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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 46 (2010), 185–201

ESTIMATE OF THE HAUSDORFF MEASURE
OF THE SINGULAR SET OF A SOLUTION

FOR A SEMI-LINEAR ELLIPTIC EQUATION ASSOCIATED
WITH SUPERCONDUCTIVITY

Junichi Aramaki

Abstract. We study the boundedness of the Hausdorff measure of the singular
set of any solution for a semi-linear elliptic equation in general dimensional
Euclidean space Rn. In our previous paper, we have clarified the structures of
the nodal set and singular set of a solution for the semi-linear elliptic equation.
In particular, we showed that the singular set is (n − 2)-rectifiable. In this
paper, we shall show that under some additive smoothness assumptions, the
(n− 2)-dimensional Hausdorff measure of singular set of any solution is locally
finite.

1. Introduction

We consider a semi-linear elliptic equation

(1.1) −∇2
Aψ = f(|ψ|2)ψ in Ω

where Ω is a bounded domain in Rn and f is a real-valued, bounded function on
R+ = [0,∞). Here A is a real vector-valued function (called magnetic potential),
ψ is a complex-valued function. ∇A and ∇2

A are defined by ∇A = ∇− iA, ∇ is
the gradient operator and

∇2
Aψ = ∆ψ − i[2A · ∇ψ + (divA)ψ]− |A|2ψ .

This type of operator is considered in Aramaki [1, 2, 3, 5] and Pan and Kwek [24].
Associated with the magnetic potentialA = (A1, A2, . . . , An), define an anti-sym-

metric n× n matrix B = (Bij) called the magnetic vector field by

Bij = ∂xiAj − ∂xjAi for i, j = 1, 2, . . . , n .

Let us recall that superconductivity in two or three dimensional space can be
described by a pair (ψ,A), where ψ is a complex-valued function called the order
parameter and A is a real vector-valued function called the magnetic potential,
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which is a minimizer of the so-called Ginzburg-Landau functional. The Euler
equation becomes

(1.2)
{
−∇2

Aψ = κ2(1− |ψ|2)ψ in Ω ,

ν · ∇Aψ = 0 on ∂Ω
where Ω ⊂ Rn with n = 2 or n = 3 is a bounded domain and ν is the outer unit
normal vector at ∂Ω. It is well known that any solution of (1.2) satisfies |ψ| ≤ 1 in
Ω. If we choose a bounded function f on [0,∞) so that f(t) = κ2(1− t) for |t| ≤ 1,
the first equation of (1.2) is of the form (1.1).

In the superconductivity theory or the Landau-de Gennes model of liquid cristal,
it is important to know the third critical field Hc3 or Qc3 . It is associated with the
lowest eigenvalue of the magnetic Schrödinger operator of type −∇2

qA, i.e.,

(1.3)
{
−∇2

qAψ = µ(qA)ψ in Ω ,

ν · ∇qAψ = 0 on ∂Ω .

If we put f(t) = µ(qA) which is a constant, the first equation of (1.3) is also of
form (1.1). For the superconductivity theory, see Lu and Pan [17], [18] and Pan
[22]. For the theory of liquid cristal with A = n which is a unit vector field, see
Pan [21]. Helffer and Mohamed [15] and Helffer and Morame [16] have extensively
considered the eigenvalue problem for the magnetic Schrödinger operator of type
−∇2

A for n ≥ 2.
In the equation (1.2), the nodal set {x ∈ Ω ; ψ(x) = 0} means the normal state

there. Pan [23] has studied the structure of the nodal set and the singular set
{x ∈ Ω ; ψ(x) = 0, ∇ψ(x) = 0} of any non-trivial solution of (1.1) in the three
dimensional domain.

In the previous paper Aramaki [4], we showed that the nodal set and the singular
set of any non-trivial solution of (1.1) in the general n dimensional domain are
(n− 1) and (n− 2)-rectifiable, respectively.

For the second order linear elliptic equations with the real coefficients, there are
many articles on the nodal set or the singular set. For example, see Garofalo and
Lin [9], Han [11], [12] and Han et al. [13]. In particular, Hardt et al. [14] proved that
for any non-trivial solution of a linear elliptic equation with real smooth coefficients,
the (n− 2)-dimensional Hausdorff measure of the singular set is locally finite.

However it seems that there are not many articles on the structure of the singular
set of complex-valued solutions of equations of type (1.1) (cf. Elliot et al. [7]).

In this paper, we shall estimate the (n− 2)-dimensional Hausdorff measure of
singular set of any non-trivial complex-valued solution ψ of (1.1).

We assume that
(H) A ∈ L∞(Ω; Rn),divA ∈ Lqloc(Ω) with q > n/2 if n ≥ 4 and q ≥ 2 if n = 3,

and B ∈ L∞(Ω; Rn2).
Our main result on the singular set is the following.

Theorem 1.1. Let Ω ⊂ Rn (n ≥ 3) be a bounded domain, assume that the
hypothesis (H) holds, and let ψ ∈ W 1,2

loc (Ω; C) be any non-trivial complex-valued
weak solution of (1.1) with ∇Aψ ∈W 1,2

loc (Ω; Cn) and f∞ := ‖f(|ψ|2)‖L∞(Ω) <∞.
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Then there exists an integer M > 0 depending on ψ, f∞ and ‖B‖L∞(Ω) such that
if, in addition, A ∈ CM (Ω; Rn), divA ∈ CM (Ω) and f ∈ CM ([0,∞)), then for
any Ω′ b Ω, there exists a constant C > 0 depending on M,ψ, f∞, ‖A‖L∞(Ω), Ω′,
CM (Ω′′) norms of A, divA, f(|ψ|2) for some Ω′ b Ω′′ b Ω such that
(1.4) Hn−2({x ∈ Ω′;ψ(x) = 0,∇ψ(x) = 0}

)
≤ C

where Hn−2 is the (n− 2)-dimensional Hausdorff measure.

