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Abstract. NURBS (Non-Uniform Rational B-Splines) belong to special approximation
curves and surfaces which are described by control points with weights and B-spline basis
functions. They are often used in modern areas of computer graphics as free-form modelling,
modelling of processes. In literature, NURBS surfaces are often called tensor product
surfaces. In this article we try to explain the relationship between the classic algebraic
point of view and the practical geometrical application on NURBS.
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1. Introduction

NURBS have become a standard type of mathematical approximation of surfaces

in modern computer graphics. The general NURBS surface is described by a net

of control points with weights and by two knot vectors. Theory of NURBS is sum-

marized in [9], for example. NURBS objects are often used for free-form modelling

because of their good modification possibilities (e.g. technic FFD—see [12]). The

NURBS are used in different branches, for example robotics [5], film industry [13],

reverse engineering [10], GIS [14], physical computing [11], etc.

The basic B-spline theory was proposed by Carl de Boor in [1], where the tensor

product is schematically described. Tensor calculus is described in [2] and [6]. Non-

tensor product NURBS surfaces using the smoothing cofactor-conformality method

are constructed in [7].

*This work was supported by the project of MSMT of the Czech Republic No. 1M06047
Centre for Quality and Reliability of Production.
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In this paper, we try to explain the algebraic point of view on tensor product

surfaces and to establish the connection between this theory and the geometrical

and practical use of NURBS.

Section 2 briefly outlines the basic tensor theory. In Section 3 the algebraic ap-

proach to B-spline functions and curves is discussed. Section 4 discusses the pro-

jective extension of NURBS curves and defines the abstract curve as a set of curves

which are invariant with each other.

In Section 5 we deal with the NURBS surfaces. Analogously to Section 4, we

introduce an abstract surface based on the characteristic form. In the last Section 6,

we discuss some results and practical examples of our theory.

2. Tensor calculus

Let U , V be vector spaces over a field T. A bilinear form ω on U ×V is a function

ω : U×V → T which satisfies the well-known axioms. The vector space of all bilinear

forms between spaces U and V is called the tensor product. These mappings can be

written as

(2.1) ω(u,v) =

m
∑

i=0

n
∑

j=0

uivjω(ei, fj) =

m
∑

i=0

n
∑

j=0

uivjaij , aij = (ei, fj),

or in the matrix form

(2.2) ω(u,v) = (u0, u1, . . . , um)











a00 a01 . . . a0n

a10 a11 . . . a1n

...
...

. . .
...

am0 am1 . . . amn





















v0

v1

...

vn,











,

where ui, i = 0, . . . , m, vj , j = 0, . . . , n are the coordinates of the vectors u ∈ U ,

v ∈ V with bases {e0, e1, . . . , em}, {f0, f1, . . . , fn}.
A surface is described by a function of two parameters as a mapping of a plane

area to Euclidean 3-dimensional space. Formally

(2.3) S(s, t) = (x(s, t), y(s, t), z(s, t)) =

m
∑

i=0

n
∑

j=0

fi(u)gj(v)bij

where bij = (xij , yij , zij), 0 6 s, t 6 1, m = 2, n = 2.

Eq. (2.1) is formally similar to Eq. (2.3). Therefore, NURBS surface defined by

Eq. (2.3) is often called as the tensor product surface (see [9]).
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Eq. (2.3) defines a mapping of the setD = 〈s1, s2〉×〈t1, t2〉 (the set of ordered pairs
[s, t]—the so called parameters area) to the Euclidean point space E3. Therefore,

the point S = [x, y, z] of the surface S is a function of two real variables s, t.

3. B-spline curves—algebraic point of view

Definition 3.1. Let t = (t0, t1, . . . tn) be a non-decreasing sequence of positive

real numbers. The sequence t is called a knot vector. The B-spline function of

degree p is defined as

N0
i (t) =

{

1, t ∈ 〈ti, ti+1),

0, otherwise,

(3.1) N
p
i (t) =

t − ti

ti+p − ti
N

p−1

i (t) +
ti+p+1 − t

ti+p+1 − ti
N

p−1

i+1
(t),

where p > 0, 0 6 i 6 n − p − 1, i 6 p 6 n − 1, 0

0
= 0.

