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Abstract. An operator T acting on a Banach space X possesses property (gw) if σa(T ) \
σ
SBF

−

+

(T ) = E(T ), where σa(T ) is the approximate point spectrum of T , σSBF−

+

(T ) is the

essential semi-B-Fredholm spectrum of T and E(T ) is the set of all isolated eigenvalues of T.

In this paper we introduce and study two new properties (b) and (gb) in connection with
Weyl type theorems, which are analogous respectively to Browder’s theorem and generalized
Browder’s theorem.
Among other, we prove that if T is a bounded linear operator acting on a Banach space

X, then property (gw) holds for T if and only if property (gb) holds for T and E(T ) = Π(T ),
where Π(T ) is the set of all poles of the resolvent of T.

Keywords: B-Fredholm operator, Browder’s theorem, generalized Browder’s theorem,
property (b), property (gb)
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1. Introduction

Throughout this paper, X will denote an infinite-dimensional complex Banach

space, L(X) the Banach algebra of all bounded linear operators acting on X . For

T ∈ L(X), let T ∗, N(T ), R(T ), σ(T ) and σa(T ) denote respectively the adjoint,

the null space, the range, the spectrum and the approximate point spectrum of T.

Let α(T ) and β(T ) be the nullity and the deficiency of T defined by α(T ) =

dimN(T ) and β(T ) = codimR(T ). Recall that an operator T ∈ L(X) is called upper

semi-Fredholm if α(T ) < ∞ and R(T ) is closed, while T ∈ L(X) is called lower semi-

Fredholm if β(T ) < ∞. Let SF+(X) and SF−(X) denote the class of all upper semi-

Fredholm operators and the class of all lower semi-Fredholm operators, respectively.

If T ∈ L(X) is either an upper or a lower semi-Fredholm operator, then T is called a
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semi-Fredholm operator, and the index of T is defined by ind(T ) = α(T ) − β(T ). If

both α(T ) and β(T ) are finite, then T is called a Fredholm operator. Let F (X) denote

the class of all Fredholm operators. Define SF−

+(X) = {T ∈ SF+(X) : ind(T ) 6 0}.

The class of Weyl operators is defined by W (X) = {T ∈ F (X) : ind(T ) = 0}. The

classes of operators defined above generate the following spectra: The Weyl spec-

trum is defined by σW(T ) = {λ ∈ C : T − λI 6∈ W (X)}, while the Weyl essential

approximate spectrum is defined by σSF−

+

(T ) = {λ ∈ C : T − λI 6∈ SF−

+(X)}.

Following Coburn [10], we say that Weyl’s theorem holds for T ∈ L(X) if σ(T ) \

σW(T ) = E0(T ), where E0(T ) = {λ ∈ iso σ(T ) : 0 < α(T − λI) < ∞}. Here and

elsewhere in this paper, for A ⊂ C, isoA is the set of isolated points of A. According

to Rakocevic [14], an operator T ∈ L(X) is said to satisfy a-Weyl’s theorem if

σa(T ) \ σSF−

+

(T ) = E0
a(T ), where E0

a(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI) < ∞}.

For T ∈ L(X) and a nonnegative integer n define Tn to be the restriction of T

to R(T n) viewed as a map from R(T n) into R(T n) (in particular, T0 = T ). If for

some integer n the range space R(T n) is closed and Tn is an upper (a lower) semi-

Fredholm operator, then T is called an upper (a lower) semi-B-Fredholm operator.

In this case the index of T is defined as the index of the semi-B-Fredholm operator

Tn, see [9]. Moreover, if Tn is a Fredholm operator, then T is called a B-Fredholm

operator. A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm

operator. An operator T is said to be a B-Weyl operator [5, Definition 1.1] if it is a

B-Fredholm operator of index zero. The B-Weyl spectrum σBW(T ) of T is defined

by σBW(T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.

