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(Received October 15, 2009)

Abstract. In this paper the three-dimensional nonlinear difference system

∆xn = anf(yn−l),

∆yn = bng(zn−m),

∆zn = δcnh(xn−k),

is investigated. Sufficient conditions under which the system is oscillatory or almost oscil-
latory are presented.
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1. Introduction

Consider a nonlinear three-dimensional difference system of the form

(1)

∆xn = anf(yn−l),

∆yn = bng(zn−m),

∆zn = δcnh(xn−k),

where n0 ∈ N = {1, 2, . . .}, l, m, k are given positive integers and δ = ± − 1. Here

a, b : N(n0) → R+ ∪ {0}, c : N(n0) → R+, where R, R+ denote the set of real

numbers and the set of positive real numbers, respectively. Moreover,

(2)

∞
∑

n=1

an =

∞
∑

n=1

bn = ∞.
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Assume that functions f, g, h : R → R fulfil the following conditions: there exist

positive constants M∗, M∗∗ and M∗∗∗ such that

(3)
f(u)

uα
> M∗,

g(u)

uβ
> M∗∗ and

h(u)

uγ
> M∗∗∗ for u 6= 0

where α, β and γ are ratios of odd positive integers, and

(4)

∫ c

0

du

uαβγ
< ∞ for any positive constant c.

Set M = min{M∗, M∗∗, M∗∗∗}.

We do not assume that functions f , g and h are continuous or monotonic.

A solution (x, y, z) of system (1) is called oscillatory if all its components are

oscillatory (that is, neither eventually positive nor eventually negative), and it is

called nonoscillatory otherwise. The difference system (1) is called oscillatory if all

its solutions are oscillatory. The difference system (1) is called almost oscillatory if

all its solutions are oscillatory or

(5) lim
n→∞

xn = lim
n→∞

yn = lim
n→∞

zn = 0.

A solution (x, y, z) of system (1) is called bounded if all its components are bounded.

Otherwise it is called unbounded.

It is an interesting problem to extend the oscillation criteria for third order nonlin-

ear difference equations to the case of nonlinear three-dimensional systems. The third

order nonlinear difference equation was studied, among many others, by Andruch-

Sobio and Drozdowicz [2], Andruch-Sobi lo and Migda [3], [4], Migda, Schmeidel and

Drozdowicz [7], and Schmeidel and Zbąszyniak [9].

The background for difference systems can be found in the well known mono-

graphs [1] by Agarwal, and Kocić and Ladas [6].

The oscillatory theory has been considered usually for two-dimensional difference

systems (see, for example, [5], [10], [12] and [11] and the references therein).

Oscillatory results for three-dimensional systems are investigated by Thandapani

and Ponnammal in [13].
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2. Nonoscillatory results

We begin with some lemmas which will be useful in the sequel.

Lemma 1. Assume that condition (3) holds. Let (x, y, z) be a solution of system

(1) and let the sequence x be nonoscillatory. Then (x, y, z) is nonoscillatory and

sequences x, y, z are monotonic for sufficiently large n.

P r o o f. We note that condition (3) implies the usual signed condition

(6) uf(u) > 0, ug(u) > 0, uh(u) > 0 for u 6= 0.

The proof follows directly from condition (6) and from system (1). �

Lemma 2. Assume that conditions (2) and (3) hold. Let (x, y, z) be a nonoscil-

latory solution of system (1). If

(7) lim
n→∞

xn is finite

then

lim
n→∞

yn = lim
n→∞

zn = 0.

Lemma 3. Assume that conditions (2) and (3) hold and (x, y, z) is a nonoscilla-

tory solution of system (1). Then one of the following three cases holds

(I) sgnxn = sgn yn = sgn zn,

(II) sgnxn = sgn zn 6= sgn yn,

(III) sgnxn = sgn yn 6= sgn zn

for large n. Moreover, if δ = −1 in system (1) then every nonoscillatory solution

of (1) fulfils condition (I) or (II), if δ = 1 then every nonoscillatory solution of (1)

fulfils condition (I) or (III).

