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LOCAL STABILITY AND DIFFERENTIABILITY OF
THE MEAN-CONDITIONAL VALUE AT RISK MODEL
DEFINED ON THE MIXED-INTEGER

LOSS FUNCTIONS

MARTIN BRANDA

In this paper, we study local stability of the mean-risk model with Conditional Value
at Risk measure where the mixed-integer value function appears as a loss variable. This
model has been recently introduced and studied in Schulz and Tiedemann [16]. First, we
generalize the qualitative results for the case with random technology matrix. We employ
the contamination techniques to quantify a possible effect of changes in the underlying
probability distribution on the optimal value. We use the generalized qualitative results to
express the explicit formula for the directional derivative of the local optimal value function
with respect to the underlying probability measure. The derivative is used to construct the
bounds. Similarly, we can approximate the behavior of the local optimal value function
with respect to the changes of the risk-aversion parameter which determines our aversion
to risk.

Keywords: mean-CVaR model, mixed-integer value function, stability analysis, contami-
nation techniques, derivatives of optimal value function

Classification: 90C15, 91B28, 90C11

1. INTRODUCTION

Mean-risk investment models can be perceived as a special class of stochastic pro-
gramming problems. Stochastic programming solves many real-life problems where
optimization and randomness appear together. Such problems arise in economy,
finance, industry, agriculture and logistics, cf. [18]. Any successful application of
stochastic programming problems requires full knowledge of the underlying probabil-
ity distribution of the random parts. However, the distribution is usually estimated
or approximated. Hence, the stability analysis with respect to some changes of the
distribution is necessary, cf. [7]. A successful approach is based on the probability
metrics [12] which enable us to bound the distance between the optimal values of
our optimization problem with different underlying measures using an appropriate
probability metric. However, it can be difficult to compute the metric, especially in
integer stochastic programming where very complicated metrics usually appear. On
the other hand, the contamination techniques are more computationally tractable
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than the approach based on the probability metrics. They provide a way how to
construct the contamination bounds for the optimal value, which quantify the effect
of considered change in the probability distribution, mostly the behavior under some
extreme events. We may refer to [5, 6] for the introduction and the main theoretical
results, to [4] for the applications in stochastic integer programming and to [8, 9] for
the risk modeling with Value at Risk, Conditional Vale at Risk and for the general
class of polyhedral risk measures.

Incorporating integer variables into optimization problems leads in many cases
to more realistic models, however, the resulting problems are much more theoreti-
cally and computationally demanding. Integer variables help us to model indivisible
assets (we can buy only integer number of assets), transaction costs, cardinality
constraints (restrictions on maximal number of kinds of assets), logical relations (if
you buy certain asset, you must not buy other) etc. There was a large development
in stochastic integer programming in the fields of theory and algorithms during the
last decade, see [13, 15].

We will concentrate on the application of the contamination techniques on the
mean-risk model with Conditional Value at Risk (CVaR) risk measure applied to ran-
dom variables occurring in recourse stochastic integer programming. This problem
was introduced in [16]. In particular, the authors studied the continuity properties
of the objective function, both with respect to the first-stage decisions and the in-
tegrating probability measure. They also introduced a decomposition algorithm for
solving such problems. The mixed-integer value function models the final outcome
(loss) connected with our first stage decision, which does not depend on the future
realization of the random parts and can represent our initial decision on the port-
folio composition. On the other hand, the second stage decisions are made after
the realizations of the random parts are observed. For example, they can represent
sales. We partly generalize the qualitative results for the case with random tech-
nology matrix, which can contain random returns in our settings. Then we apply
the results to express the explicit formula for the derivative of the optimal value
function which is employed to construct the contamination bounds.

The paper is organized as follows. In Section 2, the mean-risk model with Condi-
tional Value at Risk on general loss random variables is introduced. The aggregate
function approach for solving multi-objective programming problems is used. Then
the basic properties of the mixed-integer value function are summarized. We investi-
gate the continuity properties of the objective function jointly in the decision vector,
the risk-aversion parameter and the underlying probability distribution. As a con-
sequence, the qualitative stability of the local optimal value function with respect to
the underlying distribution and the risk-aversion parameter is derived. In Section 3,
it is shown how the contamination techniques can be applied to our problem. Then
the explicit formula for the directional derivative of the optimal value function is
expressed. Similar idea is used to approximate the behaviour of the local optimal
value function with respect to the changes of the risk-aversion parameter.
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2. MEAN-CVAR MODEL
2.1. Mean—CVaR model

We denote Z(x,w) a loss random variable dependent on the decision vector x € X,
where X C R” is a nonempty closed set, and on the random vector w defined on
the probability space (€2, F, P) with a support in R*. We assume that the expected
loss is finite, i.e.