2. Preliminaries

In this section, we shall list up some propositions which are needed later and
held under the hypothesis (H). All the propositions and theorem are found in [4]
(c.f. [23]).

At first, we have the regularity of the solution.

Proposition 2.1. Assume that the hypothesis (H) holds and let ψ ∈W 1,2
loc (Ω; C) be

any weak solution of (1.1). Then ψ ∈W 2,q
loc (Ω; C) ∩ Cαloc(Ω; C) for some α ∈ (0, 1),

and for any B2R(x0) b Ω and 1 < p ≤ q, there exists a constant C > 0 depending
on p, q and ‖A‖L∞(Ω) such that

R2‖D2ψ‖Lp(BR(x0)) +R‖∇ψ‖Lp(BR(x0))

≤ C
{
‖ψ‖Lp(BR(x0)) +R2‖f(|ψ|2)ψ − i(divA)ψ‖Lp(BR(x0))

}
.

Next, we state the doubling property of solutions. Let ψ 6≡ 0 be any weak
solution of (1.1). For any Br(x0) b Ω, we define some quantities.

I(x0, r) =
∫
Br(x0)

{|∇Aψ|2 − f(|ψ|2)|ψ|2} dx ,(2.1)

H(x0, r) =
∫
∂Br(x0)

|ψ|2 dSr , D(x0, r) =
∫
Br(x0)

|∇ψ|2 dx ,

M(x0, r) = rI(x0, r)
H(x0, r)

, N(x0, r) = rD(x0, r)
H(x0, r)

if H(x0, r) 6= 0

where dSr denotes the surface area of ∂Br(x0). Then we have
Proposition 2.2. Assume that the conditions of Theorem 1.1 hold for any non-trivial
weak solution ψ ∈ W 1,2(Ω; C). Then there exist r0, c0, N > 0 where r0 depends
only on f∞, and c0 and N depend only on Ω, ψ, f∞ and ‖B‖L∞(Ω) such that for
any 0 < r ≤ r0/2 with B2r(x0) b Ω, we have the following.

(i) M(x0, r) ≤ c0,

(ii) ∫
Br(x0)

|ψ|2 dx ≤ r
∫
∂Br(x0)

|ψ|2 dS ,

and the doubling property:
(iii) ∫

B2r(x0)
|ψ|2 dx ≤ 4N

∫
Br(x0)

|ψ|2 dx .
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If ψ 6≡ 0 is a weak solution of (1.1) and satisfies that
∫
∂Br(x0) |ψ|

2dSr = 0 for
some 0 < r ≤ r0/2 with B2r(x0) b Ω, it follow from (ii) that

∫
Br(x0) |ψ|

2dx = 0.
Therefore, from the unique continuation theorem (cf. Aronszajn [6]) or the doubling
property (iii) (cf. [9]), ψ ≡ 0 in Ω. Thus we have

H(x0, r) =
∫
∂Br(x0)

|ψ|2 dSr 6= 0

for any 0 < r ≤ r0/2 with B2r(x0) b Ω, and so we see that M(x0, r) and N(x0, r)
are well defined. From Proposition 2.2 (i) we see that M(x0, r) ≤ c0 for any
0 < r ≤ r0/2 with B2r(x0) b Ω.

We get an important fact.

Proposition 2.3 ([4] or [23]). Assume that the conditions of Theorem 1.1 for any
non-trivial weak solution ψ ∈W 1,2

loc (Ω; C) of (1.1). Then we have

(2.2) lim
r→0

M(x0, r) = lim
r→0

N(x0, r) for any x0 ∈ Ω

and the limit is a non-negative integer.

From this proposition, we can define the vanishing order of ψ at x0 ∈ Ω by

Oψ(x0) = lim
r→0

M(x0, r) = lim
r→0

N(x0, r) .

Of course, if ψ is smooth enough, we see that{
Dαψ(x0) = 0 for any α with |α| < Oψ(x0) ,
Dβψ(x0) 6= 0 for some β with |β| = Oψ(x0)

where Dα = ∂α = ∂|α|/∂xα.
We note that the vanishing order of ψ is uniformly bounded in Ω, i.e.,

(2.3) Oψ(x) ≤ c0 for x ∈ Ω

where c0 is the constant as in Proposition 2.2 (i) and depends only on ψ, Ω, f∞
and ‖B‖L∞(Ω).

Next, we state the decomposition of the solution of (1.1).

