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Abstract. Meshless methods have become an effective tool for solving problems from
engineering practice in last years. They have been successfully applied to problems in solid
and fluid mechanics. One of their advantages is that they do not require any explicit mesh
in computation. This is the reason why they are useful in the case of large deformations,
crack propagations and so on. Reproducing kernel particle method (RKPM) is one of
meshless methods. In this contribution we deal with some modifications of the RKPM.
The construction of the methods considered is given together with simple examples of their
applications to solving boundary value problems.
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1. Introduction

The FEM is the most popular method that is used for solving boundary value

problems. No wonder because this method is simple, quick and reliable. Essentially,

it represents the Galerkin method where the solution is constructed in the form of

a linear combination of the basis functions that are chosen in a special way (they

satisfy the condition of partition of unity) on the chosen mesh.

However, meshing at the beginning of or remeshing during the computational

process can be a very time consuming matter especially in the 3D case. This is the

reason why a lot of attention has been paid during the past years to developing new

approximations in the Galerkin framework, which do not require a mesh for their

construction. The SPHM, RKPM, MLSM, EFG, XFEM or hp-clouds are some of

them. These methods have been successfully applied in the case of large oscillations

of solution, large deformations and crack propagation. The term “meshless” stems
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from the fact that they require no explicitly given mesh at the beginning of the

computation. Approximation of solutions of BVP’s is here constructed from a set of

nodal data and from the associated weight functions with compact support.

One group of the meshless methods—the reproducing kernel particle method

(RKPM) together with its modifications reproducing kernel hierarchical partition

of unity method (RKHPUM) and enriched reproducing kernel particle method

(ERKPM)—are studied in this contribution. The next two sections are devoted to

the basic principle of construction of the RKPM and its two modifications together

with some simple test examples of their application.

2. Construction of meshless interpolants

The following notation will be used in this text:

Ω ⊂ R
n—a domain where approximation is constructed,

pT (x) = (p1(x), . . . , pl(x)), where l =
(
s+n

n

)
,—the complete monomial basis of order

s in R
n (for instance, if n = 1 then p(x) = (1, x, . . . , xs) and if n = 2 then

p(x1, x2) = (1, x1, x2, x
2
1, x1x2, x

2
2, . . . , x1x

s−1
2 , xs

2)),

rT (x) = (p1(x), . . . , pl(x), uε(x)), where uε(x)—a suitable level set function,

w—a weight function with compact support; we obtain a weight function of n vari-

ables as the tensor product of 1D weight functions,

̺ ∈ R—a dilatation parameter that corrects the size of suppw,

x1, . . . , xN—a set of particles in R
n,

α—a multiindex, its components are denoted [α].

We focus on the following three methods: reproducing kernel particle method,

reproducing kernel hierarchical partition of unity method and enriched reproducing

kernel particle method. We can understand these methods as specific cases of the

Galerkin method. The approximations ũ are here built from the convolution

uR(x) =

∫

Ω

K(x − y)u(y) dy.

Here the kernel K is approximated by a function Φ, i.e.

(2.1) ũ(x) =

∫

Ω

Φ(x, x − y)u(y) dy,

which satisfies some “conditions of consistency”.

There are more possibilities how to obtain a meshless approximation with the

required type of consistence. For instance, we can use the moving least square method

(MLSM) (see [5]). Also the approach with help of a Taylor series (see [2]) is possible.
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Our task now is to derive the form of RKP, RKHPU and ERKP interpolants from

suitable conditions of consistency.

2.1. Reproducing kernel particle method.

We want to construct the RKP interpolants in 1D such that the approximation

Φ of the kernel K reproduces the polynomials of order s exactly. We can write this

condition successively for polynomials of order 0, 1, . . . , s:

∫

Ω

a0Φ(x, x − y) dy = a0 ⇒

∫

Ω

Φ(x, x − y) dy = 1,

∫

Ω

(a0 + a1y)Φ(x, x − y) dy = a0 + a1x ⇒

∫

Ω

yΦ(x, x − y) dy = x,

...
∫

Ω

(a0 + . . . + asy
s)Φ(x, x − y) dy = a0 + . . . + asx

s ⇒

∫

Ω

ysΦ(x, x − y) dy = xs.

We obtain the system that represents the consistency conditions

(2.2)

∫

Ω

p(y)Φ(x, x − y) dy = p(x) ∀x ∈ Ω, ∀p ∈ P s.

