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Abstract. This work is a continuation of the paper (Š. Schwabik: General integration
and extensions I, Czechoslovak Math. J. 60 (2010), 961–981). Two new general extensions
are introduced and studied in the class T of general integrals. The new extensions lead to
approximate description of the Kurzweil-Henstock integral based on the Lebesgue integral
close to the results of S. Nakanishi presented in the paper (S. Nakanishi: A new definition
of the Denjoy’s special integral by the method of successive approximation, Math. Jap. 41
(1995), 217–230).
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1. Introduction

This paper is closely related to [10] and [11]. We use concepts and results presented

therein. In this introductory part we give a short account from [10] and [11] for the

readers’ convenience.

For a compact interval E = [a, b], −∞ < a < b < +∞ in R real functions

f : E → R will be studied.

For M ⊂ E and a function f : E → R we put

|f |M = sup{|f(x)| ; x ∈ M}.

If J ⊂ E is a closed interval in E, then we denote by Sub(J) the set of all closed

subintervals of J .

Supported by the grant IAA100190702 (Grant Agency of the Acad. Sci. of the Czech
Republic and by the Institutional Research Plan No. AV0Z10190503).
The editors learnt with great sadness that Professor Štefan Schwabik passed away on
November 4, 2009. The galleys of this paper were therefore not proofread by the author,
and the responsibility for any typesetting inaccuracies lies solely with the editors.
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If I ∈ Sub(E) and A ⊂ E is closed then denote by Comp(I, A) the set of all

(maximal and non-empty) connected components of the set I \ A.

A functional S in E is a mapping from a set of functions on E into R, i.e. S is a set

of pairs (f, γ) (f being a function f : E → R and γ ∈ R the value of the functional S)

and it is assumed that γ is uniquely determined by f . We write γ = S(f). Dom(S)

is the set of all f for which the functional S is defined. Denote by C(E) the set of

all continuous real-valued functions on E.

1.1. The Saks class S of integrals

Definition 1.1. A functional S in E is called additive if the following two con-

ditions hold:

A) 0 ∈ Dom(S) and S(0) = 0,

B) if c ∈ [a, b] = E and I1 = [a, c], I2 = [c, b], then f ∈ Dom(S) if and only if

f · χ(I1), f · χ(I2) ∈ Dom(S) and

S(f) = S(f, I1) + S(f, I2).

(χ(M) denotes the characteristic function of a setM ⊂ E and S(f, M) = S(f ·χ(M))

for f · χ(M) ∈ Dom(S).)

Definition 1.2. If S is an additive functional in E and f ∈ Dom(S), then a

function F : E → R is called an S-primitive to f provided

F [I] = S(f, I)

holds for every I ∈ Sub(E). For I = [c, d] ∈ Sub(E) the interval function F [I] is

given by F [I] = F (d) − F (c).

An S-primitive function to f ∈ Dom(S) always exists (e.g. F (x) = S(f, [a, x]) for

x ∈ E = [a, b] is an S-primitive to f) and it is determined uniquely up to a constant.

In [11] the following concept of a general integral was introduced.

Definition 1.3. An additive functional S in E is called an integral in E if all

S-primitive functions to f ∈ Dom(S) are continuous in E.

Denote the set of all integrals in E by S.

If S ∈ S and f ∈ Dom(S), then f is called S-integrable.

If S ∈ S and M ⊂ E, then a function f is said to be S-integrable on M if

f · χ(M) ∈ Dom(S).

This concept coincides with the concept of S. Saks [9, VIII, § 4], the changes are

insignificant as was shown in [11].
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1.2. Ordering and extension of integrals

Definition 1.4. If T, S ∈ S then T includes S (we write S ⊏ T ) provided

Dom(S) ⊂ Dom(T ) and for f ∈ Dom(S) and every I ∈ Sub(E) the equality T (f, I) =

S(f, I) is satisfied (f · χ(I) ∈ Dom(S) holds by B) in Definition 1.1).

The concept of S ⊏ T for S, T ∈ S in the above definition follows the setting given

in the book of S. Saks [9, VIII, § 4], see also [4].

By definition it can be checked easily that the following holds:

If R, S, T ∈ S, then R ⊏ R (reflexivity); if R ⊏ S and S ⊏ T then R ⊏ T

(transitivity), if S ⊏ T and T ⊏ S then T = S (antisymmetry).

In other words, the binary relation ⊏ on S is an order and (S, ⊏) is an ordered

set.

Definition 1.5. A mapping Q : S → S defined on Dom(Q) ⊂ S is called

an extension if for every S ∈ Dom(Q) we have S ⊏ Q(S), Q(S) ∈ Dom(Q) and,

moreover, if S1, S2 ∈ Dom(Q) ⊂ S with S1 ⊏ S2, then Q(S1) ⊏ Q(S2).

The extension Q is called effective if Q2 = Q, i.e. if Q(Q(S)) = Q(S) for every

S ∈ Dom(Q).

An integral S is called invariant with respect to an extension Q if S ∈ Dom(Q)

and Q(S) ⊏ S, i.e. Q(S) = S.

In [11] two classical and well known extensions, namely the Cauchy and Harnack

extensions, were studied. Let us recall their definition.

First of all we need the following concept.

Definition 1.6. If f is a function on E and S ∈ S, then x ∈ E is called an

S-regular point of f if there is an I ∈ Sub(E) such that x ∈ Int(I) (the interior of I)

and f · χ(I) ∈ Dom(S).

The set of all S-regular points of f is denoted by ̺(f, S).

The complement σ(f, S) = E \̺(f, S) of ̺(f, S) in E is called the set of S-singular

points of the function f .

