Czechoslovak Mathematical Journal

Fuhai Zhu; Zhiqi Chen
Novikov superalgebras with $A_{0}=A_{1} A_{1}$

Czechoslovak Mathematical Journal, Vol. 60 (2010), No. 4, 903-907

Persistent URL: http://dml.cz/dmlcz/140792

Terms of use:

© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

NOVIKOV SUPERALGEBRAS WITH $A_{0}=A_{1} A_{1}$

Fuhai Zhu, Zhiqi Chen, Tianjin
(Received April 3, 2009)

Abstract

Novikov superalgebras are related to quadratic conformal superalgebras which correspond to the Hamiltonian pairs and play a fundamental role in completely integrable systems. In this note we show that the Novikov superalgebras with $A_{0}=A_{1} A_{1}$ and $\operatorname{dim} A_{1}=2$ are of type N and give a class of Novikov superalgebras of type S with $A_{0}=$ $A_{1} A_{1}$.

Keywords: Novikov algebra, Novikov superalgebra, type N, type S
MSC 2010: 17A70, 17A30

1. Introduction

Novikov superalgebras are a super variant of Novikov algebras. They are closely related to popular algebraic objects such as conformal superalgebras [5], vertex operator superalgebras [8] and super Gel'fand-Dorfman bialgebras [7] which play an important role in the quantum field theory and the theory of completely integrable systems.

A Novikov superalgebra A is a \mathbb{Z}_{2}-graded vector space $A=A_{0}+A_{1}$ with a bilinear product $(u, v) \mapsto u v$ for any $u \in A_{i}, v \in A_{j}, w \in A$ satisfying

$$
\begin{gather*}
(u v) w-u(v w)=(-1)^{i j}((v u) w-v(u w)), \tag{1.1}\\
(w u) v=(-1)^{i j}(w v) u . \tag{1.2}
\end{gather*}
$$

The even part of a given Novikov superalgebra is what is said to be a Novikov algebra introduced in connection with the Poisson brackets of hydrodynamic type [1] and Hamiltonian operators in the formal variational calculus [2], [3], [4], [9], [10].

The first author is partially supported by NNSF of China (No. 10971103).

Novikov superalgebras are classified into two types: N and S. Let $A=A_{0}+A_{1}$ be a Novikov superalgebra with multiplication $(u, v) \mapsto u v$. If A is also a Novikov algebra with respect to the same product and with superstructure forgotten, then A is called a Novikov superalgebra of type N, otherwise A is said to be of type S. It is proved in [6] that all Novikov superalgebras of dimensions up to 3 are of type N. Up to now, all examples of Novikov superalgebras have been of type N.

In this paper we show that the Novikov superalgebras with $A_{0}=A_{1} A_{1}$ and $\operatorname{dim} A_{1}=2$ are of type N. Furthermore, we provide a class of Novikov superalgebras of type S with $A_{0}=A_{1} A_{1}$ and $\operatorname{dim} A=2 n+1$ for $n \geqslant 2$.

Throughout the paper we assume that the algebras are finite-dimensional over \mathbb{C}. Obvious proofs are omitted.

2. Novikov superalgebras with $A_{0}=A_{1} A_{1}$

Let $A=A_{0}+A_{1}$ be a Novikov superalgebra.
Lemma 2.1. The subspace $A_{1} A_{1}+A_{1}$ is an ideal of A.
Proof. For any $x \in A_{0}, y, z \in A_{1}$, we have

$$
\begin{gathered}
(y z) x=(y x) z \in A_{1} A_{1}, \\
x(y z)=y(x z)+(x y) z-(y x) z \in A_{1} A_{1} .
\end{gathered}
$$

It follows that $A_{1} A_{1}+A_{1}$ is an ideal of A.

Lemma 2.2. For any $x \in A_{1}, y \in A$, we have $(x x) y=x(x y)$ and $(y x) x=0$.
Now we consider the Novikov superalgebras $A=A_{0}+A_{1}$ with $A_{0}=A_{1} A_{1}$, $\operatorname{dim} A_{1}=2$ and $A_{0} \neq\{0\}$. Then one can easily see that $\operatorname{dim} A_{0} \leqslant 4$.

Let f_{1}, f_{2} be a basis of A_{1}. Set

$$
\begin{equation*}
e_{1}=f_{1} f_{1}, \quad e_{2}=f_{2} f_{2}, \quad e_{3}=f_{1} f_{2}, \quad e_{4}=f_{2} f_{1} \tag{2.1}
\end{equation*}
$$

Then $A_{0}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$.
Assume that $x x=0$ for any $x \in A_{1}$. Then $\operatorname{dim} A_{0}=1$ and $f_{1} f_{2}=-f_{2} f_{1}$ is a basis of A_{0}. By [6], $A_{0} A_{1}=A_{1} A_{0}=A_{0} A_{0}=0$ and A is of type N.