Recall that the ascent a(T ) of an operator T is defined by a(T ) = inf{n ∈ N :

N(T n) = N(T n+1)}, and the descent δ(T ) of T is defined by δ(T ) = inf{n ∈ N :

R(T n) = R(T n+1)} with inf ∅ = ∞. An operator T ∈ L(X) is called Drazin invertible

if it has a finite ascent and descent. The Drazin spectrum σD(T ) of an operator T

is defined by σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}.

Define also the set LD(X) by LD(X) = {T ∈ L(X) : a(T ) < ∞ and R(T a(T )+1)

is closed} and σLD(T ) = {λ ∈ C : T − λI 6∈ LD(X)}. Following [8], an operator

T ∈ L(X) is said to be left Drazin invertible if T ∈ LD(X). We say that λ ∈ σa(T )

is a left pole of T if T − λI ∈ LD(X), and that λ ∈ σa(T ) is a left pole of T of finite

rank if λ is a left pole of T and α(T −λI) < ∞. Let Πa(T ) denotes the set of all left

poles of T and let Π0
a(T ) denotes the set of all left poles of T of finite rank. From

[8, Theorem 2.8] it follows that if T ∈ L(X) is left Drazin invertible, then T is an

upper semi-B-Fredholm operator of index less than or equal to 0.

Let Π(T ) be the set of all poles of the resolvent of T and let Π0(T ) be the set of

all poles of the resolvent of T of finite rank, that is Π0(T ) = {λ ∈ Π(T )} : α(T −

λI) < ∞}. According to [12], a complex number λ is a pole of the resolvent of T

if and only if 0 < max (a(T − λI), δ(T − λI)) < ∞. Moreover, if this is true then

370



a(T − λI) = δ(T − λI). According also to [12], the space R((T − λI)a(T−λI)+1) is

closed for each λ ∈ Π(T ). Hence we have always Π(T ) ⊂ Πa(T ) and Π0(T ) ⊂ Π0
a(T ).

We say that Browder’s theorem holds for T ∈ L(X) if σ(T ) \ σW(T ) = Π0(T ),

and that a-Browder’s theorem holds for T ∈ L(X) if σa(T ) \ σSF−

+

(T ) = Π0
a(T ).

Following [5], we say that generalized Weyl’s theorem holds for T ∈ L(X) if σ(T ) \

σBW(T ) = E(T ), where E(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI)} is the set of all

isolated eigenvalues of T , and that generalized Browder’s theorem holds for T ∈

L(X) if σ(T ) \ σBW(T ) = Π(T ). It is proved in [2, Theorem 2.1] that generalized

Browder’s theorem is equivalent to Browder’s theorem. In [8, Theorem 3.9], it is

shown that an operator satisfying generalized Weyl’s theorem satisfies also Weyl’s

theorem, but the converse does not hold in general. Nonetheless and under the

assumption E(T ) = Π(T ), it is proved in [6, Theorem 2.9] that generalized Weyl’s

theorem is equivalent to Weyl’s theorem.

Let SBF+(X) be the class of all upper semi-B-Fredholm operators, SBF−

+(X) =

{T ∈ SBF+(X) : ind(T ) 6 0}. The upper B-Weyl spectrum of T is defined by

σSBF−

+

(T ) = {λ ∈ C : T−λI /∈ SBF−

+(X)}.We say that generalized a-Weyl’s theorem

holds for T ∈ L(X) if σa(T ) \ σSBF−

+

(T ) = Ea(T ), where Ea(T ) = {λ ∈ iso σa(T ) :

0 < α(T − λI)} is the set of all eigenvalues of T which are isolated in σa(T ) and

that T ∈ L(X) obeys generalized a-Browder’s theorem if σa(T )\σSBF−

+

(T ) = Πa(T ).