Lemma 4. Assume that conditions (2) and (3) hold. Then every solution (x, y, z)

of system (1) fulfilling condition (II) is bounded.

The proofs of Lemmas 2, 3 and 4 are analogous to the proofs of lemmas which are

presented in [8], and hence are omitted.
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3. Oscillation theorems

In this section we establish sufficient conditions under which system (1) is oscilla-

tory or almost oscillatory.

Theorem 1. Let δ = −1 in system (1). Assume that conditions (2) and (3) hold,

(8)

∞
∑

i=1

ci

( i−k−1
∑

j=1

aj

( j−l−1
∑

s=1

bs

)α)γ

= ∞

and

(9)
∞
∑

i=m

bi

(

∞
∑

j=i−m

cj

)β

= ∞.

Then system (1) is almost oscillatory.

P r o o f. Without loss of generality we assume that xn > 0. By Lemma 1, this

implies that the sequences y and z are nonoscillatory sequences. Hence (x, y, z) is a

nonoscillatory solution of system (1). (If not, Theorem 1 holds.) By Lemma 3, such

a solution fulfils condition (I) or (II).

Suppose that condition (I) holds for large n, say n > n1 > n0. Hence the sequence

z is decreasing for n > n1. Set n2 = n1 + k + l + m. Summing the second equation

of system (1) from n2 to n − 1 we have yn − yn2
=

n−1
∑

i=n2

big(zi−m) for n > n2. Since

yn2
> 0, we get yn >

n−1
∑

i=n2

big(zi−m). From (6), we have g(zn−m) > 0. By (3), we get

g(zn−m) > M(zn−m)
β

> 0. Therefore, using the fact that z is decreasing we infer

that yn > M(zn−m−1)
β

n−1
∑

i=n2

bi. Hence

(10) (yn−l)
α

> Mα(zn−l−m−1)
αβ

( n−l−1
∑

i=n2

bi

)α

.

Summing the first equation of system (1) from n2 to n − 1 and using (3), we have

xn > M
n−1
∑

i=n2

ai(yi−l)
α
. Using (10) in the above inequality, we obtain

(11) xn > M1+α

n−1
∑

i=n2

ai(zi−l−m−1)
αβ

( i−l−1
∑

j=n2

bj

)α

.
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As the sequence z is decreasing we have

(12) xn > M1+α(zn+k)
αβ

n−1
∑

i=n2

ai

( i−l−1
∑

j=n2

bj

)α

.

From the third equation of system (1), we get −∆zn+k = cn+kh(xn). By (3), we

have −∆zn+k > cn+kM(xn)
γ
. Using (12) in the above equality, we obtain

−∆zn+k > cn+kM2+α(zn+k)
αβγ

( n−1
∑

i=n2

ai

( i−l−1
∑

j=n2

bj

)α)γ

.

Hence, we obtain

−
∆zn

(zn)αβγ
> cnM2+α

( n−k−1
∑

i=n2

ai

( i−l−1
∑

j=n2

bj

)α)γ

for n > n2.

Summing the above inequality from n2 to n − 1 we obtain

−

n−1
∑

i=n2

∆zn

(zn)αβγ
> M2+α

n−1
∑

i=n2

ci

( i−k−1
∑

j=n2

aj

( j−l−1
∑

s=n2

bs

)α)γ

.

For zn+1 < u < zn we have

∫ zn

zn+1

du

(u)αβγ
>

−∆zn

(zn)αβγ
for n > n2.

Hence
∫ zn2

0

du

(u)αβγ
> M2+α

∞
∑

i=n2

ci

( i−k−1
∑

j=n2

aj

( j−l−1
∑

s=n2

bs

)α)γ

which, by (4) and (8), is a contradiction. Therefore condition (I) cannot hold.