If I ∈ Sub(E) contains endpoints of E, then we consider them as points belonging

to Int(I).

The set σ(f, S) is closed because ̺(f, S) is evidently open by definition. Moreover,

σ(f, S) = ∅ if and only if f ∈ Dom(S). (See also [2, 9.1 Theorem].)

Definition 1.7. For S ∈ S denote by SC the set of all pairs (f, γ), where f is

a function on E and γ ∈ R, such that σ(f, S) is a finite set for which there is a

function F ∈ C(E) such that γ = F [E] = F (b) − F (a) and for every I ⊂ ̺(f, S) we

have f · χ(I) ∈ Dom(S) and F [I] = S(f, I).
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For I ∈ Sub(E) put SC(f, I) = F [I].

The set {(S, SC) ; S ∈ S, SC exists} is denoted by PC .

It is easy to see that SC ∈ S and the map PC : S → S is the Cauchy extension.

Definition 1.8. For S ∈ S denote by SH the set of all pairs (f, γ), where f is

a function on E and γ ∈ R, for which f · χ(σ(f, S)) ∈ Dom(S), f · χ(Uj) ∈ Dom(S)

for j ∈ Γ, where {Uj ; j ∈ Γ} = Comp(E, σ(f, S)), and for which there is a function

F ∈ C(E) such that γ = F [E] = F (b) − F (a),

∑

U∈Comp(E,σ(f,S))

ω(F, U ) =
∑

j∈Γ

ω(F, U j) < ∞

and

F [I] = S(f, I ∩ σ(f, S)) +
∑

j∈Γ

S(f, I ∩ Uj)

for any I ∈ Sub(E). (ω(F, U ) is the oscillation of F over the interval U .)

The set {(S, SH) ; S ∈ S, SH exists} is denoted by PH .

As before, PH is a map S → S. Let us call it the Harnack extension.

1.3. Divisions

A division is a finite system D = {Ij ; j ∈ Γ} of intervals, where Int(Ij) ∩ Ik = ∅

for j 6= k, Γ ⊂ N is finite.

For a given setM ⊂ E the division D is called a division in M if M ⊃
⋃

j∈Γ

Ij , D is

a division of M if M =
⋃

j∈Γ

Ij and the division D covers M if M ⊂
⋃

j∈Γ

Ij .

A map τ from Sub(E) into E is called a tag if τ(I) ∈ I for I ∈ Dom(τ).

A tagged system is a pair (D, τ), where D = {Ij ; j ∈ Γ} is a division and τ is a

tag defined on the range of D, i.e. for all Ij , j ∈ Γ. In this case we write τj instead

of τ(Ij).

The tagged system (D, τ) is called M -tagged for some set M ⊂ E if τj ∈ M for

j ∈ Γ.

A gauge is any function on E with values in the set R+ of positive reals. ∆(E) is

the set of all gauges.

If δ ∈ ∆(E), then a tagged system (D, τ), where D = {Ij ; j ∈ Γ}, is called δ-fine

if |Ij | < δ(τj) for j ∈ Γ.
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1.4. The Kurzweil-Henstock integral

Definition 1.9. K denotes the set of all pairs (f, γ), where f is a function on E

and γ ∈ R, such that for any ε > 0 there exists a gauge δ such that

∣

∣

∣

∣

∑

j∈Γ

f(τj)|Ij | − γ

∣

∣

∣

∣

< ε

for any δ-fine division ({Ij ; j ∈ Γ}, τ) of the interval E.

The value γ ∈ R is called the Kurzweil-Henstock integral of f over E and it will

be denoted by K(f) or (K)
∫

E
f .

It is well known that the Kurzweil-Henstock integral is equivalent to the Perron

(= narrow Denjoy) integral (see e.g. [3]). Its role is essential in this paper. The

definition in the present form appeared in [10], [11]; some properties of the Kurzweil-

Henstock integral given in those writings will be used in the sequel.

1.5. The variational measure W

The oscillation ω(F, I) of F ∈ C(E) on an interval I ∈ Sub(E) is

ω(F, I) = sup{|F (x) − F (y)| ; x, y ∈ I} = sup{|F [J ]| ; J ∈ Sub(I)}.

Definition 1.10. For F ∈ C(E) and a division D = {Ij ; j ∈ Γ} set

Ω(F, D) =
∑

j∈Γ

ω(F, Ij).

If F ∈ C(E) and M ⊂ E then for any δ ∈ ∆(E) put

Wδ(F, M) = sup{Ω(F, D) ; D is δ-fine, M -tagged}

and define

WF (M) = inf{Wδ(F, M) ; δ ∈ ∆(E)}.

WF is the full variational measure generated by the interval functions ω(F, I) for

I ∈ Sub(E) (see [10], [12]).

The basic properties of the functionWF are summarized in the following statement

(see Theorem 3.10 in [10]).
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Theorem 1.11. Let F, Fj ∈ C(E) and M, Mj ⊂ E, j ∈ N. Then

(i) 0 6 WF (M1) 6 WF (M2) if M1 ⊂ M2,

(ii) WF

(

⋃

j∈Φ

Mj

)

6
∑

j∈Φ

WF (Mj) if Φ is at most countable,

(iii) W (αF, I) = |α|WF (I) for α ∈ R,

(iv) W ∑

j∈Φ

Fj
(M) 6

∑

j∈Φ

WFj
(M) if Φ is finite.

Denote by C∗(E) the set of all continuous functions on E which are of negligible

variation on sets of Lebesgue measure zero (see e.g. Definition 4.1.1 in [7] for this

concept). Functions belonging to C∗(E) are also called the functions satisfying the

strong Luzin condition.