It is proved in [2, Theorem 2.2] that generalized a-Browder’s theorem is equivalent

to a-Browder’s theorem, and it is known from [8, Theorem 3.11] that an operator

satisfying generalized a-Weyl’s theorem satisfies a-Weyl’s theorem, but the converse

does not hold in general and under the assumption Ea(T ) = Πa(T ) it is proved

in [6, Theorem 2.10] that generalized a-Weyl’s theorem is equivalent to a-Weyl’s

theorem.

Following [15], we say that T ∈ L(X) possesses property (w) if σa(T ) \σSF−

+

(T ) =

E0(T ). The property (w) has been studied in [3], [14]. In [3, Theorem 2.8], it is

shown that property (w) implies Weyl’s theorem, but the converse is not true in

general.

We say that T ∈ L(X) possesses property (gw) if σa(T )\σSBF−

+

(T ) = E(T ). Prop-

erty (gw) has been introduced and studied in [1]. Property (gw) extends property

(w) to the context of B-Fredholm theory, and it is proved in [1] that an operator pos-

sessing property (gw) possesses property (w) but the converse is not true in general.

In this paper we define and study two new properties (b) and (gb) (see Defini-

tion 2.1) in connection with Weyl type theorems [8], which play roles analogous to

Browder’s theorem and generalized Browder’s theorem, respectively. We prove in

Theorem 2.3 that an operator possessing property (gb) possesses property (b) but

the converse is not true in general as shown by Example 2.4, however, under the
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assumption that Πa(T ) = Π(T ) we prove in Theorem 2.10 that the two properties

are equivalent.

We show also in Theorem 2.15 that an operator possessing property (gw) possesses

property (gb) and in Theorem 2.13 we show that an operator possessing property (w)

possesses property (b), but the converses of those theorems are not true in general.

Conditions for the equivalence of properties (gw) and (gb), and properties (w) and

(b), are given in Theorem 2.15 and Theorem 2.13, respectively. Precisely we prove

that property (gw) holds for T ∈ L(X) if and only if property (gb) holds for T and

E(T ) = Π(T ), and that property (w) holds for T ∈ L(X) if and only if property (b)

holds for T and E0(T ) = Π0(T ).

We prove also that an operator T ∈ L(X) possessing property (gb) satisfies gen-

eralized Browder’s theorem, and an operator T ∈ L(X) possessing property (b)

satisfies Browder’s theorem but the converses do not hold in general.

In the last part, as a conclusion, we give a diagram summarizing the different

relations between Weyl type theorems, extending a similar diagram given in [8].

2. Properties (b) and (gb)

For T ∈ L(X), let ∆g(T ) = σ(T ) \ σBW(T ), ∆a(T ) = σa(T ) \ σSF−

+

(T ) and

∆g
a(T ) = σa(T ) \ σSBF−

+

(T ).

Definition 2.1. A bounded linear operator T ∈ L(X) is said to possess property

(b) if ∆a(T ) = Π0(T ), and is said to possess property (gb) if ∆g
a(T ) = Π(T ).

Lemma 2.2. Let T ∈ L(X) be an upper semi-B-Fredholm operator. If α(T ) < ∞,

then T is an upper semi-Fredholm operator.

P r o o f. Since T ∈ SBF+(X), there exists an integer n such that R(T n) is

closed and Tn : R(T n) → R(T n) is an upper semi-Fredholm operator. Since α(T ) <

∞, it follows from [16, Lemma 3.3] that α(T n) < ∞. As we know that R(T n) is

closed, hence T n is an upper semi-Fredholm operator. Thus T is also an upper semi-

Fredholm operator. �

Theorem 2.3. Let T ∈ L(X). If T possesses property (gb), then T possesses

property (b).

P r o o f. Suppose that T possesses property (gb), then ∆g
a(T ) = Π(T ). If

λ ∈ ∆a(T ), then λ ∈ ∆g
a(T ) = Π(T ). Hence λ is a pole of the resolvent of T . Since

T − λI ∈ SF+(X), hence α(T − λI) is finite, so λ ∈ Π0(T ).

