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Abstract. In this paper we consider the third-order nonlinear delay differential equation

(∗) (a(t)
(

x
′′(t)

)γ
)′ + q(t)xγ(τ (t)) = 0, t > t0,

where a(t), q(t) are positive functions, γ > 0 is a quotient of odd positive integers and the
delay function τ (t) 6 t satisfies lim

t→∞

τ (t) = ∞. We establish some sufficient conditions

which ensure that (∗) is oscillatory or the solutions converge to zero. Our results in the
nondelay case extend and improve some known results and in the delay case the results can
be applied to new classes of equations which are not covered by the known criteria. Some
examples are considered to illustrate the main results.

Keywords: third-order differential equation, oscillation, nonoscillation, disconjugacy

MSC 2010 : 34K11, 34C10

1. Introduction

In the recent years, the qualitative theory of differential equations and their ap-

plications have received intensive attention. Although the second-order differential

equations have been studied extensively, the study of qualitative behavior of third-

order differential equations has received considerably less attention. We mention

here papers [3], [4], [5], [8], [10], [12], [13], [15], [16], [17], [18], [19], [20] and the

references cited therein.

In this paper we are concerned with oscillation of the third-order delay differential

equations of the form

(1.1) (a(t) (x′′(t))
γ
)′ + q(t)xγ(τ(t)) = 0, t > t0.
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In the sequel we will assume that the following conditions are satisfied:

(H) a(t), q(t), τ(t) ∈ C([t0,∞)) are positive, γ is a quotient of odd positive integers,

τ(t) 6 t, lim
t→∞

τ(t) = ∞, and
∫

∞

t0
1/a1/γ(s) ds = ∞.

Let T0 = min{τ(t) : t > 0} and τ−1(t) = sup{s > 0: τ(s) 6 t} for t > T0.

Clearly τ−1(t) > t for t > T0, τ−1(t) is nondecreasing and coincides with the in-

verse of τ(t) when the latter exists. By a solution of (1.1) we mean a nontriv-

ial real-valued function x(t) which has the properties x′(t) ∈ C1([τ−1(t0),∞)) and

a(t) (x′(t))
γ ∈ C1([τ−1(t0),∞)). Our attention is restricted to the solutions of (1.1)

which exist on some half line [tx,∞) and satisfy sup{|x(t)| : t > t1} > 0 for any

t1 > tx. We make a standing hypothesis that (1.1) does possess such solutions. A

solution of (1.1) is said to be oscillatory if it has arbitrarily large zeros; otherwise

it is nonoscillatory. We recall that equation (1.1) is disconjugate on an interval

I = [t0,∞) provided no nontrivial solution has more than two zeros on I = [t0,∞),

counting their multiplicity.

In [7] the authors studied oscillation of the third order delay differential equation

(1.2) (a(t) (x′′(t))
γ
)′ + q(t)f(x(τ(t))) = 0, t > t0,

by comparing this equation with the first order delay equation, so that oscillation

of the first order equation implied oscillation of the third order equation. But such

comparison principle always requires τ(t) < t.

The purpose of this paper is to introduce a different technique to establish some

sufficient conditions which guarantee that every solution of (1.1) oscillates or con-

verges to zero. Some illustrative examples are also included.

2. Main results

In this section we establish some new oscillatory criteria for (1.1). First, we state

and prove some useful lemmas which we will use later in the proofs of our main

results. We note that if x(t) is a solution of (1.1), then z = −x is also a solution of

(1.1). Thus, concerning nonoscillatory solutions of (1.1) we can restrict our attention

only to the positive ones.

Lemma 1. Let x(t) be an eventually positive solution of (1.1). Then there are

only the following two cases for t > t1, t1 sufficiently large:

(i) x(t) > 0, x′(t) > 0, x′′(t) > 0;

(ii) x(t) > 0, x′(t) < 0, x′′(t) > 0.
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P r o o f. Assume that x(t) is a positive solution of (1.1) on [t0,∞). Pick T ∈
[t0,∞) such that T > t0 and x(τ(t)) > 0 on [T, ∞). From (1.1) and (H) we have

(a(t) (x′′(t))
γ
)′ = −q(t)xγ(τ(t)) < 0 for t > T.

Thus a(t)(x′′(t))γ is nonincreasing and of one sign, which implies that x′′(t) is of one

sign. If we admit that x′′(t) 6 0 eventually, then there exists a negative constant d

such that

a(t)(x′′(t))γ
6 d < 0 for, say, t > t1 > T.