E x am p l e 3.1. The knot vector is t = (0, 0, 1, 1), the degree p = 0, 1, the basis

functions are

N0
0 (t) = 0, N0

1 (t) = 1, N0
2 (t) = 0,

N1
0 (t) = 1 − t, N1

1 (t) = t, t ∈ 〈0, 1).

E x am p l e 3.2. The knot vector is t = (0, 0, 0, 1, 1, 1), the degree p = 0, 1, 2, the

basis functions are

N0
i (t) = 0 for i = 0, 1, 3, 4, N0

2 (t) = 1,

N1
0 (t) = N1

3 (t) = 0, N1
1 (t) = 1 − t, N1

2 (t) = t,

N2
0 (t) = (1 − t)2, N2

1 (t) = 2t(1 − t), N2
2 (t) = t2, t ∈ 〈0, 1).

We can see that the polynomials of degree two correspond to the Bezier coefficients,

because the Bezier curve is a subset of NURBS curves for a special knot vector (see

e.g. [4]).

An arbitrary B-spline curve can be defined as

Definition 3.2. Let t = (t0, t1, . . . , tn) be a knot vector, let p > 1 be the degree

and Pi ∈ Ed, i = 0, 1, . . . , m, the control points. The B-spline curve is defined by

(3.2) C(t) =

m
∑

i=0

PiN
p
i (t),

where N
p
i are the B-spline functions.
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Eq. (3.2) can be written in the vector form as

(3.3) c(t) =

m
∑

i=0

PiN
p
i (t),

where c(t) is the varying location vector of the curve points.

4. Explanation of weights of non-uniform B-spline

(NURBS)—geometric point of view

NURBS curves are defined similarly to the B-spline. Every point Pi ∈ Ed has its

real weight ωi, i = 0, 1, . . . , m. So an expression similar to (3.2) can be written as

(4.1) C(t) =

m
∑

i=0

ωiPiN
p
i (t)

m
∑

i=0

ωiN
p
i (t)

and one coordinate can be written as

(4.2) ck(t) =

m
∑

i=0

ωipikN
p
i (t)

m
∑

i=0

ωiN
p
i (t)

, k = 1, 2, . . . , d.

More information about the influence of the weights on the form of the NURBS curve

is available in [8].

Coordinates ck(t) in Eq. (4.2) are not linear combinations of basic functions, there-

fore they cannot be used for tensor product construction. We will show that these

coordinates can be written as linear combinations of B-spline functions.

Let Pi = [pi1, pi2, . . . , pid] ∈ Ed be a d-dimensional point of the Euclidean

space Ed. Eq. (3.2) can be written as

(4.3) ck(t) =

m
∑

i=0

pikN
p
i (t), k = 1, 2, . . . , d,

where C = [c1, c2, . . . , cd] ∈ Ed. In the projective extension E
d
of the space Ed there

is a correspondence between points C,Pi ∈ Ed and C,Pi ∈ E
d
. These points can

be written as

Pi = (pi1, . . . , pid, pid+1) = ωi(pi1, . . . , pid, 1) = (ωipi1, . . . , ωipid, ωi),(4.4)

C = (c1, c2, . . . , cd, cd+1) = ω(c1, c2, . . . , cd, 1) = (ωc1, ωc2, . . . , ωcd, ω),(4.5)

422



where ωi 6= 0 (ω 6= 0) generates the point Pi or C using its arithmetic representation

(pi1, . . . , pid; 1) or (c1, . . . , cd; 1) respectively.

In the projective extension E
d
of the space Ed, Eq. (4.3) can be written as

(4.6) ck(t) =

m
∑

i=0

pikN
p
i (t) =

m
∑

i=0

ωipikN
p
i (t), k = 1, 2, . . . , d + 1.

It is evident that the basis functions for the B-spline are the same as for NURBS.

The difference between Eq. (4.2) and Eq. (4.6) is in the usage of non-homogeneous

and homogeneous coordinates. An arbitrary point C is

C = (c1, c2, . . . , cd, cd+1)(4.7)

=

( m
∑

i=0

ωipi1N
p
i (t),

m
∑

i=0

ωipi2N
p
i (t), . . . ,

m
∑

i=0

ωipidN
p
i (t),

m
∑

i=0

ωiN
p
i (t)

)

.