Conversely, if λ ∈ Π0(T ) then λ is a pole of the resolvent of T and α(T −λI) < ∞.
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Since T possesses property (gb), we have λ ∈ ∆g
a(T ), hence T − λI ∈ SBF+(X)

and ind(T − λI) 6 0. Since α(T − λI) < ∞ we conclude from Lemma 2.2 that

T − λI ∈ SF+(X). Thus λ ∈ σa(T ) \ σSF−

+

(T ). Finally, we have ∆a(T ) = Π0(T ),

and T possesses property (b). �

The converse of Theorem 2.3 does not hold in general as shown by the following

example:

E x am p l e 2.4. Let T ∈ L(ℓ2(N)) be the unilateral right shift. It is known from

[13, Theorem 3.1] that σ(T ) = D is the closed unit disc in C, σa(T ) = C(0, 1) is

the unit circle of C and T has empty eigenvalues set. Moreover, σSF−

+

(T ) = C(0, 1)

and Π(T ) = ∅. Define S on the Banach space X = ℓ2(N) ⊕ ℓ2(N) by S = 0 ⊕ T .

Then N(S) = ℓ2(N) ⊕ {0}, σSF−

+

(S) = σa(S) = {0} ∪ C(0, 1), σSBF−

+

(S) = C(0, 1),

Πa(S) = {0} and Π(S) = Π0(S) = ∅. Hence σa(S) \ σSF−

+

(S) = Π0(S) and σa(S) \

σSBF−

+

(S) = {0} 6= Π(S). Consequently, S possesses property (b) but does not

possess property (gb).

Theorem 2.5. Let T ∈ L(X). If T possesses property (b), then T satisfies

a-Browder’s theorem. In particular, T satisfies Browder’s theorem.

P r o o f. Suppose that property (b) holds for T . Since Π0(T ) ⊂ Π0
a(T ), then

∆a(T ) ⊂ Π0
a(T ). Conversely if λ ∈ Π0

a(T ), then λ is an isolated point of σa(T ),

see [8, Remark 2.7]. By [8, Theorem 2.8], we have λ 6∈ σSF−

+

(T ). Consequently

λ ∈ ∆a(T ). Hence ∆a(T ) = Π0
a(T ) and T satisfies a-Browder’s theorem. From [11,

Theorem 3.9], it follows that T satisfies Browder’s theorem. �

The converse of Theorem 2.5 is not true as shown by the following example [3,

example 2.14]:

E x am p l e 2.6. Let T ∈ L(ℓ2(N)) be the unilateral right shift and S ∈ L(ℓ2(N))

the operator defined by S(ξ1, ξ2, ξ3, . . .) = (0, ξ2, ξ3, ξ4, . . .).

Consider the operator R = T ⊕ S, then σ(R) = D(0, 1) is the closed unit disc in

C, isoσ(R) = ∅ and σa(R) = C(0, 1) ∪ {0}, where C(0, 1) is the unit circle of C,

and σSF−

+

(R) = C(0, 1) . This implies that σa(R) \ σSF−

+

(R) = {0}, Π0(R) = ∅ and

E0
a(R) = {0}. Hence R satisfies a-Weyl’s theorem. It follows from [8, Corollary 3.5]

that R satisfies a-Browder’s theorem and so it satisfies also Browder’s theorem, but

R does not possess property (b) because σa(R) \ σSF−

+

(R) 6= Π0(R).

However, from Theorem 2.5 we have immediately the following result:

Corollary 2.7. Let T ∈ L(X). Then T possesses property (b) if and only if T

satisfies a-Browder’s theorem and Π0(T ) = Π0
a(T ).
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Corollary 2.8. Let T ∈ L(X). If T possesses property (gb), then T satisfies

generalized a-Browder’s theorem. In particular, T satisfies generalized Browder’s

theorem.