Denote by µ(M) the Lebesgue measure of M ⊂ E.

Using Lemma 2.9 from [10] it can be stated that

C∗(E) = {F ∈ C(E) ; WF (N) = 0 whenever µ(N) = 0}.

A nice descriptive characterization of the Kurzweil-Henstock integral was pre-

sented by Bongiorno, Di Piazza and Skvortsov in [1, Theorem 3].

Theorem 1.12. A function F : E → R is a K-primitive function to some

f : E → R if and only if F ∈ C∗(E).

According to the above mentioned property of C∗(E), this says that a function

f : E → R is Kurzweil-Henstock integrable if and only if for the K-primitive F to f

we have WF (N) = 0 for any N ⊂ E with µ(N) = 0.

1.6. The subclass T ⊂ S

Definition 1.13. T denotes the set of all integrals S ∈ S fulfilling the following

conditions (1.1)–(1.5) (N, A ⊂ E, µ(A) is the Lebesgue measure of a set A, f is a

function on E and F is an S-primitive function to f):

If µ(N) = 0, then f · χ(N) ∈ Dom(S) and S(f, N) = 0.(1.1)

If f ∈ Dom(S), then F ∈ C∗(E).(1.2)

(For C∗(E) see its definition in part 1.5).

(1.3) If f ∈ Dom(S), then f is measurable.

There exists λ < ∞ such that

(1.4) WF (A) 6 λ|f |A
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if f ∈ Dom(S) and A is a closed set (WF (·) is the full variational measure from

Definition 1.10).

If f, g ∈ Dom(S) and α, β ∈ R then αf + βg ∈ Dom(S) and

(1.5) S(αf + βg) = αS(f) + βS(g).

If T, S ∈ S, S ⊏ T while T ∈ T, then also S ∈ T.

In Theorem 2.8 of [11] it was stated that the Kurzweil-Henstock integralK belongs

to the class T.

Let us mention the following essential fact. With regard to the requirement (1.2)

and according to Theorem 1.12 we have

(1.6) S ∈ T =⇒ S ⊏ K,

where K is the Kurzweil-Henstock integral.

2. Some new extensions

The subclass T of integrals given by Definition 1.13 will be dealt with in the sequel.

2.1. The extension QX

Definition 2.1. For S ∈ T denote by SX the set of all (f, γ) for which there exist

F ∈ C∗(E), measurable sets N1, N2 ⊂ E with µ(N1) = µ(N2) = 0, a sequence (fj)

in Dom(S), j ∈ N and a sequence (Mk), k ∈ N of measurable subsets of E such that

γ = F [E] and

f(x) = lim
j→∞

fj(x) for x ∈ E \ N1,(2.1)

Mk ր E \ N2,(2.2)

if k ∈ N then WF−Fj
(Mk) → 0 for j → ∞,(2.3)

Fj being an S-primitive to fj .

The set {(S, SX) ; S ∈ T, SX exists} is denoted by QX .

QX is a mapping from T to the set of functionals in E defined by QX(S) = SX

for S ∈ Dom(QX).

The following characterization (or equivalent definition) of SX will be useful.
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Lemma 2.2. Let f be a function on E, γ ∈ R and S ∈ T. Then (f, γ) ∈ SX

if and only if there exist F ∈ C∗(E), a measurable set N ⊂ E with µ(N) = 0, a

sequence (fj) in Dom(S), j ∈ N and a sequence (Ak) of closed subsets of E such

that γ = F [E] and

Ak ր E \ N for k → ∞,(2.4)

if k ∈ N, then |f − fj|Ak
→ 0 for j → ∞,(2.5)

if k ∈ N, then WF−Fj
(Ak) → 0 for j → ∞(2.6)

hold, where Fj is an S-primitive to fj.

P r o o f. Assume that (f, γ) ∈ SX , i.e. that (2.1)–(2.3) hold.

Since (2.1) holds and fj are measurable (cf. (1.3) in Definition 1.13), by Egoroff’s

theorem (see e.g. Proposition 2.9 in [11] or Theorem 2.13 in [3]) there exists a sub-

sequence (gj) of (fj) and a sequence (Bk) of closed sets such that Bk ր E \ N3 for

k → ∞ where N3 ⊂ E with µ(N3) = 0 and

|f − gj |Bk
→ 0 for j → ∞

for any k ∈ N.

Further, by (2.2), there is a sequence (Ck) of closed sets Ck ⊂ Mk for k ∈ N and

Ck ր E \ N4, k → ∞ where µ(N4) = 0.

Then (2.4)–(2.6) is satisfied for Ak = Bk ∩ Ck, N = N3 ∪ N4 and fj = gj.

The other implication is straightforward. �

Our effort is now oriented to showing that the functional SX in E (see the Intro-

duction) is an integral.

A quadruple (F, (fj), (Ak), N) having the properties given in Lemma 2.2 will be

called SX-determining for f if (2.4)–(2.6) hold.

Lemma 2.3. Let S ∈ T, let f be a function on E and let

(F, (fj), (Ak), N1), (G, (gj), (Bk), N2)

be two SX -determining quadruples for f .

Then there exists a constant c ∈ R such that

(2.7) F (x) = G(x) + c for x ∈ E.

P r o o f. Let Fj , Gj be S-primitives to fj , gj , respectively, j ∈ N.
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Let us set Ck = Ak ∩Bk for k ∈ N and N = N1 ∪N2. Using the properties of the

variational measure WF (·) (see (i) and (iv) from Theorem 1.11) we have

WF−G(Ck) 6 WF−Fj
(Ck) + WFj−Gj

(Ck) + WG−Gj
(Ck)

6 WF−Fj
(Ak) + WFj−Gj

(Ck) + WG−Gj
(Bk)

for any j, k ∈ N.