Proposition 2.4 (cf. [4], [23] and [11]). Assume that the conditions of Theorem
1.1 hold for any non-trivial weak solution ψ of (1.1). Then for any 0 < R ≤ r0/2
with B2R(x0) b Ω, there exists an integer m ≥ 0 such that we can write

(2.4) ψ(x+ x0) = Pm(x) + φ(x) , x ∈ BR(0)

where Pm is a non-zero, complex-valued homogeneous, harmonic polynomial of
degree m, and φ satisfies

(2.5) |φ(x)| ≤ C|x|m+α in BR(0)

for some α ∈ (0, 1), and a constant C > 0 which depends only on m, ‖A‖L∞(Ω),
‖divA‖L2(B2R(x0)) and f∞.
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We call Pm = ψx0 the leading polynomial of ψ at x0. We see that m is the
vanishing order of ψ at x0, so m = Oψ(x0) ≤ c0. Now we define the singular set of
ψ by

S(ψ) = {x ∈ Ω;Oψ(x) ≥ 2} .
In the previous paper [4], we showed
Theorem 2.5. Assume the the conditions of Theorem 1.1 hold for any non-trivial
weak solution ψ ∈ W 1,2(Ω; C). Then for any Ω′ b Ω, S(ψ) ∩ Ω′ is countably
(n− 2)-rectifiable, more precisely, if we define
S∗(ψ) = {x ∈ S(ψ); the leading polynomial of ψ at x is a polynomial

of two variables after some rotation of coordinates} ,
then S(ψ) ∩ Ω′ \ S∗(ψ) is countably (n− 3)-rectifiable. Thus
(2.6) Hn−2(S(ψ) ∩ Ω′ \ S∗(ψ)) = 0 .

3. Estimate of the singular set

In this section, we shall estimate the Hausdorff measure of the singular set of
any non-trivial weak solution of (1.1). In addition to the hypothesis (H), we assume
that for an integer M ≥ 1,

(K)M A ∈ CM (Ω; Rn),divA ∈ CM (Ω) and f ∈ CM ([0,∞)).
In the following, for any given Ω′ b Ω, we always choose

Ω′′ = {x ∈ Ω; dist (x, ∂Ω) > min(r0,dist (Ω′, ∂Ω))/3} ,
where r0 is as in Proposition 2.2, and define
(3.1) Λ(Ω′′) = |A|CM (Ω′′) + |A|2CM (Ω′′) + |divA|CM (Ω′′) + |f(|ψ|2)|CM (Ω′′) ,

if ψ ∈ CMloc(Ω; C). We also use the notations

|Djψ(x)| =
∑
|β|=j

|Dβ
xψ(x)|,

|Djψ(x)−Djψ(y)| = |Dj(ψ(x)− ψ(y))| .
At first, we obtain the regularity of any solution of (1.1) under the hypotheses

(H) and (K)M .
Proposition 3.1 (Regularity). Addition to the hypothesis (H), assume that (K)M
holds for some integer M ≥ 1. Let ψ ∈W 1,2

loc (Ω; C) be any weak solution of (1.1).
Then ψ ∈ CM+1,α

loc (Ω; C) for some α ∈ (0, 1). Moreover, we have the Schauder type
estimate: for any Ω′ b Ω, there exists R0 > 0 depending on n,M,α,Ω and Λ(Ω′′)
such that for all 0 < R ≤ R0 and x0 ∈ Ω′,

M+1∑
j=1

Rj sup
x∈BR(x0)

|Djψ(x)|

+RM+1+α sup
x,y∈BR(x0)

x 6=y

|DM+1ψ(x)−DM+1ψ(y)|
|x− y|α

≤ C sup
x∈B2R(x0)

|ψ(x)|
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where the constant C depends on n, M , α, Ω, Ω′ and Λ(Ω′′).

Proof. By Proposition 2.1, we see that ψ ∈ Cαloc(Ω; C) ∩W 2,q
loc (Ω; C) for some

α ∈ (0, 1) and ψ satisfies the equation (1.1). We note that A ∈ CM (Ω; Rn) ↪→
CM−1,α

loc (Ω; Rn). Similarly, divA, |A|2 belong to CM−1,α
loc (Ω). Since f ∈ CM (R+) ↪→

CM−1,1
loc (R+), we have f(|ψ|2)ψ ∈ Cαloc(Ω; C). Therefore, it follows from Gilbarg

and Trudinger [10, Theorem 9.19] that ψ ∈ C2,α
loc (Ω; C). By the boot-strap method,

we see that ψ ∈ CM+1,α
loc (Ω; C).

Next, we shall get the estimate. In order to do so, we write (1.1) into the form:

(3.2) −∆ψ + 2iA · ∇ψ +
(
i(divA) + |A|2

)
ψ = f(|ψ|2)ψ in Ω .

We simply write 3R1 = min
(
r0,dist (Ω′, ∂Ω)

)
and we choose Ω′′ as above. Then

for any 0 < R < R1 and x0 ∈ Ω′, B2R(x0) ⊂ Ω′′. We shall apply the Schauder
estimate [10, p.142] in B2R(x0). We use the following notations as in [10]. For
g ∈ Ck,α

(
Br(x0)

)
,

|g|(σ)
k,α,Br(x0) = |g|(σ)

k,Br(x0) + [g](σ)
k,α,Br(x0) ,

where

|g|(σ)
k,Br(x0) =

k∑
j=0

sup
x∈Br(x0)

dj+σx |Djg(x)| ,

[g](σ)
k,α,Br(x0) = sup

x,y∈Br(x0)
x 6=y

dk+α+σ
x,y

|Dkg(x)−Dkg(y)|
|x− y|α

,

|g|∗k,α,Br(x0) = |g|(0)
k,α,Br(x0) ,

dx = dist
(
x, ∂Br(x0)

)
, dx,y = min(dx, dy) .