Integrating from t1 to t, we obtain

(2.1) x′(t) 6 x′(t2) + d1/γ

∫ t

t1

a−1/γ(s) ds.

Letting t → ∞ and using (H), we get x′(t) → −∞. Thus, x′(t) < 0 eventually. But

x′(t) < 0 and x′′(t) < 0 eventually imply x(t) → −∞ as t → ∞, a contradiction.
Hence x′′(t) > 0. The proof is complete. �

Definition 1. We say that a solution x(t) of (1.1) is from the class A if it satisfies

(i), and x(t) is from the class B if it satisfies (ii)

Lemma 2. Let x(t) be from the class B. If

(2.2)

∫

∞

t0

∫

∞

z

[

1

a(u)

∫

∞

u

q(s) ds

]1/γ

du dz = ∞,

then lim
t→∞

x(t) = 0.

P r o o f. Since x(t) is from the class B, so x(t) is positive and decreasing.

Therefore there exists a finite

lim
t→∞

x(t) = l.

We prove that l = 0. Assume this is not the case, i.e., l > 0. Hence x(τ(t)) > x(t) > l

for all t > t2 > t1. Integrating (1.1) from t to ∞ and using xγ(τ(t)) > lγ , we get

x′′(t) > l

[

1

a(t)

∫

∞

t

q(s) ds

]1/γ

.

Integrating again from t to ∞, we have

−x′(t) > l

∫

∞

t

[

1

a(u)

∫

∞

u

q(s) ds

]1/γ

du.
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Integrating from t2 to ∞, we obtain

(2.3) x(t2) > l

∫

∞

t2

∫

∞

z

[

1

a(u)

∫

∞

u

q(s) ds

]1/γ

du dz.

This is a contradiction with (2.2). Hence l = 0 and the proof is complete. �

Lemma 3. Assume that z(t) > 0, z′(t) > 0, z′′(t) 6 0 on (t0,∞). Then for each

l ∈ (0, 1) there exists a Tl > t0 such that

z(τ(t))

τ(t)
> l

z(t)

t
for t > Tl.

P r o o f. It follows from the mean value theorem and the monotone properties

of z′(t) that

z(t) − z(τ(t)) 6 z′(τ(t))(t − τ(t))

or

(2.4)
z(t)

z(τ(t))
6 1 +

z′(τ(t))

z(τ(t))
(t − τ(t)).

Using the mean value theorem once more, we see that

z(τ(t)) > z(τ(t)) − z(t0) > z′(τ(t))(τ(t) − t0).

So for each l ∈ (0, 1) there is a Tl > t0 such that

(2.5)
z(τ(t))

z′(τ(t))
> lτ(t), t > Tl.

Combining (2.4) with (2.5), we get

z(t)

z(τ(t))
6 1 +

1

lτ(t)
(t − τ(t)) 6

t

lτ(t)

and the proof is complete. �
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Lemma 4. Assume that x(t) > 0, x′(t) > 0, x′′(t) > 0, x′′′(t) 6 0 on (Tl,∞).

Then
x(t)

x′(t)
>

t − Tl

2
for t > Tl.

P r o o f. Set

X(t) := (t − Tl)x(t) − (t − Tl)
2

2
x′(t).

Then X(Tl) = 0, and

X ′(t) = x(t) − (t − Tl)
2

2
x′′(t).

We shall prove that X(t) > 0. By Taylor’s Theorem, since x′′(t) is nonincreasing,

we have

x(t) > x(Tl) + (t − Tl)x
′(Tl) +

(t − Tl)
2

2
x′′(t).

This implies

X ′(t) = x(t) − (t − Tl)
2

2
x′′(t) > x(Tl) + (t − Tl)x

′(Tl) > 0.

Since X(Tl) = 0, one gets X(t) > 0 for t > Tl, which implies the desired inequality.

�

Lemma 5. Assume that x′(t) > 0, x′′(t) > 0, x′′′(t) 6 0 on (Tl,∞). Then

(t − Tl)
x′′(t)

x′(t)
6 1 for t > Tl.

P r o o f. The result follows from the inequality

x′(t) >

∫ t

Tl

x′′(s) ds > x′′(t)(t − Tl).