We have cd+1 6= 0 for proper points in (4.7). We get the Cartesian coordinates of

the corresponding euclidean point by dividing by the last number:

(4.8) C =
( c1

cd+1

,
c2

cd+1

, . . . ,
cd

cd+1

, 1
)

⇒ C =
( c1

cd+1

,
c2

cd+1

, . . . ,
cd

cd+1

)

.

Eq. (4.8) corresponds to Eq. (4.1) of the rational expression of the NURBS curve.

Abstract curves

NURBS curves or surfaces are commonly used in various CAD/CAM systems.

The work with weights is based on decreasing or increasing the number from the

explicit value 1. It causes the different shape of the curve (surface). Weights are

obviously interpreted as the weights of the control points. From the geometrical

point of view, however, the situation is somewhat different.

E x am p l e 4.1. Let us have a NURBS curve with arbitrary three control points

P0, P1, P2, a knot vector (0, 0, 0, 1, 1, 1) and a weight vector (1, ω1, 1). The value of ω1

changes the type of the curve:

• ω1 < 1 → ellipse,
• ω1 = 1 → parabola,
• ω1 > 1 → hyperbola.

We see that the position of the control points does not change the type of the

curve. So the weights decide about the geometric behavior of the curve.
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Definition 4.1. The set of all curves with the same weight vector (ω0, . . . , ωm)

over the same knot vector is called an abstract NURBS curve. The expression of the

last term in Eq. (4.7)

(4.9) cd+1 =

m
∑

i=0

ωiN
p
i

is called the equation of the abstract curve.

R em a r k 4.1. Eq. (4.9) is not an equation of a concrete curve. A particular

curve is determined by the control points chosen. In this way, a representation of

the abstract curve is actually chosen.

R em a r k 4.2. The concrete curves in the same abstract curve have the same

geometrical behavior. It means that one curve can be transformed to another by

projective transformations.

For m = 2, Eq. (4.9) is the equation of an abstract conic section. It describes the

set of all conic sections which are projectively invariant. With a special choice of the

control points we get the classical conic sections, i.e. hyperbola, parabola, ellipse.

For example, the characteristic equation

(4.10) cd+1 = N2
0 +

√
2

2
N2

1 + N2
2

or the weight vector

(4.11)
(

1, 1

2

√
2, 1

)

determine the elliptic arc defined by the so-called polar conjugate diameters. If the

control points P0, P1, P2 satisfy

−−→
P0P1 ⊥ −−→

P1P2,

these diameters are the axes of the ellipse. If, in addition,

|P0P1| = |P1P2| = r,

then the arc is a quadrant. The abstract curve defined by the vector (4.11) is

illustrated in Fig. 1. Axis affinity as an important example of projective transform

is used.
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P ′

1

P ′
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B′′

P ′′
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P ′′

1

P ′′

2

a1
a2

Figure 1. Different representants of abstract NURBs curve (1,
√

2/2, 1).

R em a r k 4.3. By means of suitable control points, four representations may be

selected in (4.11) to create an ellipse.

R em a r k 4.4. Substitute the vector kω = (kω0, . . . , kωm), k 6= 0 for ω =

(ω0, . . . , ωm) in (4.9). Then we get

C =

(

k

m
∑

i=0

ωipi1N
p
i (t), k

m
∑

i=0

ωipi2N
p
i (t), . . . ,(4.12)

k

m
∑

i=0

ωipidN
p
i (t), k

m
∑

i=0

ωiN
p
i (t)

)

.

Dividing by the last member we obtain the same homogeneous coordinates as for the

vector ω = (ω0, . . . , ωm). It means that the weight vectors ω, kω, k 6= 0, define the

same abstract curve. This fact is used in particular for k = −1 in the next chapter.

5. NURBS surface as the tensor product of NURBS curves

NURBS surface is defined on a regular net of control pointsPij ∈ Ed, i = 0, . . . , m;

j = 0, . . . n with weights ωij and with two knot vectors u = (u0, u1, . . . , um+p+1) and

v = (v0, v1, . . . , vn+q+1).