It follows from the hypothesis (K)M that

|A|(1)
M−1,α,B2R(x0) + |divA|(2)

M−1,α,B2R(x0) + ||A|2|(2)
M−1,α,B2R(x0)

≤ CΛ(Ω′′) <∞

for some constant C depending only on Ω. Therefore we can apply the result of
[10] to (3.2) to get

(3.3) |ψ|∗M+1,α,B2R(x0) ≤ C
(
|ψ|0,B2R(x0) + |f(|ψ|2)ψ|(2)

M−1,α,B2R(x0)
)

where C depends on n,M,α,Ω and Λ(Ω′′).



ESTIMATE OF SINGULAR SETS OF SOLUTIONS 191

We estimate the last term in the right hand side of (3.3). Since
ψ ∈ CM+1,α(B2R(x0)) ⊂ CM+1,α(Ω′′) (M ≥ 1), we have

M−1∑
j=0

sup
x∈B2R(x0)

dj+2
x |Dj [f(|ψ(x)|2)ψ(x)]| ≤ C

M−1∑
j=0

sup
x∈B2R(x0)

dj+2
x |Djψ(x)|

≤ C1R
2
M−1∑
j=0

sup
x∈B2R(x0)

djx|Djψ(x)|

where the constant C1 depends on Λ(Ω′′). Similarly we can estimate

sup
x,y∈B2R(x0)

x6=y

dM+1+α
x,y

|DM−1[f(|ψ(x)|2)ψ(x)]−DM−1[f(|ψ(y)|2)ψ(y)]|
|x− y|α

= sup
x,y∈B2R(x0)

x 6=y

dM+1+α
x,y

|DM−1[f(|ψ(x)|2)ψ(x)]−DM−1[f(|ψ(y)|2)ψ(y)]|
|x− y|

× |x− y|1−α

≤ C2

M∑
j=0

sup
x,y∈B2R(x0)

sup
z∈B2R(x0)

dM+1+α
x,y |Djψ(z)||x− y|1−α

≤ C3R
2
M∑
j=0

sup
z∈B2R(x0)

djz|Djψ(z)|

where the constant C3 also depends on Λ(Ω′′). Thus we see that

|f(|ψ|2)ψ|(2)
M−1,α,B2R(x0) ≤ C4R

2|ψ|∗M+1,α,B2R(x0)

where C4 depends on Λ(Ω′′). If we choose R0 > 0 so that CC4R
2
0 < 1/2 where C

is as in (3.3) and R0 < R1, then it follows from (3.3) that for all 0 < R ≤ R0

|ψ|∗M+1,α,B2R(x0) ≤ C|ψ|0,B2R(x0)

where the constant C depends on n, M , α, Ω and Λ(Ω′′). Since
dx = dist (x, ∂B2R(x0)) ≥ R for x ∈ BR(x0), we obtain the conclusion. �

We choose an integer M ≥ 1 in Theorem 1.1 so that
(3.4) M ≥ 2c20
where c0 is the constant as in Proposition 2.2 (i). We note that it follows from (2.3)
that the vanishing order of ψ is uniformly bounded in Ω : Oψ(x) ≤ c0 for all x ∈ Ω.

Let ψ be any non-trivial weak solution ψ of (1.1) and Ω′ b Ω. Then for all
x0 ∈ Ω′ and 0 < R < R0 where R0 is as in Proposition 3.1, ψ has a decomposition
in B2R(x0) b Ω′′:
(3.5) ψ(x+ x0) = Pm(x) + φ(x), x ∈ BR(0)
where Pm is a non-zero complex-valued homogeneous, harmonic polynomial of
degree m and φ satisfies (2.5).
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We estimate the remainder term φ.

Lemma 3.2. Assume that the hypotheses (H) and (K)M hold. Then in the decom-
position of ψ in (3.5), φ satisfies

|Djφ(x)| ≤
{
CRm−j+α , j = 0, 1, . . . ,m ,

C , j = m+ 1, . . . ,M + 1

in BR(0) where the constant C depends on n,M,ψ,Ω and Λ(Ω′′).

Proof. Since Pm is harmonic in Rn, we have
∆φ(x) = −∆ψ(x+ x0) in BR(0) .

Therefore we can apply the Schauder estimate as in the proof of Proposition 3.1,
so we can get

M+1∑
j=0

Rj sup
x∈BR(0)

|Djφ(x)|

≤ C
{

sup
x∈BR(0)

|φ(x)|+
M−1∑
j=0

Rj+2 sup
x∈BR(x0)

|Dj∆ψ(x)|

+RM+1+α sup
x,y∈BR(x0)

x 6=y

|Dj∆ψ(x)−Dj∆ψ(y)|
|x− y|α

}
(3.6)

where C depends on n, M and Ω. We write the equation (1.1) into the form
∆ψ = 2iA · ∇ψ + i(divA)ψ + |A|2ψ − f(|ψ|2)ψ .

Then applying Proposition 3.1, we shall estimate the last two terms in (3.6). In the
following we denote constants depending only on Ω and Λ(Ω′′) by C which may
vary from line to line. For 0 ≤ j ≤M − 1, we have

Rj+2 sup
x∈BR(x0)

|Dj∆ψ(x)|

= Rj+2 sup
x∈BR(x0)

∣∣Dj [2iA · ∇ψ + i(divA)ψ + |A|2ψ − f(|ψ|2)ψ]
∣∣

≤ CRj+2
j+1∑
k=0

sup
x∈BR(x0)

|Dkψ(x)|

≤ CR
j+1∑
k=0

Rk sup
x∈BR(x0)

|Dkψ(x)|

≤ CR sup
x∈B2R(x0)

|ψ(x)| ≤ CRm+1 .

