such that xt ∈ f−1(ηj0). That is, f(xt) ∈ ηj0 .

Hence yt ∈ ηj0 . Therefore (Y, S) is fuzzy S-closed. �
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