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NOVIKOV SUPERALGEBRAS WITH A0 = A1A1

Fuhai Zhu, Zhiqi Chen, Tianjin
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Abstract. Novikov superalgebras are related to quadratic conformal superalgebras which
correspond to the Hamiltonian pairs and play a fundamental role in completely integrable
systems. In this note we show that the Novikov superalgebras with A0 = A1A1 and
dimA1 = 2 are of type N and give a class of Novikov superalgebras of type S with A0 =
A1A1.
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1. Introduction

Novikov superalgebras are a super variant of Novikov algebras. They are closely

related to popular algebraic objects such as conformal superalgebras [5], vertex op-

erator superalgebras [8] and super Gel’fand-Dorfman bialgebras [7] which play an

important role in the quantum field theory and the theory of completely integrable

systems.

A Novikov superalgebra A is a Z2-graded vector space A = A0+A1 with a bilinear

product (u, v) 7→ uv for any u ∈ Ai, v ∈ Aj , w ∈ A satisfying

(uv)w − u(vw) = (−1)ij((vu)w − v(uw)),(1.1)

(wu)v = (−1)ij(wv)u.(1.2)

The even part of a given Novikov superalgebra is what is said to be a Novikov algebra

introduced in connection with the Poisson brackets of hydrodynamic type [1] and

Hamiltonian operators in the formal variational calculus [2], [3], [4], [9], [10].
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Novikov superalgebras are classified into two types: N and S. Let A = A0 + A1

be a Novikov superalgebra with multiplication (u, v) 7→ uv. If A is also a Novikov

algebra with respect to the same product and with superstructure forgotten, then

A is called a Novikov superalgebra of type N , otherwise A is said to be of type S. It

is proved in [6] that all Novikov superalgebras of dimensions up to 3 are of type N .

Up to now, all examples of Novikov superalgebras have been of type N .

In this paper we show that the Novikov superalgebras with A0 = A1A1 and

dimA1 = 2 are of type N . Furthermore, we provide a class of Novikov superal-

gebras of type S with A0 = A1A1 and dimA = 2n + 1 for n > 2.

Throughout the paper we assume that the algebras are finite-dimensional over C.

Obvious proofs are omitted.

2. Novikov superalgebras with A0 = A1A1

Let A = A0 + A1 be a Novikov superalgebra.

Lemma 2.1. The subspace A1A1 + A1 is an ideal of A.

P r o o f. For any x ∈ A0, y, z ∈ A1, we have

(yz)x = (yx)z ∈ A1A1,

x(yz) = y(xz) + (xy)z − (yx)z ∈ A1A1.

It follows that A1A1 + A1 is an ideal of A. �

Lemma 2.2. For any x ∈ A1, y ∈ A, we have (xx)y = x(xy) and (yx)x = 0.

Now we consider the Novikov superalgebras A = A0 + A1 with A0 = A1A1,

dimA1 = 2 and A0 6= {0}. Then one can easily see that dimA0 6 4.

Let f1, f2 be a basis of A1. Set

(2.1) e1 = f1f1, e2 = f2f2, e3 = f1f2, e4 = f2f1.

Then A0 = 〈e1, e2, e3, e4〉.

Assume that xx = 0 for any x ∈ A1. Then dimA0 = 1 and f1f2 = −f2f1 is a

basis of A0. By [6], A0A1 = A1A0 = A0A0 = 0 and A is of type N .

In the following, assume that e1 = f1f1 6= 0.

Lemma 2.3. A0A1 = 0.
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P r o o f. By Lemma 2.2, one has f1e1 = e1f1 = 0, e4f1 = 0, f2e2 = e2f2 = 0

and e3f2 = 0. The following is to show that e2f1 = 0.

If e2 is a multiple of e1, the assertion is trivial. Assume that e1 and e2 are linearly

independent. It is easy to see that

(2.2) (e2f1)f1 = (e2f1)f2 = 0.

Furthermore,

f2(e2f1) = f2(f2(f2f1)) = (f2f2)(f2f1) = (f2(f2f1))f2(2.3)

= − ((f2f2)f2)f1 = 0.

Assume that e2f1 = af1 + bf2, then by eqs. (2.2) and (2.3) we have that

ae1 + be4 = ae3 + be2 = ae4 + be2 = 0.

It follows that a = b = 0. Similarly, e3f1 = e4f1 = 0 and A0f2 = 0. �

Lemma 2.4. The subalgebra A0 is skew-commutative.

P r o o f. For any fi, fj , ek, we have

(fifj)ek = (fiek)fj = (ekfi)fj + fi(ekfj) − ek(fifj) = −ek(fifj),

since ekfi = ekfj = 0 by Lemma 2.3. �

Lemma 2.5.