We can similarly estimate the last term in (3.6). Thus we get
M+1∑
j=0

Rj sup
x∈BR(0)

|Djφ(x)| ≤ C{ sup
x∈BR(0)

|φ(x)|+Rm+1} ≤ CRm+α .
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Therefore, for j = 0, 1, . . . ,m, we have

|Djφ(x)| ≤ CRm−j+α in BR(0).

For j = m+ 1, . . . ,M + 1, since DjPm ≡ 0, we see that Djφ(x) = Djψ(x+ x0) in
BR(0). Thus we have

|Djφ(x)| ≤ sup
x∈BR(x0)

|Djψ(x)| ≤ sup
x∈Ω′′

|Djψ(x)| ≤ Cj in BR(0) .

This completes the proof. �

Now we show a property of a complex-valued harmonic polynomial.

Lemma 3.3 (cf. [13]). Let P be a complex-valued non-zero homogeneous, harmonic
polynomial of degree m ≥ 2, and of two variables in Rn. Then there exist δ∗, r∗ > 0
depending on P such that if ϕ ∈ C2m2(B1(0); C) satisfies |ϕ−P |C2m2 (B1(0);C) < δ∗,
then

Hn−2(|∇ϕ|−1{0} ∩Br(0)) ≤ c(n)(m− 1)2rn−2

for all 0 < r ≤ r∗.

Proof.
Step 1. It suffices to prove the case where P and ϕ are real-valued.
In fact, assume that Lemma 3.3 holds for the case where P and ϕ are real-valued.

Let P and ϕ be complex-valued functions satisfying the hypotheses in the lemma.
Since either of <P or =P is non-zero, let <P 6≡ 0. We choose δ∗ and r∗ corresponding
to <P . If |ϕ − P |C2m2 (B1(0);C) < δ∗, then |<ϕ − <P |C2m2 (B1(0);C) < δ∗. Since
|∇ϕ|−1{0} ⊂ |∇<ϕ|−1{0}, we get the conclusion.

Step 2. We shall show the lemma for the real case. Though the proof is identical
as [13, Lemma 3.2], we introduce an outline of the proof. We choose a coordinates
x̃ = (x̃1, x̃2, . . . , x̃n) ∈ Rn, and the polar coordinates x̃1 = r cos θ, x̃2 = r sin θ in
R2. By the hypothesis on P , we may assume that

P (x̃) = rm cosmθ .

Then we have

D
x̃1
P (x̃) = mrm−1 cos(m− 1)θ ,

D
x̃2
P (x̃) = mrm−1 sin(m− 1)θ .

By the formulae:

cos(m− 1)θ = 2m−2
m−1∏
r=1

sin
(
θ + (2r − 1)π

2(m− 1)

)
,

sin(m− 1)θ = 2m−2
m−1∏
r=1

sin
(
θ + (r − 1)π

m− 1

)
,
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there exists 2(m− 1) non-zero vectors νik ∈ R2 (i = 1, 2, k = 1, 2, . . . ,m− 1) such
that

D
x̃i
P (x̃) =

m−1∏
k=1

(
νik · (x̃1, x̃2)

)
for i = 1, 2 .

We note that
(3.7) det (νik, ν

j
l ) 6= 0 for (i, k) 6= (j, l)

and D
x̃i
P (x̃) = 0 for i = 3, 4, . . . , n. Here for νik = (νik,1, νik,2) ∈ R2, det(νik, ν

j
l ) =

det
(
νik,1 νjl,1
νik,2 νjl,2

)
. We take a change of coordinates x̃ = Ox with an orthogonal

matrix O = (oij) to be chosen. Let ηi = (o1i, o2i) ∈ R2, i = 1, 2, . . . , n. Then we get

DxiP (x) = o1i

m−1∏
k=1

(
(η1 · ν1

k)x1 + · · ·+ (ηn · ν1
k)xn

)
+ o2i

m−1∏
k=1

(
(η1 · ν2

k)x1 + · · ·+ (ηn · ν2
k)xn

)
(3.8)

for i = 1, 2, . . . , n. We note that if DxiP (x) does not vanish, it is a homogeneous
polynomial of degree m− 1, and that (3.8) contains only first two rows of O. For
any 1 ≤ i < j ≤ n and p ∈ Rn, we define two dimensional planes

Pij(p) =
{

(p1, . . . , pi−1, xi, pi+1, . . . , pj−1, xj , pj+1, . . . , pn)
}

and Pij = Pij(0). Then it follows from (3.8) that

(3.9)
(
DxiP |Pij
DxjP |Pij

)
=
(
o1i o2i

o1j o2j

)(∏m−1
k=1

(
(ηi · ν1

k)xi + (ηj · ν1
k)xj

)∏m−1
k=1

(
(ηi · ν2

k)xi + (ηj · ν2
k)xj

)) .

If we require that

(3.10) det(ηi, ηj) = det
(
o1i o1j
o2i o2j

)
6= 0 ,

then that DxiP = DxjP = 0 on Pij is equivalent to
m−1∏
k=1

(
(ηi · ν1

k)xi + (ηj · ν1
k)xj

)
=
m−1∏
k=1

(
(ηi · ν2

k)xi + (ηj · ν2
k)xj

)
= 0 .