Since S ∈ T, (1.4) from Definition 1.13 yields

WFj−Gj
(Ck) 6 λ|fj − gj |Ck

6 λ|f − fj |Ck
+ λ|f − gj|Ck

6 λ|f − fj |Ak
+ λ|f − gj |Bk

and therefore

WF−G(Ck) 6 WF−Fj
(Ak) + λ|f − fj |Ak

+ λ|f − gj |Bk
+ WG−Gj

(Bk).

By (2.5) and (2.6) the right-hand side of this inequality converges to 0 for j → ∞

and therefore WF−G(Ck) = 0 for k ∈ N. Hence, by (ii) from Theorem 1.11 and by

Lemma 2.13 in [10], we get

WF−G(E) 6 WF−G(N) + WF−G(E \ N)

= WF−G(N) + lim
k→∞

WF−G(Ck) = 0

and this is equivalent to (2.7) because by Lemma 2.2 in [10] we have WF−G(E) =

V (F − G, E) = 0, V (F − G, E) being the total variation of F − G over E and

V (F − G, E) = 0. �

Lemma 2.4. If S ∈ T then SX ∈ S, i.e. QX is a mapping from T into S.

Moreover, the SX -primitive to f ∈ Dom(SX) belongs to C∗(E).

P r o o f. It is clear that 0 ∈ Dom(SX) and SX(0) = 0.

Assume that c ∈ [a, b] = E and set I1 = [a, c], I2 = [c, b]. If f ∈ Dom(SX)

and if (F, (fj), (Ak), N) is SX -determining for f then it can be easily seen that

(G, (gj), (Ak), N) with G = (F − F (c)) · χ(I1) and gj = fj · χ(I1) is SX -determining

for f · χ(I1), i.e. f · χ(I1) ∈ Dom(SX) and

(2.8) SX(f, I1) = G[E] = F [I1].

Quite analogously it can be shown that f · χ(I2) ∈ Dom(SX).
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On the other hand, let f · χ(I1), f · χ(I2) ∈ Dom(SX) and let

(G, (gj), (Bk), N1), (H, (hj), (Ck), N2)

be SX -determining for f · χ(I1), f · χ(I2), respectively.

Then (F, (fj), (Ak), N) with F = (G − G(c)) · χ(I1) + (H − H(c)) · χ(I2), fj =

gj · χ(I1) + hj · χ((c, b]), Ak = Bk ∩ Ck and N = N1 ∪ N2 is SX -determining for f ,

i.e. f ∈ Dom(SX).

This, in particular (2.8), shows that if (F, (fj), (Ak), N) is SX -determining for f ,

then F is an SX -primitive function to f and F ∈ C∗(E). Therefore SX ∈ S. �

The next theorem is the main statement on the map QX .

Theorem 2.5. QX is an extension which maps T into T.

P r o o f. It is easy to verify that S ⊏ SX for S ∈ T and that SX ⊏ TX whenever

S, T ∈ T and S ⊏ T .

It remains to prove that if S ∈ T then also SX ∈ T.

The conditions (1.1), (1.3) are easy to check for SX and (1.2) follows from

Lemma 2.4.

Let f ∈ Dom(SX) and let A be a closed subset of E. Further, let

(F, (fj), (Bk), N)

be SX -determining for f and let Fj be an SX -primitive function to fj for j ∈ N.

For k ∈ N we then have (see (1.4) and Theorem 1.11)

WF (A ∩ Bk) 6 WF−Fj
(A ∩ Bk) + WFj

(A ∩ Bk)

6 WF−Fj
(A ∩ Bk) + λ|fj |A∩Bk

6 WF−Fj
(Bk) + λ|f − fj|A∩Bk

+ λ|f |A∩Bk

6 WF−Fj
(Bk) + λ|f − fj|Bk

+ λ|f |A

for j ∈ N. Hence, by (2.6) and (2.5),

WF (A ∩ Bk) 6 λ|f |A.

Now we have

WF (A) 6 WF (A ∩ N) + lim
k→∞

WF (A ∩ Bk) 6 λ|f |A,

i.e. SX fulfils (1.4) with the same λ as S.
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Further, assume that g, h ∈ Dom(SX) and that

(G, (gj), (Bk), N1), (H, (hj), (Ck), N2)

are SX - determining for g, h, respectively. Then it is easy to see that (αG + βH,

(αgj + βhj), (Ak), N) for α, β ∈ R with Ak = Bk ∩ Ck and N = N1 ∪ N2 is SX -

determining for αg + βh and this yields the linearity of SX required by (1.5) from

Definition 1.13. �

Theorem 2.6. The extension QX is effective, i.e. Q2
X = QX .

P r o o f. Denote SXX = (SX)X and assume that f ∈ Dom(SXX). Let

(F, (fj), (Ak), N) be SXX -determining for f .

For k ∈ N, m ∈ N let Fm be an SX -primitive function to fm and let

(Fm, (g
(m)
j ), (B

(m)
k ), Nm)

be SX -determining for fm.

It is straightforward that µ(B
(j)
j ) > µ(E) − 1/2j may be supposed for j ∈ N and

this yields Ck ր E \ M with µ(M) = 0, where

Ck =

∞
⋂

j=k

B
(j)
j

for k ∈ N. Indeed,

µ(Ck) = µ(E) − µ(E \ Ck) > µ(E) −
∞
∑

j=k

µ(E \ B
(j)
j ) > µ(E) −

1

2k−1

for k ∈ N.