�

Now, we present the main results. For simplicity, we introduce the following

notation:

(2.6) p∗ := lim inf
t→∞

tγ

a(t)

∫

∞

t

Pl(s) ds, q∗ := lim sup
t→∞

1

t

∫ t

t0

sγ+1

a(s)
Pl(s) ds,

where Pl(s) = lγq(s)(τ(s)/s)γ(1
2 (τ(s) − Tl))

γ with l ∈ (0, 1) arbitrarily chosen and

Tl large enough. Moreover, for x(t) from the class A we define

(2.7) w(t) := a(t)
(x′′(t)

x′(t)

)γ

,

229



and

(2.8) r := lim inf
t→∞

tγw(t)

a(t)
and R := lim sup

t→∞

tγw(t)

a(t)
.

Theorem 1. Assume that a′(t) > 0. Let x(t) be a positive solution of (1.1).

(I) Let p∗ < ∞ and q∗ < ∞. Suppose that x(t) is from the class A. Then

(2.9) p∗ 6 r − r1+1/γ and p∗ + q∗ 6 1.

(II) If p∗ = ∞ or q∗ = ∞, then x(t) is not from the class A.

P r o o f. Part (I). Assume that x(t) is from the class A. First note that a′(t) > 0,

which together with

0 > (a(t)(x′′(t))
γ
)′

implies x′′′(t) 6 0. So there exists a T > t0 such that x(t) satisfies

x(τ(t)) > 0, x′(t) > 0, x′′(t) > 0, x′′′ 6 0, for t ∈ [T,∞).

From the definition of w(t) and (1.1) we see that w(t) is positive and satisfies

(2.10) w′(t) =
(x′(t)))γ (

a(t) (x′′(t))γ)

′ −
(

a(t) (x′′(t))γ)

γ (x′(t))γ−1 x′′(t)

(x′(t))
2γ

=

(

a(t) (x′′(t))
γ)

′

(x(τ(t)))γ
(x(τ(t)))

γ

(x′(t)))γ − γ

(

a(t) (x′′(t))
γ)

(x′(t))γ
x′′(t)

x′(t)

= −q(t)
(x(τ(t)))

γ

(x′(t))
γ − γ

a1/γ(t)
w1+1/γ(t).

From Lemma 3 with z(t) = x′(t), we have for the same l as in Pl

1

x′(t)
> l

τ(t)

t

1

x′(τ(t))
, t > Tl,

which together with (2.10) gives

w′(t) 6 −lγq(t)
(τ(t)

t

)γ (x(τ(t)))γ

(x′(τ(t))
γ − γ

a1/γ(t)
w(γ+1)/γ(t).

Using the fact from Lemma 4 that x(t) > 1
2 (t − Tl)x

′(t), we have

(2.11) w′(t) + Pl(t) +
γ

a1/γ(t)
w(γ+1)/γ(t) 6 0.
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Since Pl(t) > 0 and w(t) > 0 for t > Tl, we have from (2.11) that w′(t) 6 0, and

(2.12) −(w′(t)/γw(γ+1)/γ(t)) >
1

a1/γ(t)
for t > Tl.

This implies that

(2.13) (1/w1/γ(t))′ >
1

a1/γ(t)
.

Integrating the last inequality from Tl to t, we obtain

(2.14) w(t) <
1

( ∫ t

Tl

ds/a1/γ(s)
)γ ,

which in view of (H) implies that lim
t→∞

w(t) = 0. On the other hand, from the defini-

tion of w(t) and Lemma 5 we see that

(2.15) 0 6 r 6 R < k < ∞.

Now, we prove that the first inequality in (2.9) holds. Let ε > 0, then by the

definitions of p∗ and r we can pick t2 ∈ [Tl,∞) sufficiently large so that

tγ

a(t)

∫

∞

t

Pl(s) ds > p∗ − ε, and
tγw(t)

a(t)
> r − ε for t ∈ [t2,∞).

Integrating (2.11) from t to ∞ and using lim
t→∞

w(t) = 0, we have

(2.16) w(t) >

∫

∞

t

Pl(s) ds + γ

∫

∞

t

w1+1/γ(s)

a1/γ(s)
ds, for t ∈ [t2,∞).