By (3.7) and (3.10), for any 1 ≤ k, l ≤ m− 1,

det
(
ηi · ν1

k ηj · ν1
k

ηi · ν2
l ηj · ν2

l

)
= det(ηi, ηj) det(ν1

k , ν
2
l ) 6= 0 .

Thus if we require that in the orthogonal matrix O,

det
(
o1i o2i
o1j o2j

)
6= 0 for all 1 ≤ i < j ≤ n ,

we obtain that for fixed 1 ≤ i < j ≤ n, fij = (DxiP,DxjP )|Pij : R2 → R2 has only
one zero at xi = xj = 0. If we replace (xi, xj) in (3.9) with (zi, zj) ∈ C2, we see
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that fij : C2 → C2 has also only zero at zi = zj = 0. We apply [13, Theorem 4.1]
with n = 2 due to Hilbert’s Nullstellensatz. For fixed 1 ≤ i < j ≤ n, there exist
δij > 0 and rij > 0 depending on fij such that for any v ∈ CM (B2

1/2(0); R2) with
|v − fij |CM (B1/2(0);R2) < δij , we have

(3.11) card
(
v−1{0} ∩B2

rij (0)
)
≤ (m− 1)2

where B2
r (0) denotes the ball centered at the origin with radius r in R2 and

M = 2(m − 1)2 which is independent of i, j. Put δ∗ = 1
2 min1≤i<j≤n δij and

r∗ = min1≤i<j≤n rij . Moreover, we assume that ϕ ∈ C2m2(B1(0); R) satisfies
|ϕ−P |C2m2 (B1(0);R) < δ∗. If we take r∗ smaller if necessary, for any 0 < r < r∗ and
for any p ∈ Br(0), vij,p := (Dxiϕ,Dxjϕ)|Pij(p) satisfies |vij,p − fij |CM (B2

1/2(0);R) <

2δ ≤ δij . Hence from (3.11)

card (v−1
ij,p{0} ∩B

2
r (0)) ≤ (m− 1)2 .

Since |∇ϕ|−1{0} ∩ Pij(p) ⊂ v−1
ij,p{0}, if we set the projection

πij(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn) ,

then for any q ∈ Bn−2
r (0) ⊂ Rn−2 and any 1 ≤ i < j ≤ n,

card
(
|∇ϕ|−1{0} ∩ π−1

ij (q) ∩Br(0)
)
≤ (m− 1)2 .

By the general area-coarea formula (cf. Federer [8, 3.3.22] or Morgan [20, 3.13]),
we have

Hn−2(|∇ϕ|−1{0} ∩Br(0)
)

≤
∑

1≤i<j≤n

∫
Bn−2
r (0)

card
(
|∇ϕ|−1{0} ∩ π−1

ij (q) ∩Br(0)
)
dHn−2q

≤ c(n)(m− 1)2rn−2 .(3.12)

Since M + 1 = 2(m− 1)2 + 1 ≤ 2m2, this completes the proof. �

Now we can get the following

Proposition 3.4. Assume that the conditions of Theorem 1.1 hold. Then for any
Ω′ b Ω and any ε > 0, there exist C(ε) = Cεn−2 and γ(ε) = γεn−2 where C and
γ depend on ψ, Ω′ and Λ(Ω′′), and a collection of finitely many balls {Bri(xi)}i
with ri ≤ ε, xi ∈ S(ψ) ∩ Ω′ such that

(3.13)

Hn−2
(
S(ψ) ∩ Ω′ \

⋃
i

Bri(xi)
)
≤ C(ε) ,

∑
i

rn−2
i ≤ γ(ε) .

Proof. By (2.6), we have Hn−2(S(ψ)∩Ω′ \S∗(ψ)
)

= 0. Therefore (n−2)-spherical
measure of S(ψ) ∩ Ω′ \ S∗(ψ) is equal to zero (cf. Mattila [19, p. 75]). Thus for
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any ε > 0, there exist at most countably many balls {Bri(xi)} with ri ≤ ε and
xi ∈ S(ψ) ∩ Ω′ \ S∗(ψ) such that∑

i

rn−2
i ≤ γ(ε, ψ,Ω′)

where γ(ε, ψ,Ω′)→ 0 as ε→ 0.
Then we shall show the following claim.
Claim: For any y ∈ S∗(ψ) ∩ Ω′, there exist R = R(y, ψ,Ω′) and c = c(y, ψ,Ω′)

with R ≤ R0 where R0 is as in Proposition 3.1 such that for any 0 < r < R,

Hn−2(S(ψ) ∩ Ω′ ∩Br(y)) ≤ crn−2 .

Here R and c depend only on y, ψ, Ω′ but also on Λ(Ω′′).
We prove the claim. Let y ∈ S∗(ψ)∩Ω′. By the construction of Ω′′, B2R0(y) b Ω′′.