In the following, assume that $e_{1}=f_{1} f_{1} \neq 0$.

Lemma 2.3. $A_{0} A_{1}=0$.

Proof. By Lemma 2.2, one has $f_{1} e_{1}=e_{1} f_{1}=0, e_{4} f_{1}=0, f_{2} e_{2}=e_{2} f_{2}=0$ and $e_{3} f_{2}=0$. The following is to show that $e_{2} f_{1}=0$.

If e_{2} is a multiple of e_{1}, the assertion is trivial. Assume that e_{1} and e_{2} are linearly independent. It is easy to see that

$$
\begin{equation*}
\left(e_{2} f_{1}\right) f_{1}=\left(e_{2} f_{1}\right) f_{2}=0 \tag{2.2}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
f_{2}\left(e_{2} f_{1}\right)=f_{2}\left(f_{2}\left(f_{2} f_{1}\right)\right) & =\left(f_{2} f_{2}\right)\left(f_{2} f_{1}\right)=\left(f_{2}\left(f_{2} f_{1}\right)\right) f_{2} \tag{2.3}\\
& =-\left(\left(f_{2} f_{2}\right) f_{2}\right) f_{1}=0 .
\end{align*}
$$

Assume that $e_{2} f_{1}=a f_{1}+b f_{2}$, then by eqs. (2.2) and (2.3) we have that

$$
a e_{1}+b e_{4}=a e_{3}+b e_{2}=a e_{4}+b e_{2}=0
$$

It follows that $a=b=0$. Similarly, $e_{3} f_{1}=e_{4} f_{1}=0$ and $A_{0} f_{2}=0$.

Lemma 2.4. The subalgebra A_{0} is skew-commutative.
Proof. For any f_{i}, f_{j}, e_{k}, we have

$$
\left(f_{i} f_{j}\right) e_{k}=\left(f_{i} e_{k}\right) f_{j}=\left(e_{k} f_{i}\right) f_{j}+f_{i}\left(e_{k} f_{j}\right)-e_{k}\left(f_{i} f_{j}\right)=-e_{k}\left(f_{i} f_{j}\right)
$$

since $e_{k} f_{i}=e_{k} f_{j}=0$ by Lemma 2.3.

Lemma 2.5.

1) $f_{1} e_{2}=-f_{2} e_{3}, f_{1} e_{4}=-f_{2} e_{1}, f_{1} e_{1}=f_{1} e_{3}=0, f_{2} e_{2}=f_{2} e_{4}=0$.
2) $e_{1} e_{2}=e_{3} e_{4}, e_{1} e_{3}=e_{2} e_{4}=0$.

Proof. 1) By eq. (1.1), $\left(f_{1} f_{2}\right) f_{2}-f_{1}\left(f_{2} f_{2}\right)=-\left(f_{2} f_{1}\right) f_{2}+f_{2}\left(f_{1} f_{2}\right)$. So $f_{1} e_{2}=$ $-f_{2} e_{3}$. Similarly, $f_{1} e_{4}=-f_{2} e_{1}$. Also, one has $f_{1} e_{3}=f_{1}\left(f_{1} f_{2}\right)=\left(f_{1} f_{1}\right) f_{2}=0$. Similarly, $f_{2} e_{2}=f_{2} e_{4}=0$.
2) By eq. (1.2), $e_{1} e_{2}=\left(f_{1} f_{1}\right) e_{2}=\left(f_{1} e_{2}\right) f_{1}=-\left(f_{2} e_{3}\right) f_{1}=-\left(f_{2} f_{1}\right) e_{3}=-e_{4} e_{3}=$ $e_{3} e_{4}$. By 1) $e_{1} e_{3}=\left(f_{1} f_{1}\right) e_{3}=f_{1}\left(f_{1} e_{3}\right)=0$ and similarly $e_{2} e_{4}=0$ and $f_{1} e_{2} \neq 0$.

Lemma 2.6.

1) The elements $f_{1} e_{2}$ and $f_{1} e_{4}$ commute with f_{1} and f_{2}.
2) $A_{1} A_{0}=0$ and $A_{0} A_{0}=0$.

