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Abstract. In this paper we classify finite groups with disconnected intersection graphs of
subgroups. This solves a problem posed by Csákány and Pollák.
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1. Introduction

In [5] Csákány and Pollák defined intersection graphs of nontrivial proper sub-

groups of groups. This study was inspired by the definition of intersection graphs

of nontrivial proper subsemigroups of semigroups due to Bosák (see [2]). Zelinka

continued the work on intersection graphs of subgroups of finite abelian groups [9].

Recently, the intersection graph of ideals of rings was studied by Chakrabarty, Ghosh,

Mukherjee and Sen [4].

Let G be a finite group different from a cyclic group of prime order. The inter-

section graph Γ(G) of G is the undirected graph (without loops and multiple edges)

whose vertices are the nontrivial proper subgroups of G and two vertices are joined

by an edge if and only if they have a non-unit intersection, i.e., an intersection con-

taining a non-unit element. If Γ(G) has one vertex, then G is a cyclic group of

order p2 where p is a prime. Denote the components of the intersection graph Γ(G)

by Γ1(G), Γ2(G), . . . , Γk(G). For every component Γi(G) for i = 1, 2, . . . , k we define

the block Bi to be the union of all vertices of Γi(G). Obviously, the block Bi is a

union of some maximal subgroups of G.
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If the intersection graph of the group G is connected (or disconnected), we say

briefly that G is connected (or disconnected). We will speak about the distance of

nontrivial proper subgroups H and K of the group G, and also about the diameter

of a connected group G. Denote by ̺(H, K) the distance of H and K, and by δ(G)

the diameter of the connected group G. Let again H and K be nontrivial proper

subgroups in G.

Definition. If there exist nontrivial subgroups L1, . . . , Ln of G such that H ∼

L1, L1 ∼ L2, . . ., Ln−1 ∼ Ln, Ln ∼ K, then we say that H and K are connected by

the chain H ∼ L1 ∼ L2 ∼ . . . ∼ Ln ∼ K. Clearly, in this case ̺(H, K) 6 n + 1.

In the end of the paper [5], Csákány and Pollák put forward the problem to classify

disconnected groups. In this paper we solve it and prove the following theorem. In

the sequel all groups are finite.

Theorem. A finite group with a disconnected intersection graph is Zp × Zq,

where both p, q are primes, or a Frobenius group whose complement is a prime order

group and the kernel is a minimal normal subgroup.

2. Some lemmas

First, we cite some lemmas due to Csákány and Pollák. Recall that a subset S of

the group G is called a normal subset if Sg = S for every element g of G.

Lemma 1. If G is connected, then the diameter δ(G) is equal to max{̺(P, Q) :

both P, Q are subgroups of prime order of G}.

Lemma 2. Let B be a block of G and M a proper subgroup of the group G. If

B ∩ M 6= 1, then M ⊆ B.

Lemma 3. Let B be a block of G. Then B is a subgroup of G or a normal

subset of G.

Lemma 4. Let G be disconnected and let B = {B1, B2, . . . , Bl} be the set of

all the subgroup blocks of G. Then any conjugate of Bi is also contained in B for

i = 1, 2, . . . , l.

Next we investigate non-simple groups, i.e., those containing at least one non-

trivial normal subgroup.
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Lemma 5. If G is not a simple group, then one of the following cases occurs:

(1) the diameter δ(G) 6 4.

(2) G is Zp × Zq, where p, q are primes.

(3) G is a Frobenius group whose complement is a group of prime order and the

kernel is a minimal normal subgroup.

P r o o f. Suppose that N is a nontrivial proper normal subgroup of G. By

Lemma 1, the required result δ(G) 6 4 is equivalent to ̺(P, Q) 6 4 for any prime

order subgroups P , Q with P 6= Q. Let |P | = |〈a〉| = p and |Q| = |〈b〉| = q.

Case 1. PN = G.

(a) If Q ∩ N = 〈b〉 ∩ N = 1, then b ∈ G \ N . Since G/N ∼= P , the order of every

element of G \ N is a multiple of p. So the order of b is p, that is o(b) = p = q.

If CG(a) = G, then G = P × N . Since o(a) = o(b) = p, we can assume that Q =

〈(a, x)〉, where x ∈ N and o(x) = p. Now we set H = {(y, z) : y ∈ 〈a〉, z ∈ 〈x〉}. If

|N | 6= p, thenH is a proper subgroup ofG, so that we have a chain P ∼ H ∼ Q. Thus

̺(P, Q) 6 2. Certainly, when G is Zp ×Zp, there are p+1 nontrivial subgroups such

that the intersection of any two of them is trivial, i.e., the intersection graph Γ(G)

is the p + 1 isolated vertices graph.