1) f1e2 = −f2e3, f1e4 = −f2e1, f1e1 = f1e3 = 0, f2e2 = f2e4 = 0.

2) e1e2 = e3e4, e1e3 = e2e4 = 0.

P r o o f. 1) By eq. (1.1), (f1f2)f2 − f1(f2f2) = −(f2f1)f2 + f2(f1f2). So f1e2 =

−f2e3. Similarly, f1e4 = −f2e1. Also, one has f1e3 = f1(f1f2) = (f1f1)f2 = 0.

Similarly, f2e2 = f2e4 = 0.

2) By eq. (1.2), e1e2 = (f1f1)e2 = (f1e2)f1 = −(f2e3)f1 = −(f2f1)e3 = −e4e3 =

e3e4. By 1) e1e3 = (f1f1)e3 = f1(f1e3) = 0 and similarly e2e4 = 0 and f1e2 6= 0. �
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Lemma 2.6.

1) The elements f1e2 and f1e4 commute with f1 and f2.

2) A1A0 = 0 and A0A0 = 0.

P r o o f. 1) For x = e2 or e4, f1(f1x) = (f1f1)x = (f1x)f1 and similarly

f2 commutes with f2y for y = e1 or e3. Then the assertion follows from Lemma 2.5.

2) If A1A0 6= 0, then assume that f1e2 = a1f1 + a2f2 and f1e4 = a3f1 + a4f2,

where at least one ai is not zero. Then by 1), aie3 = aie4 for 1 6 i 6 4, so e3 = e4.

Consequently, f1e4 = f1e3 = 0 and f1e2 = −f2e3 = −f2e4 = 0. So A1A0 = 0.

Moreover, A0A0 = 0. �

Theorem 2.7. Let A = A0 +A1 be a Novikov superalgebra with A0 = A1A1 and

dimA1 = 2. Then A is of type N .

Example 2.8. Assume that A = A0 + A1 is a vector space of dimension 2n + 1,

where n > 2. Let e1, . . . , en be a basis of A0 and f1, . . . , fn, fn+1 a basis of A1. Set

f1fi = ei, 1 6 i 6 n,

eifn+1−i =

{

fn+1, 1 6 i 6 [ 1
2
n],

−fn+1, [ 1
2
(n + 1)] + 1 6 i 6 n,

fien+1−i =

{

fn+1, 1 6 i 6 [ 1
2
n],

−fn+1, [ 1
2
(n + 1)] + 1 6 i 6 n,

Then we have

(f1fj)fn+1−j = −(f1fn+1−j)fj ,

(f1f1)fn = f1(f1fn),

(f1fj)fn+1−j − f1(fjfn+1−j) = −(fjf1)fn+1−j + fj(f1fn+1−j), j > 2.

It follows that A is a Novikov superalgebra of type S with A0 = A1A1.

References

[1] A.A. Balinskii, S. P. Novikov: Poisson brackets of hydrodynamic type, Frobenius alge-
bras and Lie algebras. Sov. Math. Dokl. 32 (1985), 228–231.

[2] I.M. Gel’fand, I. Ya. Dorfman: Hamiltonian operators and algebraic structures related
to them. Funct. Anal. Appl. 13 (1980), 248–262.

[3] I.M. Gel’fand, I. Y. Dorfman: The Schouten brackets and Hamiltonian operators. Funct.
Anal. Appl. 14 (1981), 223–226.

[4] I.M. Gel’fand, I.Y. Dorfman: Hamiltonian operators and infinite-dimensional Lie alge-
bras. Funct. Anal. Appl. 15 (1982), 173–187.

906



[5] V.G. Kac: Vertex Algebras for Beginners. University Lecture Series, 10. American Math-
ematical Society (AMS), Providence, 1998.

[6] Y.F. Kang, Z.Q. Chen: Novikov superalgebras in low dimensions. J. Nonlinear Math.
Phys 16 (2009), 251–257.

[7] X.P. Xu: Quadratic conformal superalgebras. J. Algebra 231 (2000), 1–38.
[8] X.P. Xu: Introduction to Vertex Operator Superalgebras and Their Modules. Kluwer,
Dordercht, 1998.

[9] X.P. Xu: Hamiltonian operators and associative algebras with a derivation. Lett. Math.
Phys. 33 (1995), 1–6.

[10] X.P. Xu: Hamiltonian superoperators. J. Phys A. Math. Gen. 28 (1995), 1681–1698.

Authors’ addresses: F . Z hu, School of Mathematical Sciences and LPMC, Nankai Uni-
versity, Tianjin 300071, P.R.China; Z . C h e n (corresponding author), School of Math-
ematical Sciences and LPMC, Nankai University, Tianjin 300071, P.R.China, e-mail:
chenzhiqi@nankai.edu.cn.

907


		webmaster@dml.cz
	2020-07-03T18:56:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