E(x) :=Ep|Z(z,w)| = /Q |Z(x,w)|dP(w) < o0, Vz € X.

Conditional Value at Risk (CVaR) is often proposed as an alternative measure
for Value at Risk (VaR), which is widely used in practice, even though it is not
an adequate risk measure, cf. [17]. CVaR is roughly defined as the conditional
mean of losses on the condition that we are beyond VaR. Below we will provide the
formal definition and summarize the basic properties under general loss distributions,
cf. [11].

Let F' denote the distribution function of the loss random variable, i.e.

F(z,n) = P({w: Z(z,w) <n}), n€R.
Then Value at Risk (VaR) and upper Value at Risk are defined as

VaR,(x) = min{n: F(z,n) > a},
VaR} (z) = min{n: F(z,n) > a}

for some probability level a € (0,1), usually 0.95 or 0.99. CVaR is defined as the
mean of losses in the a-tail distribution
F _
Fawn) = TEDZ2 > Ve )
= 0, otherwise.

For application of CVaR in optimization problems, the following minimization for-
mula is of crucial importance [11, Theorem 10]:

1
CVaR,, = mi —Ep|Z — |t 1
aRq(7) ming + 7 plZ(z,w) — 1] (1)
where []* = max{-,0} denotes the positive part and 7 is a real auxiliary variable.
The optimal solution belongs to the closed interval [VaR, (z), VaR (x)]. We can use
the optimization shortcut [11, Theorem 14] to minimize CVaR, i.e.

min CVaR,(z) = min Ep[Z(z,w) —n]*.

rzeX (n,x)ERXX 11—«
Minimizing the risk CVaR, (x) and the expected loss £(z) at the same time under
some common constraints X on the portfolio composition leads to multi-objective
optimization problem. We are looking for the efficient solutions, i.e. the solutions
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Z € X such that there is no element z € X with CVaR,(z) < CVaRq(Z) and
E(x) < E(z) with at least one strict inequality. There are two main approaches for
solving the multi-objective problems, both leading to the single objective problem
and under mild conditions to the efficient solutions, see [10]: aggregate function
(weighted sum) and e-constraint approach. Using the aggregate function approach
and the optimization shortcut, the objective function of our problem can be written
as

fm,z;p,P)= (1 - p)EpZ(z,w) +p<77+ Ep[Z(z,w) —nﬁ), (2)

11—«

where p € (0,1) can be seen as the risk-aversion parameter. If we set p = 0, we
minimize the expected loss without involving the risk minimization. On the other
hand, if we set p = 1, we are absolutely risk averse, i.e. we minimize the risk only
without considering the expected loss. Hence, throughout this paper p € [0,1]. We
solve the following problem

i b ’ 7P7 3
(n,ﬁléﬁxxf(” z; p, P) (3)

where p and P are the above mentioned parameters.

2.2. Mixed—integer value function

We consider the following mized-integer value function
Z(z,w) =clz 4+ d(h(w) —T(w)z), z€ X,we (4)

with random right-hand side vector h[s x 1] and random technology matrix
T'[s x n] with dimensions stated in the brackets and with the second stage problem
which is a parametric mixed-integer linear problem which can be written as follows

®(z) =min{¢"y+¢Ty Wy+ W'y =z, yeZ}, y € RTI},VZ’ € R, (5)

where c € R"”, ¢ € R, ¢ € RT/ are vectors, W(s x m], W'[s x m/] are matrices,
and Z4,R; denote the nonnegative integers and the nonnegative real numbers. We
assume that the matrices W, W’ have rational entries only and the random parts
depend affinely linearly on the random vector w.

We denote y = P o (h,T)~! the image measure on R*(™+1) which belongs to the
general class of Borel measures P(R*("*1). The function ®(z) is real-valued on R*
if we further assume, see [14]:

(A1) complete recourse: W(Z7') + W’(RTI) = R®, i.e. for any z € R® there exists
y €L} and y' € RT/ such that Wy + W'y’ = 2.