P r o o f. Assume that T possesses property (gb). From Theorem 2.3, T pos-

sesses property (b), and by Theorem 2.5, T satisfies a-Browder’s theorem. Since

a-Browder’s theorem is equivalent to generalized a-Browder’s theorem, see [2, The-

orem 2.2], T satisfies generalized a-Browder’s theorem, too. Hence, T satisfies gen-

eralized Browder’s theorem by [8, Theorem 3.8]. �

The converse of the preceding corollary does not hold in general. Indeed, if we con-

sider the operator R defined in Example 2.6, then σSBF−

+

(R) = C(0, 1) , Ea(R) = {0}

and Π(R) = ∅. This implies that σa(R) \ σSBF−

+

(R) = Ea(R) and R satisfies gener-

alized a-Weyl’s theorem. By [8, Corollary 3.3], R satisfies generalized a-Browder’s

theorem and so R satisfies generalized Browder’s theorem. But R does not possess

property (gb) because σa(R) \ σSBF−

+

(R) 6= Π(R).

However, we have the following result:

Corollary 2.9. Let T ∈ L(X). Then T possesses property (gb) if and only if T

satisfies generalized a-Browder’s theorem and Π(T ) = Πa(T ).

P r o o f. Assume that property (gb) holds for T , i.e. ∆g
a(T ) = Π(T ). Then

by Corollary 2.8, T satisfies generalized a-Browder’s theorem, i.e. ∆g
a(T ) = Πa(T ).

Hence Π(T ) = Πa(T ).

Conversely, assume that T satisfies generalized a-Browder’s theorem and Π(T ) =

Πa(T ), then ∆g
a(T ) = Πa(T ) and Π(T ) = Πa(T ), which implies that ∆g

a(T ) = Π(T )

and T possesses property (gb). �

Theorem 2.10. Let T ∈ L(X). The following statements are equivalent:

(i) T possesses property (gb);

(ii) T possesses property (b) and Π(T ) = Πa(T ).

P r o o f. Assume that property (gb) holds for T , then property (b) holds for T

and Π(T ) = Πa(T ).

Conversely, assume that property (b) holds for T and Π(T ) = Πa(T ). From

Corollary 2.7, T satisfies a-Browder’s theorem. As we know from [2, Theorem 2.2]

that a-Browder’s theorem is equivalent to generalized a-Browder’s theorem, it follows

that T satisfies generalized a-Browder’s theorem. Hence we have ∆g
a(T ) = Πa(T ).

As by assumption Πa(T ) = Π(T ), we have ∆g
a(T ) = Π(T ). Therefore T possesses

property (gb). �

In the next theorem we give a characterization of operators possssing property (b).
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Theorem 2.11. Let T ∈ L(X). Then T possesses property (b) if and only if

(i) T satisfies Browder’s theorem;

(ii) ind(T − λI) = 0 for all λ ∈ ∆a(T ).

P r o o f. Suppose that T possesses property (b). Then by Theorem 2.5, T satisfies

Browder’s theorem, that is σ(T ) \ σW(T ) = Π0(T ). Let λ ∈ ∆a(T ), then λ ∈ Π0(T ),

so λ ∈ σ(T ) \ σW(T ). Therefore T − λI is a Weyl operator.

Conversely, assume that T satisfies Browder’s theorem and ind(T − λI) = 0 for

all λ ∈ ∆a(T ). If λ ∈ ∆a(T ), then T − λI is upper semi-Fredholm such that

ind(T − λI) = 0. Hence T − λI is a Weyl operator. Since T satisfies Browder’s

theorem, we have λ ∈ Π0(T ). On the other hand, if λ ∈ Π0(T ), then T − λI is a

Weyl operator and λ ∈ σa(T ), so λ ∈ ∆a(T ). Consequently, ∆a(T ) = Π0(T ) and T

possesses property (b). �

In the next theorem we prove a similar characterization for the property (gb).