Proof. 1) For $x=e_{2}$ or $e_{4}, f_{1}\left(f_{1} x\right)=\left(f_{1} f_{1}\right) x=\left(f_{1} x\right) f_{1}$ and similarly f_{2} commutes with $f_{2} y$ for $y=e_{1}$ or e_{3}. Then the assertion follows from Lemma 2.5.
2) If $A_{1} A_{0} \neq 0$, then assume that $f_{1} e_{2}=a_{1} f_{1}+a_{2} f_{2}$ and $f_{1} e_{4}=a_{3} f_{1}+a_{4} f_{2}$, where at least one a_{i} is not zero. Then by 1$), a_{i} e_{3}=a_{i} e_{4}$ for $1 \leqslant i \leqslant 4$, so $e_{3}=e_{4}$. Consequently, $f_{1} e_{4}=f_{1} e_{3}=0$ and $f_{1} e_{2}=-f_{2} e_{3}=-f_{2} e_{4}=0$. So $A_{1} A_{0}=0$. Moreover, $A_{0} A_{0}=0$.

Theorem 2.7. Let $A=A_{0}+A_{1}$ be a Novikov superalgebra with $A_{0}=A_{1} A_{1}$ and $\operatorname{dim} A_{1}=2$. Then A is of type N.

Example 2.8. Assume that $A=A_{0}+A_{1}$ is a vector space of dimension $2 n+1$, where $n \geqslant 2$. Let e_{1}, \ldots, e_{n} be a basis of A_{0} and $f_{1}, \ldots, f_{n}, f_{n+1}$ a basis of A_{1}. Set

$$
\begin{aligned}
f_{1} f_{i} & =e_{i}, \quad 1 \leqslant i \leqslant n, \\
e_{i} f_{n+1-i} & = \begin{cases}f_{n+1}, & 1 \leqslant i \leqslant\left[\frac{1}{2} n\right], \\
-f_{n+1}, & {\left[\frac{1}{2}(n+1)\right]+1 \leqslant i \leqslant n,}\end{cases} \\
f_{i} e_{n+1-i} & = \begin{cases}f_{n+1}, & 1 \leqslant i \leqslant\left[\frac{1}{2} n\right], \\
-f_{n+1}, & {\left[\frac{1}{2}(n+1)\right]+1 \leqslant i \leqslant n,}\end{cases}
\end{aligned}
$$

Then we have

$$
\begin{gathered}
\left(f_{1} f_{j}\right) f_{n+1-j}=-\left(f_{1} f_{n+1-j}\right) f_{j} \\
\left(f_{1} f_{1}\right) f_{n}=f_{1}\left(f_{1} f_{n}\right) \\
\left(f_{1} f_{j}\right) f_{n+1-j}-f_{1}\left(f_{j} f_{n+1-j}\right)=-\left(f_{j} f_{1}\right) f_{n+1-j}+f_{j}\left(f_{1} f_{n+1-j}\right), \quad j \geqslant 2
\end{gathered}
$$

It follows that A is a Novikov superalgebra of type S with $A_{0}=A_{1} A_{1}$.

References

[1] A. A. Balinskii, S. P. Novikov: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Sov. Math. Dokl. 32 (1985), 228-231.
[2] I. M. Gel'fand, I. Ya. Dorfman: Hamiltonian operators and algebraic structures related to them. Funct. Anal. Appl. 13 (1980), 248-262.
[3] I. M. Gel'fand, I. Y. Dorfman: The Schouten brackets and Hamiltonian operators. Funct. Anal. Appl. 14 (1981), 223-226.
[4] I. M. Gel'fand, I. Y. Dorfman: Hamiltonian operators and infinite-dimensional Lie algebras. Funct. Anal. Appl. 15 (1982), 173-187.
[5] V. G. Kac: Vertex Algebras for Beginners. University Lecture Series, 10. American Mathematical Society (AMS), Providence, 1998.
[6] Y. F. Kang, Z. Q. Chen: Novikov superalgebras in low dimensions. J. Nonlinear Math. Phys 16 (2009), 251-257.
[7] X. P. Xu: Quadratic conformal superalgebras. J. Algebra 231 (2000), 1-38.
[8] X. P. Xu: Introduction to Vertex Operator Superalgebras and Their Modules. Kluwer, Dordercht, 1998.
[9] X. P. Xu: Hamiltonian operators and associative algebras with a derivation. Lett. Math. Phys. 33 (1995), 1-6.
[10] X. P. Xu: Hamiltonian superoperators. J. Phys A. Math. Gen. 28 (1995), 1681-1698.

Authors' addresses: F. Z h u, School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P.R.China; Z. Chen (corresponding author), School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P. R. China, e-mail: chenzhiqi@nankai.edu.cn.