If R < R0, it follows from Proposition 2.4 that we can write

ψ(x+ y) = Pm(x) + φ(x) in BR(0)

where Pm is a non-zero homogeneous, harmonic polynomial of degree m ≥ 2 of two
variables after some rotation of coordinates, and from Lemma 3.2, we have

|Djφ(x)| ≤
{
CRm−j+α j = 0, 1, . . . ,m ,

C j = m+ 1, . . .M + 1

in BR(0). If we choose R = R(y, ψ,Ω′) small enough with R ≤ R0, we have

(3.14)
∣∣∣∣ 1
Rm

φ

∣∣∣∣∗
CM+1(BR(0));C

< δ∗

where δ∗ is as in Lemma 3.3. In fact,∣∣∣ 1
Rm

φ
∣∣∣∗
CM+1(BR(0);C)

=
M+1∑
j=0

Rj

Rm
sup

x∈BR(0)
|Djφ(x)|

=
m∑
j=0

+
M+1∑
j=m+1

≤ C
[ m∑
j=0

Rj

Rm
Rm−j+α +

M+1∑
j=m+1

Rj

Rm

]
≤ CRα

where C depends on y, ψ, Ω and Λ(Ω′′). Thus if we choose R > 0 small enough,
we get (3.14). That is to say, we have∣∣∣ 1

Rm
(ψ(·+ y)− Pm)

∣∣∣∗
CM+1(BR(0);C)

< δ∗ .

By scaling: x 7→ Rx and using the homogeneity of Pm, we have∣∣∣ 1
Rm

ψ(y +Rx)− Pm(x)
∣∣∣
CM+1(B1(0);C)

< δ∗ .
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Since from (3.4) and (2.3), M ≥ 2c20 ≥ 2m2, we can apply Lemma 3.3 to 1
Rmψ(y +

Rx) and get

c(n)(m− 1)2rn−2 ≥ Hn−2({x;∇xψ(y +Rx) = 0} ∩Br(0)
)

= Hn−2
({z − y

R
;∇zψ(z) = 0

}
∩
{z − y

R
; |z − y

R
| < r

})
= 1
Rn−2H

n−2(|∇ψ|−1{0} ∩Br(y)
)

for all 0 < r < r∗. Here we may assume that R < 1. Therefore, we get

(3.15) Hn−2(|∇ψ|−1{0} ∩Br(y)
)
≤ c(n)(m− 1)2rn−2

for all 0 < r < Rr∗. Since we can replace R with a smaller one, we can take Rr∗ ≤ ε.
Thus the claim holds.

Therefore, since
S∗(ψ) ⊂

⋃
y∈S∗(ψ)

Br(y)(y) ,

we have

S(ψ) ∩ Ω′ = (S(ψ) ∩ Ω′ \ S∗(ψ)) ∪ S∗(ψ)

⊂
⋃
i

Bri(xi) ∪
⋃

y∈S∗(ψ)

Br(y)(y) .

Since S(ψ)∩Ω′ is relatively compact, there exist finitely many xi ∈ S(ψ)∩Ω′\S∗(ψ)
(i = 1, 2, . . . , k = k(ε, ψ)) and yj ∈ S∗(ψ) (j = 1, 2, . . . , l = l(ε, ψ)) such that

S(ψ) ∩ Ω′ ⊂
k⋃
i=1

Bri(xi) ∪
l⋃

j=1
Bsj (yj)

and
k∑
i=1

rn−2
i ≤

k∑
i=1

εn−2 := γ(ε, ψ) = kεn−2 .

Thus it follows from the claim that

Hn−2
(
S(ψ) ∩ Ω′ \

k⋃
i=1

Bri(xi)
)

≤
l∑

j=1
Hn−2(S(ψ) ∩ Ω′ ∩Bsj (yj)

)
≤ C

l∑
j=1

sn−2
j ≤ C

l∑
j=1

εn−2 = Clεn−2 .

This completes the proof. �

Finally, we have



198 J. ARAMAKI

Theorem 3.5. Assume that the conditions in Theorem 1.1 hold. For any Ω′ b Ω,
there exists a constant C > 0 depending on ψ, Ω′ and Λ(Ω′′) such that

Hn−2(S(ψ) ∩ Ω′) ≤ C .

Proof. Let 0 < R < R0 where R0 is as in Proposition 3.1. Since {BR(x)}x∈Ω′ is an
open covering of a compact set Ω′, there exists finitely many points x1, . . . , xk0 ∈ Ω′
such that Ω′ ⊂

⋃k0
i=1BR(xi). We put a collection of the balls φ0 = {BR(xi)}k0

i=1.
Fix any ε > 0. Then we have the following

Claim: There exist collections of balls φ1, φ2, . . . such that for any l ≥ 1,
(i) rad (B) ≤ (2ε)lR0 for all B ∈ φl where rad (B) denotes the radius of the ball

B.
(ii) The center of B is contained in Ω′ for all B ∈ φl.
(iii)

∑
B∈φl(rad (B))n−2 ≤ γ(ε)l.

(iv) Hn−2(S(ψ)∩Ω′∩
(⋃

B∈φl−1
B ∼

⋃
B∈φl B

))
≤ C(ε)γ(ε)l−1 where γ(ε) and

C(ε) are as in Proposition 3.4.
First, we show that the claim implies Theorem 3.5. In order to do so, we show

that

S(ψ) ∩ Ω′ ⊂
∞⋃
l=1

(
S(ψ) ∩ Ω′ ∩

( ⋃
B∈φl−1

B ∼
⋃
B∈φl

B
))

∪
∞⋂
l=0

(
S(ψ) ∩ Ω′ ∩

( ∞⋃
j=l

⋃
B∈φj

B
))

.(3.16)

In fact, let p ∈ S(ψ) ∩ Ω′ and assume that

(3.17) p /∈
⋃

B∈φl−1

B ∼
⋃
B∈φl

B

for all l ≥ 1. Since p ∈
⋃
B∈φ0

B, clearly p ∈ S(ψ)∩Ω′∩
(⋃∞

j=0
⋃
B∈φj B

)
. It suffices

to show that for any k ≥ 0,

(3.18) p ∈
k⋂
l=0

(
S(ψ) ∩ Ω′ ∩

( ∞⋃
j=l

⋃
B∈φj

B
))

.