We suppose that

(2.3) Φ(x, x − y) = pT (x − y)b(x)w(x − y),

where b is chosen such that the conditions (2.2) are satisfied. It means that

(2.4)

∫

Ω

p(y)pT (x − y)b(x)w(x − y) dy = p(x),

where p(x) = (1, x, . . . , xs)T . Denote by

(2.5) M(x) =

∫

Ω

p(y)pT (x − y)w(x − y) dy

the moment matrix. The unknown vector function b is a solution of the system

(2.6) M(x)b(x) = p(x).

In the case when the moment matrix M is invertible we have

(2.7) b(x) = M−1(x)p(x).
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If we put the (2.3) and (2.7) into the relation (2.1) we obtain

(2.8) ũ(x) =

∫

Ω

pT (x − y)M−1(x)p(x)w(x − y)u(y) dy.

If x1, . . . , xN ∈ Ω are chosen particles and ∆xI are quadrature weights, we obtain

the discretized form of the formulas (2.8) and (2.5)

ũ(x) =
N∑

I=1

pT (x − xI)M
−1(x)p(x)w(x − xI)uI∆xI ,(2.9)

M(x) =

N∑

J=1

p(xJ)pT (x − xJ )w(x − xJ )∆xJ .(2.10)

R em a r k. If the conditions (2.2) are satisfied, we say that the function Φ is

consistent of order s or that the function Φ forms a partition of unity of order s.

R em a r k. The unique solvability of (2.6), (2.10) depends on the size of suppw

and on the distribution of the particles xI , I = 1, . . . , N. If we denote

A(x) = {xI : x ∈ suppw(x − xI)},

then a necessary condition for the unique solvability of (2.6), (2.10) is that ∀x ∈ R
n

cardA(x) > dimP s.

(See [1].)

The relations (2.9) and (2.10) can be generalized to the n-dimensional case. If we

shift the basis and regulate the size of supp ΨI by means of a dilatation parameter ̺ ∈

R, then the results coincide with the results given in the next definition (the formulas

were derived by means of the Taylor expansion in the article [2]). A translated and

scaled basis can be used to get a better conditioning of the moment matrix.

Definition 1. Interpolants constructed by means of the RKPM in nD have the

form

ũ(x) =
N∑

I=1

ΨI(x)uI .

The shape functions

ΨI(x) = p(x − xI)b(x)
1

̺n
w

(x − xI

̺

)

∆xI ,
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where p(x) is chosen a complete monomial basis of order s (see above) and the vector

function b(x) is a solution of the system

M(x)b(x) = p(0).

The moment matrix is

M(x) =

N∑

J=1

p(x − xI)p
T (x − xI)

1

̺n
w

(
x − xJ

̺

)

∆xJ .

R em a r k. If the shape functions are reproducing of order s and h = xi−xi−1, i =

2, . . . , N, then for a smooth function u the error ‖u − ũ‖ has order O(hs). (See [1].)

2.2. Reproducing kernel hierarchical partition of unity method. We ask

whether the approximation Φ of the kernel K in this case is constructed so that its

derivatives, whose order is less or equal s, reproduce polynomials of order s exactly.

We have for 0 6 α 6 s in 1D
∫

Ω

a0Φ
(α)(x, x − y) dy = 0 ⇒

∫

Ω

Φ(α)(x, x − y) dy = 0,

∫

Ω

(a0 + a1y)Φ(α)(x, x − y) dy = 0 ⇒

∫

Ω

yΦ(α)(x, x − y) dy = 0,

...
∫

Ω

(a0 + . . . + aαyα)Φ(α)(x, x − y) dy = α!aα ⇒

∫

Ω

yαΦ(α)(x, x − y) dy = α!,

∫

Ω

(a0 + . . . + aα+1y
α+1)Φ(α)(x, x − y) dy = α!(aα + aα+1x)

⇒

∫

Ω

yα+1Φ(α)(x, x − y) dy = α!x,

∫

Ω

(a0 + . . . + asy
s)Φ(α)(x, x − y) dy = α!(aα + . . . + asx

s−α)

⇒

∫

Ω

ysΦ(α)(x, x − y) dy = α!xs−α.

This yields the system of conditions

(2.11)

∫

Ω

p(y)Φ(α)(x, x − y) dy = α!p(α)(x), 0 6 α 6 s.