Theorem 2.12. Let T ∈ L(X). Then T possesses property (gb) if and only if

(i) T satisfies generalized Browder’s theorem;

(ii) ind(T − λI) = 0 for all λ ∈ ∆g
a(T ).

P r o o f. Suppose that T possesses property (gb), then by Corollary 2.8, T

satisfies generalized Browder’s theorem.

If λ ∈ ∆g
a(T ), as T possesses property (gb), then λ ∈ Π(T ). Thus λ is isolated in

σ(T ). From [7, Theorem 4.2] it follows that T − λI is a B-Fredholm operator and

ind(T −λI) = 0. Conversely, assume that generalized Browder’s theorem holds for T

and ind(T −λI) = 0 for all λ ∈ ∆g
a(T ). If λ ∈ ∆g

a(T ), then T −λI is an upper semi-

B-Fredholm operator such that ind(T −λI) = 0. Hence λ ∈ ∆g(T ). Since T satisfies

generalized Browder’s theorem, we have λ ∈ Π(T ). On the other hand, if λ ∈ Π(T ),

then T − λI is a B-Weyl operator and so λ ∈ ∆g
a(T ). Finally, ∆g

a(T ) = Π(T ) and T

possesses property (gb). �

Now we give conditions for the equivalence of property (b) and property (w).

Theorem 2.13. Let T ∈ L(X). Then the following statements are equivalent:

(i) T possesses property (w);

(ii) T possesses property (b) and E0(T ) = Π0(T );

(iii) T possesses property (b) and E0(T ) = Π0
a(T ).

P r o o f. (i) ⇒ (ii) Suppose that T possesses property (w). Then by [3, Theo-

rem 2.9], T satisfies Weyl’s theorem and ind(T − λI) = 0 for all λ ∈ ∆a(T ). Conse-

quently, by virtue of [4, Corollary 5] T satisfies Browder’s theorem and ind(T −λI) =
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0 for all λ ∈ ∆a(T ). From Theorem 2.11 it follows that T possesses property (b).

As T satisfies Weyl’s theorem, we conclude that E0(T ) = Π0(T ).

(ii) ⇒ (iii) Follows directly from Corollary 2.7.

(iii) ⇒ (i) Assume that T possesses property (b) and E0(T ) = Π0
a(T ). Then from

Corollary 2.7 we have Π0(T ) = Π0
a(T ). Hence ∆a(T ) = E0(T ), and so T possesses

property (w). �

From Theorem 2.13, if T ∈ L(X) possesses property (w), then T possesses property

(b). But the converse is not true in general as shown by the following example:

E x am p l e 2.14. Let T ∈ L(ℓ2(N)) be defined by T (x1, x2, x3, . . .) = (1
2x2,

1
3x3,

1
4x4, . . .).

Then property (b) holds for T because σa(T ) = σSF−

+

(T ) = {0} and Π0(T ) = ∅,

while property (w) does not hold for T because E0(T ) = {0}.

Similarly to Theorem 2.13, we give conditions for the equivalence of property (gb)

and property (gw).

Theorem 2.15. Let T ∈ L(X). Then the following assertions are equivalent:

(i) T possesses property (gw);

(ii) T possesses property (gb) and E(T ) = Π(T );

(iii) T possesses property (gb) and E(T ) = Πa(T ).

P r o o f. (i) ⇒ (ii) Suppose that T possesses property (gw). Then by [1,

Theorem 2.4], T satisfies generalized Weyl’s theorem and ind(T − λI) = 0 for all

λ ∈ ∆g
a(T ). Consequently, by [5, Corollary 2.6] T satisfies generalized Browder’s

theorem and ind(T − λI) = 0 for all λ ∈ ∆g
a(T ). Theorem 2.12, implies that T

possesses property (gb). As T satisfies generalized Weyl’s theorem, E(T ) = Π(T ).

(ii) ⇒ (iii) Follows directly from Corollary 2.9.