The equation of the NURBS surface can be written as

(5.1) C(u, v) =

m
∑

i=0

n
∑

j=0

ωijPijN
p
i (u)N q

j (v)

m
∑

i=0

n
∑

j=0

N
p
i (u)N q

j (v)
,

where (u, v) ∈ 〈u0, um+p+1) × 〈v0, vn+q+1).
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The kth coordinate of a point on a NURBS surface is

(5.2) ck(u, v) =

m
∑

i=0

n
∑

j=0

ωijpijkN
p
i (u)N q

j (v)

m
∑

i=0

n
∑

j=0

N
p
i (u)N q

j (v)
, k = 0, 1, . . . , d,

where pijk is the kth Cartesian coordinate of Pij .

In the projective extension Ed of the space Ed, NURBS surface has equations

ck(u, v) =

m
∑

i=0

n
∑

j=0

ωijpijkN
p
i (u)N q

j (v), k = 0, 1, . . . , d,(5.3)

cd+1(u, v) =

m
∑

i=0

n
∑

j=0

ωijN
p
i (u)N q

j (v),(5.4)

where pijk is the kth projective coordinate of the corresponding P ij .

The matrix notation of Eqs. (5.3) and (5.4) is

(5.5) ck = (Np
0 , N

p
1 , . . . , Np

m)











ω00p00k ω01p01k . . . ω0np0nk

ω10p10k ω11p11k . . . ω1np1nk

...
...

. . .
...

ωm0pm0k ωm1pm1k . . . ωmnpmnk





















N
q
0

N
q
1

...

N q
n











and

(5.6) cd+1 = (Np
0
, N

p
1
, . . . , Np

m)











ω00 ω01 . . . ω0n

ω10 ω11 . . . ω1n

...
...

. . .
...

ωm0 ωm1 . . . ωmn





















N
q
0

N
q
1

...

N q
n











.

Definition 5.1. The matrix of type (m + 1) × (n + 1) in (5.6) is called the

weight matrix. The set of all NURBS surfaces with the same weight matrix is called

an abstract NURBS surface. Equation (5.4) or (5.6) is called the equation of the

abstract NURBS surface (compare with Def. 4.1).

Remarks 4.2 and 4.1 hold for abstract and concrete NURBS surfaces by analogy.

Assume ωij 6= 0 for all i = 0, 1, . . . , m, j = 0, 1, . . . , n and choose r = 0, . . . , m and

s = 0, . . . , n arbitrary but constant indexes. Let

(5.7) ωrs = ±
√

|ωrs|.
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If ωrs > 0, let

ωis =
ωis

ωrs

; ωrj =
ωrj

ωrs

; ωij =
ωij

ωisωrj

.

If ωrs < 0, let

ωis = −ωis

ωrs

; ωrj =
ωrj

ωrs

; ωij =
ωij

ωisωrj

.

Equations (5.5) and (5.6) are transformed to equations

ck = (ω0sN
p
0 , . . . , ωrsN

p
r , . . . , ωmsN

p
m)(5.8)

×

















ω00p00k . . . p0sk . . . ω0np0nk

...
. . .

...
. . .

...

pr0k . . . prsk . . . prnk

...
. . .

...
. . .

...

ωm0pm0k . . . pmsk . . . ωmnpmnk

































ωr0N
q
0

...

ωrsN
q
s

...

ωrnN q
n

















and

cd+1 = (ω0sN
p
0 , . . . , ωrsN

p
r , . . . , ωmsN

p
m)(5.9)

×

















ω00 . . . 1 . . . ω0n

...
. . .

...
. . .

...

1 . . . 1 . . . 1
...

. . .
...
. . .

...

ωm0 . . . 1 . . . ωmn

































ωr0N
q
0

...

ωrsN
q
s

...

ωrnN q
n

















by these substitutions.

To construct the tensor product surface, it is necessary to work with vec-

tor spaces N
p
m and N

q
n which are generated respectively by B-spline functions

[Np
0 , N

p
1 , . . . , Np

m] and [N q
0 , N

q
1 , . . . , N q

n] with knot vectors u and v.

The elements of these spaces are linear combinations of basis functions in the

form (4.9)—sets of projective invariant curves (abstract curves). The coordinates of

the abstract NURBS curve as a vector of the vector space Np
m are the coordinates

of its weight vector (ω0, ω1, . . . , ωm).