(A2) dual feasibility: {u € RS : WTu < q, WTu < q'} # 0.

We also denote

(A3) finite first moment: [o. (.1 |2 + ||| n(d(R,T)) < 0o, where ||h|| denotes the
Euclidean norm and ||T|| = max{||Tz|| : = € R",||z| < 1} is the induced matrix
norm.
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Previous assumptions ensure that Ep [|c?z+®(h(w) = T'(w)z)|] < 00, Vaex, cf. [14].
Hence, the mixed-integer value function can be considered as the loss random vari-
able depending on x and w. To proceed further analysis we denote

My(z) = {(h,T) e R*™*V : & is discontinuous at h — Tz}

the set of the discontinuity points of ® for a given x € X. To obtain continuity of
the objective function jointly in the decision vector and in the underlying measure,
the following subclass of Lebesgue measures must be considered. For arbitrary fixed
p>1and C > 0, we denote

Apo(BEHD) = [ € PRI / |(h. )| w(d(. T)) < C.
Rs(n+1)

Under the assumptions (A1), (A2) the second stage function (5) has the following
property, see [3]: there exists 3,y > 0 such that for all zq, zo € R?® it holds

[@(21) = (22)] < Bllz1 — 22l +7- (6)

The function Z appears in the expectation as the objective function in two-stage
stochastic models with mixed-integer linear recourse, cf. [14, 15]:

inei)r(l Qr(z; p) = / e+ ®(h—Tx) p(dh,T)).

Rs(n+1)

2.3. Qualitative stability

We propose the properties of our mean-CVaR problem that we will use to investigate
stability of the optimal value function, especially to express the explicit formulas for
the derivatives of the optimal value function.

We start the section with the definition of the weak convergence. We say that
a sequence of measures {,,'} from P(R*("*1) converges weakly to a measure u €
PR+ if for any bounded continuous function g : R*™*1) — R it holds

lim 9 (€) = / 9(E)n(de).

n’—oo Rs(n+1) Rs(n+1)

We use the notation p,y — p as n’ — oo.
The objective function (2) can be decomposed into two main parts

fm,25p,p) = (1= p)Qr(w; p) + p(n + LQEW (1, 2; u)), (7)

1-a
where Qg(z; 1) is well studied in [14] and the n-Expected Excess is defined as
Qe,(n5) = [ T+ B(h=Ta) 0] ud(h. 7).

The following propositions generalize slightly the qualitative results of [16] for
the case with random technology matrix.
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Proposition 2.1. Let assumptions (A1), (A2), (A3) be fulfilled and p(My(x)) = 0.
Then the n-Expected Excess Q, : R x R™ — R is continuous at (n,z) for any
n € R. Furthermore, if y € Anc(Rs(”"'l)), then Qg, : R xR™ x AP,C(RS("‘H)) - R
is continuous at (n,z, ) for any n € R.

Proof. The n-Expected Excess can be written in the following form, see [16,

Lemma 4.4]:
®(2) = min{v: Wy + W'y = 21,0 > ¢"y + ¢y — 2,

yeZ®, y eR™, veR}, zeRH!

an, e = [ w ()4 F)(0))uatmy

_ / & (h—T%) ild(h, 7)) = Qu(@: ),
R(s+1)(n+2)

and

where we denote

P (ﬁl[sxl] >:<h> T:<fll[sx1] Tiafs x 1 >:< 0o T )
ha[l x 1] 0)’ o1l x 1] fa[1 x n] -1 )

and the measure /](B, T) = ,u([zl, Ti2) X 0(f11, to1, tas, ilg), where 4 is the Dirac mea-

sure, which is equal to 1 for (ha, %, %21, t22) = (0,0, —1,¢7), and 0 otherwise.

The assumptions ensure the complete recourse and the dual feasibility for Qg,,
cf. [16, Lemma 4.4]. We denote My(2) = {(h, T) € R(™*2(+1) : & is discontinuous
at h — TZ}. From the definition ® is discontinuous at h — T'% if and only if the ®
is discontinuous at h — T'z. Then, from the definition of the measure fi, we obtain
A(N(#)) < p(Ma(a)) = 0.