If CG(b) = G, then 〈b〉 ⊳ G. Since b 6∈ N , we have G = 〈b〉 × N by virtue

of |G| = p|N |. So we can assume that 〈a〉 = 〈b, x〉, where x ∈ N and o(x) = p.

Similarly, we choose a group H = {(y, z) : y ∈ 〈b〉, z ∈ 〈x〉}. When |N | 6= p, then

H is a proper subgroup of G, so P and Q are connected by a chain P ∼ H ∼ Q.

Thus we have also ̺(P, Q) 6 2.

Now we suppose that CG(a) 6= G and CG(b) 6= G.

If CG(a)∩N 6= 1 and CG(b)∩N 6= 1, then 〈a〉 ∼ CG(a) ∼ N and 〈b〉 ∼ CG(b) ∼ N ,

so 〈a〉 ∼ CG(a) ∼ N ∼ CG(b) ∼ 〈b〉. Then we have ̺(P, Q) 6 4. If CG(a) ∩ N = 1

or CG(b) ∩ N = 1, we may assume without loss of generality,that CG(a) ∩ N = 1,

then 〈a〉 acts non-fixed point on the subgroup N . Thus G = N : 〈a〉 is a Frobenius

group. Clearly, if N is not a minimal normal subgroup of G, then we can choose a

nontrivial normal subgroup N1 of N such that N1 ⊳ G. So we get a chain 〈a〉 ∼

N1〈a〉 ∼ N1〈b〉 ∼ 〈b〉, hence we have ̺(P, Q) 6 3. Certainly, if N is a minimal

normal subgroup of G, then G satisfies the requirement (3).

(b) Case of Q 6 N . If CG(a) = G (or CG(b) = G), then P ⊳ G (or Q ⊳ G). Hence

when PQ 6= G, we have a chain P ∼ PQ ∼ Q, and then ̺(P, Q) 6 2. Certainly,

if PQ = G, then G = P × Q or G = Q : P is a Frobenius group, and hence the

intersection graph of G is the empty graph on two or q + 1 vertices.

Next, we consider the case of CG(a) 6= G and CG(b) 6= G. If CG(a) ∩N 6= 1, then

P ∼ CG(a) ∼ N ∼ Q. Hence we have ̺(P, Q) 6 3. If CG(a) ∩ N = 1, then P acts

as the group N of fixed point free automorphisms. Thus G = N : 〈a〉 is a Frobenius
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group. Similarly to the case (a), we have that N is a minimal normal subgroup of G,

hence G satisfies the requirement (3).

Similarly, if QN = G, then we have the same results.

Case 2. PN 6= G and QN 6= G.

P and Q can be joined by the chain P ∼ PN ∼ QN ∼ Q. Thus ̺(P, Q) 6 3. �

3. Proof of Theorem

By Lemma 5 it suffices to deal with the case of non-abelian simple groups. We

use the following two assertions to complete the proof of Theorem.

Assertion I. If n > 4, then the alternating groupAn is connected and δ(An) 6 4.

P r o o f. By Lemma 1 it suffices to prove that ̺(P, Q) 6 4 for any subgroups P

and Q of prime order. Now we can assume that P and Q are contained in maximal

subgroups M1 and M2, respectively. If M1 ∩ M2 6= 1, then P ∼ M1 ∼ M2 ∼ Q,

so that ̺(P, Q) 6 3. Next we will prove that the order of every maximal subgroup

of An with n > 5 is more than n. For the cases of n = 5 and 6, this is true

by inspection. Now suppose that n > 7. Consider An in its natural degree n

action. If a maximal subgroup M is intransitive, say has an orbit of length k, then

|M | > k!(n − k)!/2 > n. So M is transitive. If |M | = n, then M is regular. Each

automorphism of M is induced by conjugation with some element from Sn. Thus

if M is maximal in An, then the automorphism group of M has order at most 2.

Consider inner automorphisms, so the order of M/Z(M) is less than or equal to 2,

hence M is abelian. From |Aut(M)| 6 2 we get M = Zn with n = 2, 3 or 6, which

is impossible. Now return to our question. If M1 ∩ M2 = 1, we choose a largest

maximal subgroup M of An, then it follows that M ∩ M1 6= 1 and M ∩ M2 6= 1.