The tensor productNp
m⊗N

q
n of vector spacesN

p
m andN

q
n (sets of abstract curves,

i.e. projectively invariant NURBS curves) is a set of bilinear forms

ω(Np
u
, N q

v
) = cd+1(5.10)

= (ω0s, . . . , ωrs, . . . , ωms)

















ω00 . . . 1 . . . ω0n

...
. . .

...
. . .

...

1 . . . 1 . . . 1
...

. . .
...
. . .

...

ωm0 . . . 1 . . . ωmn

































ωr0

...

ωrs

...

ωrn

















.
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Definition 5.2. The set of all bilinear forms (5.10) is called the r, s-partial tensor

product of abstract curves given by vectors (ω0s, . . . , ωrs, . . . , ωms) and (ωr0, . . . ,

ωrs, . . . , ωrn). If in the weight matrix (5.10), ωij = 1 holds for all i, j; i = 0, 1, . . . , m,

j = 0, 1, . . . , n then (5.10) is called the total tensor product (or shortly the tensor

product) of these curves. The bilinear form (5.10) is the weight form of the abstract

surface.

A sign conversion of ωrs according to (5.7) results in the sign conversion of all ωis

or ωrj in (5.8), (5.9), (5.10), i.e. in the sign conversion of the weight vectors of both

the curves in the tensor product. However, the vectors ω and −ω define the same

abstract curves (see Remark 4.4). The transform of the characteristic equation (5.6)

to the r, s-partial tensor product (5.10) is unique.

The partial tensor product of abstract curves does not define the abstract surface

uniquely. For example, all 0,0-partial products of the same NURBS abstract curves

have identical two boundaries, but other rth and sth abstract curves may be different.

The total tensor product defines the abstract surface uniquely which follows from

the fact that all r-curves (s-curves) are identical.

6. Results and applications

The dimensions of the spaces N
p
m and N

q
n are m + 1 or n + 1 respectively. It

means that they are isomorphic with linear spaces Rm+1 and R
n+1 respectively but

the spaces Np
m and N

q
n are more suitable for practical use.

E x am p l e 6.1. The weight form

ω(N2
2 N2

2 ) =
(

1,
1

2
, 1

)





1 1 1

1 ω11 ω12

1 ω21 ω22









1

2

1





describes the surface which is created by the 0,0-partial tensor product of the el-

lipse
(

1, 1

2
, 1

)

and the hyperbola (1, 2, 1). These two abstract curves represent the

adjoining curves of the surface boundary. The next boundary curves are specified by

characteristic vectors
(

1, 1

2
ω12, ω22

)

and (1, 2ω21, ω22). Other r-curves, s-curves are

curves with characteristic vectors
(

1, 1

2
ω11, ω21

)

and (1, 2ω11, ω12).

E x am p l e 6.2. Consider an abstract surface with the weight form

ω(N2
2 N2

2 ) =
(

1,
1

2
, 1

)





1 1 1

1 2 1

1 1 1









1

2

1



 .
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It is a partial tensor product of 0,0-type (or 0,2; 2,0; 2,2 types too) of the ellipse
(

1, 1

2
, 1

)

and the hyperbola (1, 2, 1). These curves form the boundary of the surface,

the “central” curves are the parabola (1, 1, 1) and the hyperbola (1, 4, 1).

E x am p l e 6.3. The characteristic form of the total tensor product of a parabola

and a line is

ω(N1
1 N2

2 ) = (1, 1)

(

1 1 1

1 1 1

)





1

1

1



 .

The resulting surface is a parabolic cylinder.

E x am p l e 6.4. The characteristic form of the total tensor product of an elliptic

arc with a hyperbolic arc is a part of an elliptical hyperboloid

(6.1) ω(N2
2 N2

2 ) =
(

1,

√
2

2
, 1

)





1 1 1

1 1 1

1 1 1









1√
2

1



 .

By using suitable control points, four representatives may be selected in (6.1) to

create a unipartite elliptical hyperboloid (according to Remark 4.3 ).

7. Conclusion

In this paper, the relationship between the classical view on tensor product and

application of NURBS surfaces was explained. Our idea is based on projective ex-

tension of surfaces and introducing the abstract curves and surfaces. These sets

of projective invariant curves and surfaces demonstrate their projective properties

clearly than the control points. Our approach was illustrated on some examples.

In our future work we are interested in studying abstract objects with singularities

and their properties.
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