Further, it may be supposed that

|fj − g
(j)
j |Cj

<
1

2j
, W

Fj−G
(j)
j

(Cj) <
1

2j

for j ∈ N, where G
(j)
j is an S-primitive function to g

(j)
j .

It suffices to show that (F, g
(j)
j , (Ak ∩ Ck), N ∪ M) is SX -determining for f .

This follows from the fact that for j > k the estimates

|f − g
(j)
j |Ak∩Ck

6 |f − fj |Ak
+

1

2j
,

W
F−G

(j)
j

(Ak ∩ Ck) 6 WF−Fj
(Ak) +

1

2j

hold. �
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2.2. The extension QZ

Definition 2.7. If S ∈ T then SZ denotes the set of all pairs (f, γ) for which

there exists a function F ∈ C∗(E) and a sequence (Ak) of closed subsets of E such

that γ = F [E] and

Ak ր E,(2.9)

fj = f · χ(Aj) ∈ Dom(S) for j ∈ N,(2.10)

WF−Fj
(Ak) = 0 for j > k,(2.11)

if k ∈ N, then
∑

U∈Comp(E,Ak)

ω(F − Fj , U) → 0 for j → ∞(2.12)

hold, where Fj is an S-primitive function to fj and Comp(E, Ak) is the set of all

maximal non-empty connected components of the set E \ Ak.

The set {(S, SZ) ; S ∈ T, SZ exists} is denoted by QZ .

Comparing this definition with the characterization of SX given in Lemma 2.2

we can easily see that if S ∈ T then S ⊏ SZ ⊏ SX . The first inclusion is clear,

(2.9) implies (2.4) with N = ∅, (2.10) implies (2.5) for fj = f · χ(Aj) and (2.11)

implies (2.6). In Theorem 2.5 we have shown that SX ∈ T. Hence by SZ ⊏ SX we

have also SZ ∈ T.

In other words, the following statement is valid.

Theorem 2.8. QZ is an extension which maps T into itself and

(2.13) QZ(S) ⊏ QX(S)

for any S ∈ T.

The next assertion will be used directly for some characterization theorems using

the Cauchy and Harnack extensions PC and PH presented in Section 4 of [11], cf. the

subsection 1.2.

Theorem 2.9. For any S ∈ T the integral QZ(S) is PC -invariant, i.e.

(2.14) PC(QZ(S)) ⊏ QZ(S),

holds.

P r o o f. We have to show that if S ∈ T then (SZ)C ⊏ SZ .

Assume that f ∈ Dom((SZ)C). Then σ(f, SZ) is finite by Definition 1.7 (of the

Cauchy extension) and there is an F ∈ C(E) such that F [I] = SZ(f, I) for every

I ∈ Sub(E), I ⊂ ̺(f, SZ).
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Let us consider the special situation when σ(f, SZ) = b, i.e. there is only one

SZ-singular point of f at the right endpoint of E. Then f · χ([a, x]) ∈ Dom(SZ) for

every x < b and F [[a, x]] = SZ(f, [a, x]) and therefore also f · χ([a, x]) ∈ Dom(S) for

every x < b and F [[a, x]] = S(f, [a, x]).

If I ⊂ [a, b) then f · χ(I) ∈ Dom(SZ) and because S ⊂ SZ we have also f · χ(I) ∈

Dom(S) by (2.10) and

F [I] = SZ(f, I) = S(f, I).

This implies that F ∈ C∗([a, c]) for every c ∈ [a, b).

Assume that N ⊂ E is measurable, that µ(N) = 0 and define

Mk =
[

a, b −
1

k
(b − a)

]

∩ N, k ∈ N.

Then Mk is measurable, Mk ⊂ Mk+1, µ(Mk) = 0 for k ∈ N and N =
∞
⋃

k=1

Mk.

Since Mk ⊂
[

a, b − k−1(b − a)
]

, we have WF (Mk) = 0 because F ∈ C∗
([

a, b −

k−1(b − a)
])

.

Hence by (ii) from Theorem 1.11 we have

0 6 WF (N) = WF

( ∞
⋃

k=1

Mk

)

6

∞
∑

k=1

WF (Mk) = 0

and WF (N) = 0. By the property of C∗(E) presented in the subsection 1.5 this

means that F ∈ C∗(E).

Define now

Ak =
[

a, b −
1

k
(b − a)

]

∪ {b}.

Evidently for k ∈ N the sets Ak ⊂ E are closed, Ak ⊂ Ak+1, Ak ր E and

fj = f · χ(Aj) = f · χ
([

a, b −
1

j
(b − a)

])

+ f · χ({b}) ∈ Dom(S)

for every j ∈ N.

Assume that Fj is an S-primitive function to fj. Then F − Fj is constant on
[

a, b− j−1(b− a)
]

and by Lemma 2.2 in [10] we get WF−Fj

([

a, b− j−1(b− a)
])

= 0.

Evidently we also haveWF−Fj
({b}) = 0. Hence by (ii) from Theorem 1.11 we obtain

0 6 WF−Fj
(Aj) 6 WF−Fj

([

a, b −
1

j
(b − a)

])

+ WF−Fj
({b}) = 0,

i.e. WF−Fj
(Aj) = 0 for every j ∈ N.
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If k ∈ N is given then Ak ⊂ Aj for j > k and by (i) from Theorem 1.11 we get

WF−Fj
(Ak) 6 WF−Fj

(Aj) = 0,

i.e. (2.11) is satisfied.