Indeed, otherwise, if M ∩ M1 = 1, then |MM1| = |M ||M1|/|M ∩ M1| = |M ||M1| >

n · |An−1| = |An|, a contradiction. Hence P ∼ M1 ∼ M ∼ M2 ∼ Q, and consequently

̺(P, Q) 6 4. �

Assertion I is Theorem 2 of [5]. The above proof is different from that of Csákány

and Pollák. Unfortunately, this method cannot be applied to the case of simple

groups of Lie type, because the product of orders of the largest and smallest maximal

subgroups may be less than |G|. This occurs e. g. with L2(p), where p is prime and

p ≡ ±1 (mod 8), in which case S4 is a maximal subgroup always. It seems that it

only occurs in the case of small ranks or the maximal subgroups of C5-type in the

Aschbacher Theorem (see [1]). In the following, we prove that simple groups of Lie

type and sporadic simple groups have a connected intersection graph.
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Assertion II. If G is a simple group of Lie type or a sporadic simple group, then

its intersection graph is connected.

P r o o f. Suppose that G has a disconnected intersection graph. Let the order

of G be pe1

1
pe2

2
. . . pen

n and let B1, B2, . . . , Bk be the blocks of G. Now we choose a

series of numbers b1, b2, . . . , bk such that pel

l ‖ bi if and only if there is an element

of order pl in Bi for l = 1, 2, . . . , n and i = 1, 2, . . . , k. By Lemma 4, if some Bi is

a subgroup, then Bi is a maximal subgroup and Bg
i is also a block of G for every

g ∈ G. On the other hand, NG(Bi) = Bi since Bi is maximal and Bi is not a normal

subgroup. It follows that NG(Bg
i ) = NG(Bi)

g = Bg
i , and hence Bi ∩ Bg

i = 1 for all

g ∈ G \Bi. Thus G has a non-trivial normal subgroup by the well-known Frobenius

theorem (see 8.5.5 of [7]), which contradicts the fact that G is a simple group. So

every Bi is a normal subset of G by Lemma 3. Next, we will prove (bi, bj) = 1 for

i 6= j. If for some 1 6 l 6 n and 1 6 i, j 6 k there exists pl such that pl | (bi, bj),

then there are a ∈ Bi, b ∈ Bj satisfying o(a) = o(b) = pl. Obviously, there exist

Sylow pl-subgroups P1 and P2 of G containing a and b, respectively. Since P1 and

P2 are conjugate, we set P
h
1

= P2, then P2 is contained in Bi by Lemma 3, and hence

Bi and Bj are connected, a contradiction. Therefore, |G| = b1b2 . . . bk and a ∈ Bi if

and only if o(a) | bi for any a ∈ G.

Choose Mi to be a maximal subgroup of G in the block Bi for i = 1, 2, . . . , k.

By the above arguments we have (|Mi|, |Mj|) = 1 for i 6= j. Hence for every prime

pairs pi, pj, where pi | bi and pj | bj for i 6= j, we have that G has no element of

order pipj . Now we define another graph Λ(G) of G called the prime graph of G,

whose vertices set is π(G) = {p : p is a prime divisor of |G|}, vertices p and q in π(G)

are joined by an edge if and only if there exists an element of order pq (see [8]). The

classification of disconnected prime graphs of non-abelian simple groups is due to

Williams and Kondrat’ev [6]. Now let π(bi) = {p : p is a prime divisor of bi}, then

π(bi) is a prime graph component of G for i = 1, 2, . . . , k. Assume that 2 is contained

in π(b1). If G is a simple group of Lie type except A1(q), then Mi is a maximal

torus of G for i > 2, and hence NG(Mi)/Mi
∼= W , which is the Weyl group of the

corresponding simple group (see Chapter 8 of [3]). The structure of Weyl groups of

simple groups of Lie type is determined completely. It is easy to see that their orders

are all even, then NG(Mi)∩B1 6= 1, henceMi is connected toM1, a contradiction. If

G is A1(q) with q odd, set π(b2) = π(q) = p, thenM2 is a elementary abelian p-group

and M2 is a Sylow p-subgroup of G, and we have NG(M2) 6= M2 by the well-known

Burnside theorem which states that a finite group G satisfying NG(P ) = CG(P )

for some abelian Sylow p-subgroup P is p-nilpotent. Thus M2 is not a maximal

subgroup of G, a contradiction. For the remaining cases when Mi of A1(q) for i > 2

is a maximal torus, we will get similar results. If G is a sporadic simple group or
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2F4(2)′, the prime graph component’s vertices π(bi) with i > 2 form a single point

set {p} and Mi is a cyclic Sylow p-subgroup of G by the result of [8]. Clearly, Mi is

not a maximal subgroup by the well-known Thompson theorem which asserts that

a finite group having an odd order nilpotent maximal subgroup must be solvable.

Therefore, G is connected. �

By Lemma 5 and Assertion I we know that the diameter δ(G) 6 4 if G is an

alternating group An or another non-simple group. The problems arise: whether the

diameters of non-abelian simple groups have an upper bound? Whether or not the

best upper bound is 4? These problems are still open.
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