We have verified all the assumptions of [14, Proposition 3.8], which shows joint

continuity of the recourse function in the decision vector and the underlying measure.
Hence, the same is valid for the n-Expected Excess. O

As an immediate consequence, joint continuity of the objective function can be
obtained.

Corollary 2.2. Assume that (A1), (A2) are fulfilled, and let u € A, o(R*(™+1D)
and z € X be such that p(Mg(x)) = 0. Then the objective function f : R x R™ x
[0,1] x A, c(R* D) — R is continuous jointly at (1, z, p, u) for all (1, p) € Rx [0, 1].

Proof. Corollary follows from (7) using previous proposition and the qualita-
tive results valid for the objective function of two stage mixed-integer programming
problems, cf. [14, Proposition 3.8]. |

We must pay a special attention to the optimal solutions of the minimization
formula, i.e. to the closed interval which is bounded by VaR and upper VaR. We
show that the interval is uniformly bounded with respect to the image measures
which enables us to study continuity of local minimizers using Berge theory.
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Proposition 2.3. Assume that (A1), (A2) are fulfilled. Let (2, tin’) = (20, po) as
n' — 0o, where (2, fin) € R*xP(R*™*D) for all n’ € N. Then there exist compact
subsets K and KT such that VaRe (2, pn) € K and VaR[ (2, ) € Kt for all
n’ € N.

Proof. We modify the proof of [16, Lemma 4.9] for our case with random technol-
ogy matrix. Let » = max,, ||z,/||. Then, using the property (6) of the second stage
function (5), we obtain

(" + ®(h — Ta)| < || + |®(h - Ta)| < || + B]|h — Tal +
<rllel + Bl + Br | Tl +~ < Bl + |TIl) +7

Vo € {2} and for 8,7 > 0 taken from (6), B := max{1,3} and 7 := r ||| + 7.
Using previous estimate, we can find an upper and a lower bound for VaR,, (x, 1) for
all p1 € {1} as follows.

VaRg(z, 1) = min{n: p({(h,T) € R - Ty ®(h — Tx) < n}) > al,
< win{n: p({(hT) € RO BRI + |T]) +7 < 7)) > )
= Fwin{n: p({(h,T) € RSV (Jhl] + |T) < ) = a} +7,

and similarly

VaRq(z,p) = min{n: u({(h,T) < R Ty 4 ®(h— Tx) < n}) > a},
> min{n: w({(hT) € R B(IA| + |T) —7 < 7)) > o}
= Fmin{n: w({(hT) € RO : (Jhf + ) = —n}) > a} +7
= —Bmax{n: p({(h,T): (2| +IT]) <n}) <1-a}+7.

Since the elements of {y,} are weakly convergent, Prohorov’s theorem [2, Theorem
6.2] ensures that there exists, for each ¢ > 0, a compact set C C R*("+1) such
that u(C) > 1 —¢ for all 4 € {p,}. Let € = 1 — «, then there exist a compact
set C C R*™*+1) such that u(C) > « for all p € {un}, ie. {(h,T) € R¥F .
(IRl + 1IT)l) < n} has to be compact. Similarly, setting ¢ = « ensures existence
of a compact set €' C R*™*D such that u(C’) > 1 — « for all p € {pun}, ie.
{(h,T) € R** D - (||n|| 4+ ||IT||) < 1} has to be compact too. Using both arguments,
it yields the finite lower and upper bound for VaR (z, 1) for all p € {pn}.

Using similar argument, we can obtain a compact set K+ C R which bounds
upper VaR for all p € {un }. O

Since the mixed-integer recourse function is nonconvex in general, our model lacks
convexity, i.e. the objective function is nonconvex. Hence, we study local stability
with respect to the risk-aversion parameter p and the image measure u. We use the
concept of local minimizers, i.e. the extreme value function and the optimal value
function with respect to some bounded open set V' C R™ which are defined by

ovip,p) = f{f(n,z;p,p): (n,7) ER X (X Nl V)},
Uy(p,p) = {(nz) eRx (XN V): f(n,z;0,1) = pv(p,p)}
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and depend on the risk-aversion parameter p € [0,1] and the image measure u €
P(R*(+D). We say that S C R™ is a complete local minimizer set with respect to
the set V' of the mean-CVaR problem if

0#S=Uy(p,u)CV.
The set of optimal solutions can be decomposed into two parts

Uy (p, ) = Proj, (Pv (p, ) x Proj, (Vv (p, n))

where
Proj,(Yv(p,p)) = {neR: JzeXncdV:(nz)eVy(p,u}
= {n € [VaRa(z, p), VaR{ (, p)] :
JreXncdV:(nz)eTylp,u)}
and

PI‘ij(\I’V(,O, :u)) = {l‘ €EXNcV: 377 eR: (77735) € \I/V(pa ,u)} =: ¢V(pa :u)

The following stability results hold due to the joint continuity of the function f
in (x,n, p,u) and follows from Berge’s theory.