By virtue of the fact that a′(t) > 0, it follows from (2.16) that

tγ

a(t)
w(t) >

tγ

a(t)

∫

∞

t

Pl(s) ds + γ
tγ

a(t)

∫

∞

t

a(s)(w(s))1/γ+1sγ+1

sγ+1a1/γ+1(s)
ds

> (p∗ − ε) +
tγ (r − ε)

1+1/γ

a(t)

∫

∞

t

γa(s)

sγ+1
ds

> (p∗ − ε) + (r − ε)
1+1/γ

tγ
∫

∞

t

γ

sγ+1
ds,

so that

(2.17)
tγ

a(t)
w(t) > (p∗ − ε) + (r − ε)

1+1/γ
tγ

∫

∞

t

γ

sγ+1
ds.
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From (2.17) we have

tγw(t)

a(t)
> (p∗ − ε) + (r − ε)

1+1/γ
.

Taking the lim inf of both sides as t → ∞, we get that

r > p∗ − ε + (r − ε)
1+1/γ

.

Since ε > 0 is arbitrary, we get the desired result

p∗ 6 r − (r)
1+1/γ

.

To complete the proof of Part (I) it remains to prove the second inequality in (2.9).

To do this we will use the inequality (2.11). Multiplying (2.11) by tγ+1/a(t) and

integrating from t2 to t (t > t2), we get

(2.18)

∫ t

t2

sγ+1

a(s)
w′(s) ds 6 −

∫ t

t2

sγ+1

a(s)
Pl(s) ds − γ

∫ t

t2

(sγw(s)

a(s)

)(γ+1)/γ

ds.

Using integration by parts, we obtain

tγ+1

a(t)
w(t) 6

tγ+1
2 w(t2)

a(t2)
−

∫ t

t2

sγ+1

a(s)
Pl(s) ds − γ

∫ t

t2

(sγw(s)

a(s)

)(γ+1)/γ

ds

+

∫ t

t2

(sγ+1

a(s)

)

′

w(s) ds.

Since a′(t) > 0, we have

(sγ+1

a(s)

)

′

=
a(s)(γ + 1)sγ − a′(s)sγ+1

(a(s))2
6

(γ + 1)sγ

a(s)
.

Hence

tγ+1

a(t)
w(t) 6

tγ+1
2 w(t2)

a(t2)
−

∫ t

t2

sγ+1

a(s)
Pl(s) ds

+

∫ t

t2

[

(γ + 1)
sγw(s)

a(s)
− γ

(sγw(s)

a(s)

)(γ+1)/γ
]

ds.

Using the inequality

Bu − Au(γ+1)/γ
6

γγ

(γ + 1)γ+1

Bγ+1

Aγ
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with u(s) := sγw(s)/a(s) > 0, and positive constants A = γ, B = γ + 1, we get

tγ+1

a(t)
w(t) 6

tγ+1
2 w(t2)

a(t2)
−

∫ t

t2

sγ+1

a(s)
Pl(s) ds + (t − t2).

It follows that

(2.19)
tγ

a(t)
w(t) 6

1

t

tγ+1
2 w(t2)

a(t2)
− 1

t

∫ t

t2

sγ+1

a(s)
Pl(s) ds +

t − t2
t

.

Taking the lim sup of both sides as t → ∞, we obtain

R 6 −q∗ + 1.

Combining this with the first inequality in (2.15), we get

p∗ 6 r − r1+1/γ 6 r 6 R 6 −q∗ + 1,

which gives the desired second inequality in (2.9). The proof of Part (I) is complete.

Part (II). Assume that x(t) is a positive solution of (1.1). We shall show that x(t)

is not from the class A. Assume the contrary. First we admit that p∗ = ∞. Then
exactly as in the proof of the first part we get (2.16). Then

tγ

a(t)
w(t) >

tγ

a(t)

∫

∞

t

Pl(s) ds.

Taking the lim inf of both sides as t → ∞, we get in view of (2.15) that

k > r > ∞,

a contradiction. Now we admit that q∗ = ∞. Then taking lim inf and lim sup on the

left and right hand sides of (2.19), respectively, we get

0 6 R 6 −∞.

This contradiction completes the proof of Part (II). �

Now we are ready to present the following oscillation criterion for (1.1).
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Theorem 2. Let a′(t) > 0. Assume that (2.2) holds. Let x(t) be a solution of

(1.1). If

(2.20) p∗ = lim inf
t→∞

tγ

a(t)

∫

∞

t

Pl(s) ds >
γγ

(γ + 1)γ+1
,

then x(t) is oscillatory or satisfies lim
t→∞

x(t) = 0.

P r o o f. Suppose that x(t) is a positive solution of equation (1.1). If p∗ = ∞,

then Theorem 1 ensures that x(t) is from the class B, and from Lemma 2 we see

that lim
t→∞

x(t) = 0.