Let us mention that in our situation Comp(E, Ak) =
(

b − k−1(b − a), b
)

= V

consists of only one element and V =
[

b − k−1(b − a), b
]

.

Assume that j > k; then V =
[

b− k−1(b− a), b− j−1(b− a)
]

∪
[

b− j−1(b− a), b
]

.

We have F [I] = Fj [I] for every I ⊂
[

b − k−1(b − a), b − j−1(b − a)
]

and therefore

ω
(

F − Fj ,
[

b − k−1(b − a), b − j−1(b − a)
])

= 0. Further, on
[

b − j−1(b − a), b
]

the

function F − Fj equals F
(

b − j−1(b − a)
)

and therefore

ω
(

F − Fj ,
[

b −
1

j
(b − a), b

])

= ω
(

F,
[

b −
1

j
(b − a), b

])

.

Since F is continuous at the point b we get that for every ε > 0 there is a j0 ∈ N

such that for j > j0 and x ∈
[

b − j−1(b − a), b
]

we have |F (x) − F (b)| < ε. Hence

|F (x) − F (y)| 6 |F (x) − F (b)| + |F (y) − F (b)| < 2ε

for x, y ∈
[

b − j−1(b − a), b
]

and

ω
(

F,
[

b −
1

j
(b − a), b

])

< 2ε

for j > j0. This implies
∑

U∈Comp(E,Ak)

ω(F − Fj , U) = ω(F − Fj , V ) → 0

for j → ∞ and (2.12) holds.

Hence f ∈ Dom(SZ) and (2.14) is proved.

The case σ(f, SZ) = a (only one SZ-singular point of f at the left endpoint of E)

can be treated similarly.

In the general situation of f ∈ Dom((SZ)C) the set σ(f, SZ) is finite and the set

Comp(E, σ(f, SZ)) consists therefore of a finite set {Uj ; j = 1, . . . , k} of intervals the

endpoints of which belong to σ(f, SZ). Taking a point c ∈ U ∈ Comp(E, σ(f, SZ)) we

get two intervals [l(U), c] and [c, r(U )] having the left or right endpoint in σ(f, SZ);

using the procedure described above we show that

f · χ(U) = f · χ([l(U), r(U )])

= f · χ([l(U), c]) + f · χ([c, r(U )]) ∈ Dom(SZ)

and since {U ; U ∈ Comp(E, σ(f, SZ))} is a division of E we obtain immediately

f ∈ Dom(SZ). This means that (2.14) holds in general. �
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Lemma 2.10. For F ∈ C(E), I ∈ Sub(E) and any closed set A ⊂ E the

inequality

(2.15) ω(F, I) 6 WF (I ∩ A) +
∑

U∈Comp(I,A)

ω(F, U )

holds.

P r o o f. Assume that Comp(I, A) = {Uj ; j ∈ Φ}. If Φ = ∅, i.e. if A = I, then

WF (I ∩ A) = W (F, I) = VF (I) = V (F, I) by Lemma 2.2 in [10] and (2.15) holds

because evidently ω(F, I) 6 V (F, I).

Therefore we may suppose without loss of generality that A ⊂ I, i.e. I ∩ A = A,

and that Φ 6= ∅.

Let ε > 0 be given and let δ ∈ ∆(E) be such that

Wδ(F, A) < WF (A) + ε.

Define a gauge

η(x) =

{

δ(x) for x ∈ A,

min
{

δ(x), 1
2 dist(x, A)} for x /∈ A.

Let further ({Ij , j ∈ Γ}, τ) be an η-fine division of I and set Γ1 = {j ∈ Γ; τj ∈ A},

Γ2 = Γ \ Γ1.

Then ({Ij , j ∈ Γ1}, τ) is an η-fine A-tagged division which covers A and therefore

any Ij for j ∈ Γ2 is contained in some Uk by the choice of the gauge η.

Since ({Ij , j ∈ Γ1}, τ) is evidently also a δ-fine A-tagged division (because η 6 δ),

we have
∑

j∈Γ1

ω(F, Ij) 6 Wδ(F, A) < WF (A) + ε = WF (I ∩ A) + ε.

Denote B =
⋃

j∈Γ2

Ij . The set B is closed. Let us set Comp(I, B) = {Vj , j ∈ Ψ};

clearly Ψ is finite.

Then any of the finite number of maximal components Vj of I \B is contained in

some Uk and any Uk contains at most one Vj .

Moreover, evidently

∑

V ∈Comp(I,B)

ω(F, V ) 6
∑

U∈Comp(I,A)

ω(F, U).
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Further,

ω(F, I) 6
∑

j∈Γ1

ω(F, Ij) +
∑

V ∈Comp(I,B)

ω(F, V )

6
∑

j∈Γ1

ω(F, Ij) +
∑

U∈Comp(I,A)

ω(F, U )

< WF (I ∩ A) +
∑

U∈Comp(I,A)

ω(F, U) + ε

and the lemma is proved since ε > 0 can be taken arbitrarily small. �

Theorem 2.11. For any S ∈ T the integral QZ(S) is PH -invariant, i.e.

(2.16) PH(QZ(S)) ⊏ QZ(S)

holds.

P r o o f. For proving (2.16) assume that S ∈ T and f ∈ Dom((SZ)H). By

Definition 1.5 we have to show that f ∈ Dom(SZ).

Theorems 2.8 and 2.5 yield SZ ∈ T.