Suppose that condition (II) from Lemma 3 holds for large n, say n > n3. Then

yn < 0. From the first equation of system (1) we get that x is a nonincreasing

sequence. Therefore a nonnegative limit of the sequence x exists and

lim
n→∞

xn = L∗ < ∞.

By Lemma 2 we have

(13) lim
n→∞

yn = 0.
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We will prove that L∗ = 0. Suppose on the contrary that L∗ > 0. Then xn > L∗

for n > n3. Summing the third equation of system (1) from n to ∞, we get zn =
∞
∑

i=n

cih(xi−k). Then, by (3), we have

zn > M(xi−k)γ

∞
∑

i=n

ci > M(L∗)γ

∞
∑

i=n

ci for n > n4 = n3 + k + m.

Summing the second equation of system (1) from n4 to n − 1, we obtain yn =

yn4
+

n−1
∑

i=n4

big(zi−m) for n > n4. Thus, by (3), we get

yn > yn4
+ M

n−1
∑

i=n4

bi(zi−m)
β

> yn4
+ M1+β(L∗)γβ

n−1
∑

i=n4

bi

( ∞
∑

j=i−m

cj

)β

.

Hence, by (9), we have lim
n→∞

yn = ∞. This contradicts (13), so lim
n→∞

xn = 0. Hence,

by Lemma 2, we have lim
n→∞

zn = 0.

This completes the proof. �

Theorem 2. Let δ = 1 in (1). Assume that conditions (2) and (3) hold, and

(14)

∞
∑

n=1

cn = ∞.

Then every bounded solution (x, y, z) of system (1) is oscillatory.

P r o o f. Without loss of generality we assume that xn > 0. By Lemma 1 the

sequence (x, y, z) is a nonoscillatory solution of system (1). (If not, Theorem 1 holds.)

By Lemma 3, such a solution fulfils condition (I) or (III).

Let (x, y, z) be a nonoscillatory solution of system (1) for which condition (I)

holds. Then we get xn > 0, yn > 0 and zn > 0 for large n, say n > n5. Hence the

sequence y is eventually nondecreasing. Summing the first equation of system (1)

from n6 = n5 + l to n − 1 we have

xn = xn6
+

n−1
∑

i=n6

aif(yi−l) for n > n6.

Therefore, by positivity of sequences x and y and by (3), we get

xn > M

n−1
∑

i=n6

ai(yi−l)
α.
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Since y is nondecreasing we have xn > M(yn6−l)
α

n−1
∑

i=n6

ai. Thus, using (2), we obtain

that lim
n→∞

xn = ∞. Hence there is no nonoscillatory bounded solution of system (1)

which fulfils condition (I).

Let (x, y, z) be a nonoscillatory solution of system (1) for which condition (III)

holds. Without loss of generality xn > 0 for large n, say n > n7. Hence x is a

nondecreasing sequence. Then there exists a positive limit of the sequence x. Set

lim
n→∞

xn = L∗∗. Assume that L∗∗ < ∞. Hence, by Lemma 2, we have lim
n→∞

yn =

lim
n→∞

zn = 0.

Summing the third equation of system (1) from n8 = n7 + k to n − 1 we have

zn = zn8
+

n−1
∑

i=n8

cih(xi−k) for n > n8.

Therefore, by positivity of the sequence x and by (3), we get zn > zn8
+ M

n−1
∑

i=n8

ci

(xi−k)γ . Since x is a nondecreasing sequence we have

zn > zn8
+ M(xn8−k)γ

n−1
∑

i=n8

ci.

The left hand side of the above inequality tends to zero whereas the right hand

side, by (14), tends to infinity. This contradiction excludes that L∗∗ < ∞. Hence

lim
n→∞

xn = ∞. So, there is no nonoscillatory bounded solution of system (1) which

fulfils condition (III).

Hence the thesis of Theorem 2 holds. �
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