(iii) ⇒ (i) Assume that T possesses property (gb) and E(T ) = Πa(T ). Then from

Corollary 2.9 we have Π(T ) = Πa(T ). Hence ∆g
a(T ) = E(T ), and so T possesses

property (gw). �

From Theorem 2.15, if T ∈ L(X) possesses property (gw), then T possesses prop-

erty (gb). But the converse does not hold in general as shown by the following

example [8, Example 3.12]:

E x am p l e 2.16. Let Q be defined for each x = (ξi) ∈ ℓ1 by

Q(ξ1, ξ2, ξ3, . . . , ξk, . . .) = (0, α1ξ1, α2ξ2, . . . , αk−1ξk−1, . . .),

where (αi) is a sequence of complex numbers such that 0 < |αi| 6 1 and
∞∑

i=1

|αi| < ∞.
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Define T on X = ℓ1 ⊕ ℓ1 by T = Q ⊕ 0. Then σ(T ) = σa(T ) = {0}, E(T ) = {0}.

It follows from [8, Example 3.12] that R(T n) is not closed for any n ∈ N. This

implies that σSBF−

+

(T ) = {0} and Π(T ) = ∅. We then have σa(T ) \ σSBF−

+

(T ) 6=

E(T ), σa(T ) \ σSBF−

+

(T ) = Π(T ). Hence T possesses property (gb), but T does not

possess property (gw).

3. Conclusion

In this last part, we give a summary of the known Weyl type theorems as in

[8], including the properties introduced in [15], [1] and in this paper. We use the

abbreviations gaW, aW, gW,W, (gw) and (w) to signify that an operator T ∈ L(X)

obeys generalized a-Weyl’s theorem, a-Weyl’s theorem, generalized Weyl’s theorem,

Weyl’s theorem, property (gw) and property (w). Similarly, the abbreviations gaB,

aB, gB, B, (gb) and (b) have analogous meaning with respect to Browder’s theorem

or the new properties introduced in this paper.

The following table summarizes the meaning of various theorems and properties.

gaW σa(T ) \ σSBF−

+

(T ) = Ea(T ) gaB σa(T ) \ σSBF−

+

(T ) = Πa(T )

aW σa(T ) \ σSF−

+

(T ) = E0
a(T ) aB σa(T ) \ σSF−

+

(T ) = Π0
a(T )

gW σ(T ) \ σBW(T ) = E(T ) gB σ(T ) \ σBW(T ) = Π(T )
W σ(T ) \ σW(T ) = E0(T ) B σ(T ) \ σW(T ) = Π0(T )
(gw) σa(T ) \ σSBF−

+

(T ) = E(T ) (gb) σa(T ) \ σSBF−

+

(T ) = Π(T )

(w) σa(T ) \ σSF−

+

(T ) = E0(T ) (b) σa(T ) \ σSF−

+

(T ) = Π0(T )

Table

In the following diagram, which extends the similar diagram presented in [8],

arrows signify implications between various Weyl type theorems, Browder type the-

orems, property (gw) and property (gb). The numbers near the arrows are references

to the results in the present paper (numbers without brackets) or to the bibliography

therein (the numbers in square brackets).

gW gaB

gw

[1]

OO

2.15 //

[1]

��

gb

2.8

OO

2.8 //

2.3

��

gB

[8]

��

gW
[8]oo

[8]

��

gaW
[8]oo [8] //

[8]

��

gaB
[8] //

KS

[2]

��

gBKS

[2]

��
w

2.13
//

[3]

��

b
2.5

//

2.5

��

B W
[4]

oo aW
[14]

oo
[8]

// aB
[11]

// B

W aB
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[11] S.V.Djordjević, Y.M.Han: Browder’s theorems and spectral continuity. Glasgow Math.
J. 42 (2000), 479–486.

[12] H.Heuser: Functionl Analysis. John Wiley, New York, 1982.
[13] H.Radjavi, P. Rosenthal: Invariant Subspaces. Springer, Berlin, 1973.
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