Definition 4.4 of the Harnack extension in [11] ensures that f · χ(σ(f, SZ)) ∈

Dom(SZ) and f · χ(Uj) ∈ Dom(SZ) for j ∈ Γ, where {Uj ; j ∈ Γ} = Comp(E,

σ(f, SZ)), and there is a function F ∈ C(E) such that F [E] = F (b) − F (a),

∑

U∈Comp(E,σ(f,SZ))

ω(F, U ) < ∞

and

(2.17) F [I] = SZ(f, I ∩ σ(f, SZ)) +
∑

j∈Γ

SZ(f, I ∩ Uj)

for any I ∈ Sub(E).

Since the integral is linear by definition, we have to show that f −f ·χ(σ(f, SZ)) ∈

Dom(SZ) because f · χ(σ(f, SZ)) ∈ Dom(SZ). Without loss of generality we can

assume that f · χ(σ(f, SZ)) = 0.

The set σ(f, SZ) is closed. Assume that for

{Uj ; j ∈ Γ} = Comp(E, σ(f, SZ))

we have Γ = N. The case when Γ is finite is easy.

Denoting A = σ(f, SZ) we can reformulate the properties given above as follows.
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There are a closed set A ⊂ E, a countable system {Uj ; j ∈ N} = Comp(E, A)

and functions F ∈ C(E), Fj ∈ C(E), j ∈ N such that

f · χ(A) = 0, fj = f · χ(Uj) ∈ (SZ), j ∈ N,
∞
∑

j=1

ω(F, Uj) < ∞,

F is an (SZ)H primitive to f , Fj are SZ primitives to fj, j ∈ N. By Corollary 4.13

in [11] we have F ∈ C∗(E) and Fj ∈ C∗(E), j ∈ N, because SZ ∈ T.

By (2.17) we have

F (x) − F (y) = SZ(f, [x, y]) = Fj(x) − Fj(y)

for [x, y] ⊂ Uj , j ∈ N. This yields

(2.18) ω(F, Uj) = ω(Fj , Uj) for j ∈ N

and also

ω(F − Fj , Uj) = 0 for j ∈ N,

i.e. F − Fj is constant on Uj and

(2.19) WF−Fj
(Uj) = 0.

If j 6= k then fj(x) = 0 for x ∈ Uk. Hence

Fj(x) − Fj(y) = SZ(fj , [x, y]) = 0

for [x, y] ⊂ Uk. Therefore

ω(Fj , Uk) = 0, ω(F − Fj , Uk) = ω(F, Uk) for j 6= k.

By (2.18) we have

∑

j∈N

ω(Fj , Uj) =
∑

j∈N

ω(F, Uj) =
∑

U∈Comp(E,A)

ω(F, U) < ∞.

This means that for any ε > 0 there is an m ∈ N such that

(2.20)

∞
∑

j=m

ω(F, Uj) < ε.
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Since fj ∈ Dom(SZ) for all j ∈ N, Definition 2.7 of SZ yields that there is a

sequence of closed subsets Bj,k ⊂ E, k ∈ N such that

(a) Bj,k ր E for k → ∞,

(b) gj,i = fj · χ(Bj,i) = f · χ(Uj ∩ Bj,i) ∈ Dom(S) for i ∈ N,

(c) WFj−Gj,i
(Bj,k) = 0 for i > k,

(d) if k ∈ N then
∑

U∈Comp(E,Bj,k)

ω(Fj − Gj,i, U) → 0 for i → ∞

hold, where Gj,i ∈ C∗(E) is an S-primitive function to gj,i.

Let us reformulate property (d) as follows.

For every k ∈ N there exists nk ∈ N, nk > k, nk+1 > nk such that for any i > nk

the inequality

(2.21)
∑

U∈Comp(E,Bj,k)

ω(Fj − Gj,i, U) <
1

k2

holds.

Define now

Ck = A ∪

( k
⋃

j=1

(Bj,nk
∩ Uj)

)

for k ∈ N.

The sets Ck are closed and Ck ր E for k → ∞. Further, set

hk = f · χ(Ck) =

k
∑

j=1

gj,nk
∈ Dom(S) for k ∈ N

(cf. (b)) and put

Hk =

k
∑

j=1

Gj,nk
∈ C∗(E).

Note that Hk = Gj,nk
on Uj.

It remains to show that

(2.22) WF−Hk
(Cl) = 0 for k > l

and

(2.23)
∑

U∈Comp(E,Cl)

ω(F − Hk, U) → 0 for k → ∞.
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By (ii) from Theorem 1.11 we have

WF−Hk
(Cl) 6 WF−Hk

(A) +
l

∑

j=1

WF−Hk
(Bj,nl

∩ Uj).

By Lemma 4.12 in [11] we have WF (A) = 0. Since gj,nk
∈ Dom(S) and gj,nk

= 0

on A, Lemma 2.10 from [11] implies

WGj,nk
(A) 6 λ|gj,nk

|A = 0

because S ∈ T.

Therefore

WF−Hk
(A) 6 WF (A) +

k
∑

j=1

WGj,nk
(A) = 0.

Further, by (iv) from Theorem 1.11, we get

WF−Hk
(Bj,nl

∩ Uj)

6 WF−Gj,nk
(Bj,nl

∩ Uj) +

k
∑

m−1,m 6=j

WGm,nk
(Bj,nl

∩ Uj).

We have WGm,nk
(Bj,nl

∩ Uj) = 0 for m 6= j and

WF−Gj,nk
(Bj,nl

∩ Uj) 6 WF−Fj
(Uj) + WF−Gj,nk

(Bj,nl
) = 0

by (2.19) and (c). Hence (2.22) holds.

For showing (2.23) fix l ∈ N. The components of the complement E \ Cl, i.e. of

Comp(E, Cl) consist of Uj for j > l and of Comp(Uj , Bn,nl
) for j = 1, 2, . . . , l, i.e.