We show (3.18)k by induction on k. When k = 1, by (3.17), p /∈
(⋃

B∈φ0
B
)
\(⋃

B∈φ1
B
)

and p /∈
(⋃

B∈φ1
B
)
\
(⋃

B∈φ0
B
)
. Since p ∈

⋃
B∈φ0

B, we see that

p ∈ S(ψ) ∩ Ω′ ∩
( ⋃
B∈φ1

B
)
⊂ S(ψ) ∩ Ω′ ∩

( ∞⋃
j=1

⋃
B∈φj

B
)
.

Thus we have

p ∈
1⋂
l=0

(
S(ψ) ∩ Ω′ ∩

( ∞⋃
j=l

⋃
B∈φj

B
))

.

Therefore (3.18)1 holds. Assume that (3.18)j holds for j ≤ k (k ≥ 1). Then
p ∈ S(ψ)∩Ω′ and p ∈

⋃∞
j=k

⋃
B∈φj B. That is to say, for some j ≥ k, p ∈

⋃
B∈φj B.
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If j ≥ k + 1, then p ∈
⋃∞
j=k+1

⋃
B∈φj B. Hence (3.18)k+1 holds. If j = k, then

p ∈
⋃
B∈φk B. From (3.17), p ∈

⋃
B∈φk+1

B ⊂
⋃∞
j=k+1

⋃
B∈φj B. Thus (3.18)k+1

holds. Therefore, (3.18)k holds for any k ≥ 0.
From (3.16), we see that

Hn−2(S(ψ) ∩ Ω′
)
≤
∞∑
l=1
Hn−2

(
S(ψ) ∩ Ω′ ∩

( ⋃
B∈φl−1

B ∼
⋃
B∈φl

B
))

+ inf
l≥0

∞∑
j=l

∑
B∈φj

Hn−2(S(ψ) ∩ Ω′ ∩B
)
.

Here it follows from (3.15) that

Hn−2(S(ψ) ∩ Ω′ ∩B
)
≤ Hn−2(|∇ψ|−1{0} ∩B

)
≤ c(n)(m− 1)2( rad (B)

)n−2 ≤ c(n)M
(

rad (B)
)n−2

.

Therefore, from the claim, we have
Hn−2(S(ψ) ∩ Ω′

)
≤ C(ε)

∞∑
l=1

γ(ε)l−1 + c(n)M inf
l≥0

∞∑
j=l

∑
B∈φj

(
rad (B)

)n−2

≤ C(ε)
∞∑
l=1

γ(ε)l−1 + c(n)M inf
l≥0

∞∑
j=l

γ(ε)j .

If we choose ε > 0 small enough so that γ(ε) ≤ 1/2, we have

Hn−2(S(ψ) ∩ Ω′
)
≤ 2C(ε) .

Thus the theorem holds.
Finally we prove the claim. Note that φ0 = {BR(xi)}k0

i=1 is independent of ε.
We shall construct {φl}l≥1 by induction on l. Assume that we have constructed
φ0, φ1, . . . , φl−1 (l ≥ 1). Let B = Br(y) ∈ φl−1, (y ∈ Ω′). If we choose ε > 0
small enough, if necessary, by induction hypothesis, r ≤ (2ε)l−1R0 ≤ R0. Then
B2r(y) b Ω and ψ satisfies the equation

−∇2
Aψ = f(|ψ|2)ψ in B2r(y) .

By Proposition 3.4 replaced ε with εr, there exist a finitely many balls {Bri(xi)}i
with ri ≤ εr and xi ∈ S(ψ) ∩ Ω′ ∩Br(y) such that

(3.19) Hn−2
(
S(ψ) ∩ Ω′ ∩Br(y) \

(⋃
i

Bri(xi)
))
≤ C(ε)rn−2

and ∑
i

rn−2
i ≤ γ(rε)n−2 = γ(ε)rn−2 .

Let φBl = {Bri(xi)}i and φl = {φBl }B∈φl−1 . Then

ri ≤ εr ≤ ε(2ε)l−1R0 ≤ (2ε)lR0 .
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Thus (i) in the claim holds. (ii) is clear. Since∑
B∈φl

(
rad (B)

)n−2 =
∑

B∈φl−1

∑
i

rn−2
i ≤ γ(ε)γ(ε)l−1 = γ(ε)l ,

(iii) holds. It follows from (3.19) and the induction hypothesis that

Hn−2
(
S(ψ) ∩ Ω′ ∩

( ⋃
B∈φl−1

B ∼
⋃
B∈φl

B
))

≤
∑

Br(y)∈φl−1

Hn−2
(
S(ψ) ∩ Ω′ ∩Br(y) \

(⋃
i

Bri(xi)
))

≤ C(ε)
∑

Br(y)∈φl−1

rn−2 ≤ C(ε)γ(ε)l−1 .

This proves (iv). Thus the claim holds. This completes the proof of Theorem
3.5. �

It is clear that this Theorem 3.5 implies Theorem 1.1.
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