Proposition 2.4. Assume that (A1), (A2) are fulfilled, and let u € A, o(R3+1)
with p(Mg(x)) =0 for all x € X. Then

i) the function oy : [0,1] x A, o(R*(*+1)) — R is continuous at (p, u);
D,

(ii) the set-valued mapping Uy : [0,1] x A, c(R3™+D) — 2B is Berge upper
semicontinuous at (p, ), i.e. for each open set O C R"*! containing Wy (p, 1)
there exists a neighbourhood N (p, 1) of (p, ) in [0,1] x A, c(R*™+1)) such
that

Uy (o', 1) C O, Y(p', 1) € N(p, );

(iii) there exists a neighbourhood N (p, 1) of (p, p1) in [0, 1] x A, o (R* 1)) such that
for all pairs (p'p') € N(p,p) the set Uy (p'p’) is a complete local minimizer
set with respect to V.

Proof. We can restrict considered n to the compact interval

K = [min{K U K'},max{K U K'}] where K, K’ were obtained in Proposition 2.3.
Hence, we know that the set of optimal solutions belongs to the compact set KxclV.
The proposition follows then from Berge’s theory, see [1, Theorem 4.2.2], using the
joint continuity of the objective function f in (z,7, p, 1), cf. Corollary 2.2. We can
also employ [16, Lemma 4.1]. O

Remark 2.5. A natural question arises: When is the assumption u(My(z)) =
0,Vz € X fulfilled for a measure p € P(R*™F1V)? In [14], it is shown that the
sufficient condition is that the conditional distribution of h given T is absolutely
continuous.
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3. CONTAMINATION TECHNIQUES AND DIFFERENTIABILITY
3.1. Contamination techniques

In this section, we show how the contamination techniques, cf. [5, 6], can be applied
to investigate stability of our mean-CVaR problem.

Let 4 € P(R*™*D) be our best fixed estimate of the underlying probability
distribution and v € P(R*™*1) represent the distribution under some extreme
events which is used to stress the best estimate. Then the contaminated distribution
ut is defined for all ¢ € [0,1] by

ph= 01—t +tv

In our case, the objective function is linear in the underlying probability measure,
i.e. it holds

fmmip,pt) = (L=t f(n, @ p, ) + tf (0,25 p,v).

The directional derivative of the extreme value function at p in the direction v — p
is defined as

: . ovip, ) —ovip, 1)
oy (ps v — p) = tl—l>%l+ " :

If the optimal value ¢y (p, u') is finite for all ¢ € [0, 1], the linearity of the objec-
tive function in the underlying distribution ensures concavity of the extreme value
function. Hence, we can construct the contamination bounds for the extreme value
function of the contaminated problem as follows

(1= )pv(p, ) + tov(p,v) < ovip, u') < v (p, 1) + toy (p, ;v — ), t € [0,1].

In order to evaluate these bounds, we need to solve the original problem with the
measure p and the fully contaminated problem with the distribution v, and to
compute the directional derivative of the optimal value function or at least an upper
bound for the derivative. We do not need to solve any contaminated problem which
is always larger than the above mentioned problems. We propose an explicit formula
for the directional derivative of the local optimal value function for our mean-CVaR
problem below.

Similar idea can be used to construct the bounds for the optimal value function
with respect to the changes of the risk-aversion parameter p. If we assume that the
optimal value @y (p, 1) is finite for all p € [0, 1], we can get the bounds:

(1= p)ov (0, 1) + pov (1, 1) < ov(p, 1) < v (0, 1) + poy- (o, 1 p = 04), p € [0,1],

where we used the derivative defined by

’ . wvip,r) —Pv 07/”‘
ey (p,p;p=04) = lim (6,11 Qo).
p—04 p
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3.2. Derivatives of optimal value function

Due to the properties of the objective function f, the explicit formula for the di-
rectional derivative of the optimal value function of the mixed-integer CVaR opti-
mization problem can be found. The derivative describes the local behaviour of the
optimal value function and enables us to construct the contamination bounds. Sim-
ilar result was obtained by [4] for the case p = 0, i.e. for the two stage mixed-integer
programming problem.