Comp(E, Cl) = {Uj, j > l} ∪
l

⋃

j=1

Comp(Uj , Bn,nl
).

Let ε > 0 be given. Assume that k > max(l, m). (For m ∈ N see (2.20).) Then

∑

U∈Comp(E,Cl)

ω(F − Hk, U) =
k

∑

j=l+1

ω(F − Hk, Uj) +
∞
∑

j=k+1

ω(F − Hk, Uj)(2.24)

+

l
∑

j=1

∑

U∈Comp(Uj ,Bn,nl
)

ω(F − Hk, U).
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If k > j > l then

ω(F − Hk, Uj) = ω(F − Gj,nk
, Uj)

= ω(Fj − Gj,nk
, Uj) = ω(Fj − Gj,nk

, E).

Lemma 2.10, (c) and (2.18) give

ω(Fj − Gj,nk
, E) 6 WFj−Gj,nk

(Bj,k) +
∑

U∈Comp(E,Bj,k)

ω(Fj − Gj,nk
, U) 6

1

k2

and consequently,
k

∑

j=l+1

ω(F − Hk, Uj) 6
1

k

is an estimate of the first term on the right-hand side of (2.24).

If j > k, then hk(x) = 0 for x ∈ Uj , therefore Hk is constant on Uj and ω(F −Hk,

Uj) = ω(F, Uj). Hence

∞
∑

j=k+1

ω(F − Hk, Uj) <

∞
∑

j=m

ω(F, Uj) < ε

by (2.20) and this is the estimate of the second term on the right-hand side of (2.24).

Let us denote Comp(Uj , Bn,nl
) = {Vl ; l ∈ Γj,l} for j = 1, 2, . . . , l. Then

k
∑

l∈Γj,l

ω(F − Hk, Vj) =

k
∑

l∈Γj,l

ω(F − Gj,nk
, Vj)

6
∑

U∈Comp(E,Bj,nl
)

ω(Fj − Gj,nk
, U),

while the right-hand side goes to zero for k → ∞ by (d).

Finally, we get

∑

U∈Comp(E,Cl)

ω(F − Hk, U) <
1

k
+ ε +

∑

U∈Comp(E,Bj,nl
)

ω(Fj − Gj,nk
, U)

and (2.23) is satisfied.

All these facts show that f ∈ Dom(SZ) and (2.16) is proved. �
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3. Some consequences

By Theorem 2.5 we know that if S ∈ T then QX(S) is Kurzweil-Henstock inte-

grable, i.e.

(3.1) QX(S) ⊏ K

(see (1.6)).

This together with Theorem 2.8 leads for S ∈ T to

(3.2) QZ(S) ⊏ QX(S) ⊏ K.

Further, Theorems 2.9 and 2.11 give for the Cauchy and the Harnack extension

the following two relations:

PC(QZ(S)) ⊏ QZ(S) ⊏ QX(S) ⊏ K,(3.3)

PH(QZ(S)) ⊏ QZ(S) ⊏ QX(S) ⊏ K.(3.4)

This means that for a given S ∈ T the extension QZ(S) is PC -invariant and PH -

invariant as well.

Since the Lebesgue integral L belongs to T, the relations given above can be used

for S = L. First of all we have, by definition of an extension, the relation L ⊏ QZ(L).

In Theorem 4.10 in the paper [11] the following was shown:

Assume that S ∈ S, where L ⊏ S and PC(S) = PH(S) = S. Then K ⊏ S.

The Kurzweil-Henstock integral K is contained in every integral which contains

the Lebesgue integral L and which is PC - and PH -invariant.

Hence the before mentioned result quoted from [11] and (3.2) for S = L give

(3.5) K ⊏ QZ(L) ⊏ QX(L) ⊏ K

and this means that

(3.6) QZ(L) = QX(L) = K.

Let us consider the equality QX(L) = K using the property of the extension QX

presented in Lemma 2.2. We obtain the following statement.
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Proposition 3.1. A function is Kurzweil-Henstock integrable (f ∈ Dom(K))

if and only if there exist F ∈ C∗(E), a measurable set N ⊂ E with µ(N) = 0, a

sequence (fj) in Dom(L), j ∈ N and a sequence (Ak) of closed subsets of E such

that

Ak ր E \ N for k → ∞,(3.7)

if k ∈ N, then |f − fj|Ak
→ 0 for j → ∞,(3.8)

if k ∈ N, then WF−Fj
(Ak) → 0 for j → ∞(3.9)

hold, where Fj is an L-primitive to fj .

Using this statement we obtain

Proposition 3.2. Let fj ∈ Dom(L), j ∈ N and

lim
j→∞

fj(x) = f(x) almost everywhere in E.

Then there exists a sequence (Ak) of closed subsets of E and a subsequence (gj)

of (fj) such that Ak ր E \ N , where µ(N) = 0 and for every k ∈ N we have

|f − gj|Ak
→ 0 for j → ∞.

If k ∈ N and

(3.10) WF−Gj
(Ak) → 0 for j → ∞

where Gj is an L-primitive to gj and F ∈ C∗(E), then f is Kurzweil-Henstock

integrable (f ∈ Dom(K)).

The first part of the proposition is the Egoroff Theorem, the latter is a consequence

of Proposition 3.1.

Taking into account the relation (3.6) and the definitions of the extensions QX and

QZ applied to the Lebesgue integral L various descriptions of the Kurzweil-Henstock

(= Denjoy special) integral can be presented in the flavour of similar results given

by S. Nakanishi in [8], and also some convergence results for the Kurzweil-Henstock

integral are easily derivable.
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