Next, we assume that p∗ < ∞. We shall discuss two possibilities. If x(t) is from

the class B, then exactly as above we are led by Lemma 2 to lim
t→∞

x(t) = 0.

Now we assume that x(t) is from the class A. Let w(t) and r be defined by (2.7)

and (2.8), respectively. Then from Theorem 1 we see that r satisfies the inequality

p∗ 6 r − r(γ+1)/γ .

Using the inequality

Bu − Au(γ+1)/γ
6

γγ

(γ + 1)γ+1

Bγ+1

Aγ

with A = B = 1, we get that

p∗ 6
γγ

(γ + 1)γ+1
,

which contradicts (2.20). This completes the proof. �

The proof of the next result is similar to that of Theorem 2, so it can be omitted.

Theorem 3. Let a′(t) > 0. Assume that (2.2) holds. Let x(t) be a solution of

(1.1). If

p∗ + q∗ > 1,

then x(t) is oscillatory or satisfies lim
t→∞

x(t) = 0.

As a consequence of Theorem 3, we have the following result.
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Corollary 1. Let a′(t) > 0. Assume that (2.2) holds. Let x(t) be a solution of

(1.1). If

q∗ = lim inf
t→∞

1

t

∫ t

t0

sγ+1

a(s)
Pl(s) ds > 1,

then x(t) is oscillatory or satisfies lim
t→∞

x(t) = 0.

Theorems 2 and 3 provide new oscillation criteria also for the following partial

case of (1.1):

(a(t)x′′(t))′ + q(t)x(t) = 0.

R em a r k 1. In Lemma 4 we have proved that if x(t) is from the class A and

x′′′(t) 6 0, then

x(t) >
(t − Tl)

2

2
x′′(t).

So for t sufficiently large, we have

x(τ(t)) >
(τ(t) − Tl)

2

2
x′′(τ(t)),

which together with (1.1) provides

(

a(t) (x′′(t))
γ)

′

+ q(t)

(

(τ(t) − Tl)
2

2

)γ

(x′′(τ(t)))
γ

6 0.

Setting y(t) = a(t) (x′′(t))
γ

> 0, we have

(2.21) y′(t) +
q(t)

a(τ(t))

(

(τ(t) − Tl)
2

2

)γ

y(τ(t)) 6 0.

This means that if x(t) is a positive solution of (1.1), then y(t) is a positive solution

of the first order delay differential inequality (2.21), which is the reduction of order.

Using well-known oscillation criteria (see e.g. Theorem 2.1.1 and 2.1.3 in [14]) for

(2.21), we have the following oscillation results for (1.1).

Theorem 4. Let a′(t) > 0. Assume that (2.2) holds. Let x(t) be a solution of

(1.1). If

lim inf
t→∞

∫ t

τ(t)

q(s)

a(τ(s))

(

(τ(s) − T )2

2

)γ

ds >
1

e

or

lim sup
t→∞

∫ t

τ(t)

q(s)

a(τ(s))

(

(τ(s) − T )2

2

)γ

ds > 1,

then x(t) is either oscillatory or satisfies lim
t→∞

x(t) = 0.
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E x am p l e 1. Consider the third-order linear differential equation

(2.22) x′′′(t) +
a

t3
x(λt) = 0, a > 0, 0 < λ 6 1, t > 1.

Since (2.2) holds, it follows from Theorem 2 that any solution of (2.22) oscillates or

satisfies lim
t→∞

x(t) = 0 provided that

aλ2 > 1.

One can easily see that the basis of the solution space of (2.22) with a = 6, λ = 1 is

given by

{t−1, t2 cos
√

2 log t, t2 sin
√

2 log t}.

R em a r k 2. We mention here that the results given in [4], [5], [10], [15], [16]

cannot be applied to the equation (2.22).

E x am p l e 2. Consider the nonlinear differential equation

(2.23) ((x′′(t))3)′ +
a

t7
x3(λt) = 0, a > 0, 0 < λ 6 1, t > 1.

It is clear that (2.2) holds. Applying Theorem 2, we see that the solutions of (2.23)

oscillate or satisfy lim
t→∞

x(t) = 0 if

aλ6 >
34

42
.

Note that the results by Grace [7] cannot be applied to the equations (2.22) and

(2.23).

R em a r k 3. It remains an open problem how to extend the above results to

cover the case
∞
∫

t0

1/a1/γ(s) ds < ∞.
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