Theorem 3.1. Assume that (A1), (A2) are fulfilled, and let p € A, o(R*("+1D)
with pu(Mg(z)) = 0 for all z € X and p € [0,1] be fixed. Suppose further that
Uy (p, 1) is a complete local minimizer set with respect to some bounded open set
V CR™ Let v € A, o(R*™+1) be a fixed contamination distribution.

Then the directional derivative of the optimal value function is equal to

ov(p, v —p) = min  f(n,z;0,v) = pv(,p).
(z,meYv(p,u)

Proof. The proof is similar to [6, Theorem 8]. However, special attention must
be paid to the specific structure of our problem. Define

pt=0—tu+tyv, t€[0,1].

Both measures p and v belong to the class A, ¢(R*"*+1) hence ut € A, o(R3+1)
for every ¢t € (0,1).

According to the Proposition 2.4, Uy is Berge upper semicontinuous at g, which
yields the existence of ¢y such that Wy (u*) C V for every t € (0,tp).

Due to the linearity of f(n,x;p, ), we have

f(,z;p,1%) — f(n,2;p, 1)
'

= f(n,z;p,v) — f(n, 25 p, ).

For arbitrary T € ¢y (p, 1), T(T) € [VaRa (T, 1), VaR (T, p)] and ¢ € (0,tp), it holds

that

ov(p') < fOE), T o,u") = f@(T),T;p, 1) + t(F7(T),T; p,v) — F7(T), T; p, 1))
= ool ) +t(f7(T),T; p,v) — F@(T), T; 0, 1)),

and so

ov (') — v (n)
l

for all z € ¥y (1), n € [VaRy (x, 1), VaR} (x, )] and all ¢ € (0, o).
Analogously, for arbitrary & € ¥y (u'), 7(2) € [VaRa (%, ut), VaR} (&, )] and ¢ €
(0,t0), we obtain

Sf(nvx;P»V)—f(ﬂvx;Pw) (8)

ev(p') = (&), 20,0 = fOAE), & p,0) +t(f(AR), & p,v) — F(A(E), & p, 1))
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thus

ov (') — v (n)

- > f(n,z;p,v) — f(n, 25 p, 1) 9)

for all z € Yy (ut), n € [VaRa(z, pt), VaR] (z, ut)] and all ¢ € (0, 1).
From (8) and (9) we obtain

min T3P V) — , L3 P,y <
i (5 p,0) = [0, )

@V(Mt,)\)_QOV(M,/\)
- t

< min Yy L3Py V) — » L3 Py
< (m,n)e%(#)(f(" p,v) — f(n,25p, 1))

<

for t € (0,t).
From our assumptions and from Corollary 2.2 and Proposition 2.4, it follows that
the function defined as

o(t) =

= min , Xy p, V) — T3 P,
(-T,n)elllv(#t)(f(n p,v) = f(n pu))

is lower semicontinuous at ¢t = 0, see [1, Theorem 4.2.3]. This implies that

0) = min , Ty P, V) — , T P, < liminf ¢(t),
9(0) = min (f(n,:p.0) = S0z p, ) <l inf (1)
thus
_ov(pt) — v . :
lim —————————= = min min ST P, V) — .
t—=0+ t €y (1) n€[VaRq (z,1),VaRS (z,1)] f(n r ) v (M)
This finishes the proof. U

Theorem 3.2. Assume that (A1), (A2) are fulfilled, and let u € A, ¢(R*™+1) be
fixed with p(Mg(z)) = 0 for all x € X. Suppose further that ¥y (0, 1) is a complete
local minimizer set with respect to some bounded open set V' C R".

Then the derivative of the optimal value function is equal to

: s p=04) = min , o1l u) — ,0).
ey (o, i p=04) (I,n)ew(o’u)f(n ) — v (p,0)
Proof. The proof is similar to the proof of previous theorem. O
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