Here p(α)(x) = (0, . . . , 0, 1
︸ ︷︷ ︸

α

, x, . . . , xs−α)T . Suppose that

(2.12) Φ(α)(x, x − y) = pT (x − y)bα(x)w(x − y),
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then the conditions of consistence (2.11) have the form

(2.13)

∫

Ω

p(y)pT (x − y)bα(x)w(x − y) dy = α!p(α)(x), 0 6 α 6 s

and the vector bα(x) is the solution of the system

(2.14) M(x)bα(x) = α!p(α)(x), 0 6 α 6 s.

The elements of the moment matrix M are

(2.15) M(x) =

∫

Ω

p(y)pT (x − y)w(x − y) dy.

The discretized form of the RKHPU approximation for the particles x1, . . . , xN is

ũ(x) =

s∑

α=0

N∑

I=1

α!p(xI)p
T (x − xI)M

−1(x)p(α)(x)w(x − xI)uI∆xI ,(2.16)

M(x) =

N∑

J=1

p(xJ )pT (x − xJ )w(x − xJ)∆xJ .(2.17)

The generalization in the n-dimensional case is given in the next definition. The

form of the RKHPU interpolants was derived by means of the moving least squares

method in the article [5].

Definition 2. Interpolants constructed in nD by means of the RKHPUM have

the form

ũ(x) =

N∑

I=1

s∑

|α|=0

Ψ
[α]
I (x)u

[α]
I .

The shape functions are

Ψ
[α]
I (x) = α! p

(xI − x

̺

)

b[α](x)
1

̺n
w

(xI − x

̺

)

∆xI ,

where p(x) is the chosen complete monomial basis of order s (see above) and the

vector b[α](x) is the solution of the system

M(x)b[α](x) = p[α](0),

where

M(x) =

N∑

J=1

p
(xJ − x

̺

)

pT
(xJ − x

̺

) 1

̺n
w

(xJ − x

̺

)

∆xJ

and p[α](0) = (0, . . . , 0, 1
︸ ︷︷ ︸

i

, 0, . . . , 0)T in the case when [α] = αi.

388



2.3. Enriched reproducing kernel particle method. The main reason for

constructing this meshless method was the requirement to construct an approxima-

tion that has a discontinuous derivative on a fixed or a moving interface Γ ⊂ Ω. (The

interface Γ is a point in 1D, a curve in 2D, a surface in 3D.) The approximation will

be modeled using a function uε that is defined in the neighborhood of Γ.

The approximation Φ of the kernel K is constructed so that it reproduces exactly

a general function

(2.18) u(x) = p(x) + uε(x),

where

(2.19) uε(x) = H0(Θ(x))Θ(x),

H0 represents the Heaviside function and Θ(x) is defined as the signed distance from

x ∈ Ω to the interface Γ.

We can write the condition (2.18) in 1D as

∫

Ω

a0Φ(x, x − y) dy = a0 ⇒

∫

Ω

Φ(x, x − y) dy = 1,

∫

Ω

(a0 + a1y)Φ(x, x − y) dy = a0 + a1x ⇒

∫

Ω

yΦ(x, x − y) dy = x,

...∫

Ω

(a0 + . . . + asy
s + uε(y))Φ(x, x − y) dy = a0 + . . . + asx

s + uε(x)

⇒

∫

Ω

uε(y)Φ(x, x − y) dy = uε(x).

This yields the system of consistency conditions

(2.20)

∫

Ω

r(y)Φ(x, x − y) dy = r(x),

where r(x) = (1, x, . . . xs, uε(x))T . If we put

(2.21) Φ(x, x − y) = rT (x − y)b(x)w(x − y)

in (2.20), we obtain

(2.22)

∫

Ω

r(y)rT (x − y)b(x)w(x − y) dy = r(x).
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If we denote

(2.23) M(x) =

∫

Ω

r(y)rT (y − x)w(x − y) dy

and the moment matrix M is invertible, then

(2.24) b(x) = M−1(x)r(x).

From (2.1), (2.21) and (2.24) we conclude

(2.25) ũ(x) =

∫

Ω

rT (x − y)M−1(x)r(x)w(x − y)u(y) dy.

If x1, . . . , xN ∈ Ω are chosen particles, the discretized form of (2.25), (2.23) is

ũ(x) =
N∑

I=1

rT (x − xI)M
−1(x)r(x)w(x − xI))uI∆xI ,(2.26)

M(x) =

N∑

J=1

r(xJ )rT (x − xJ )w(x − xJ )∆xJ .(2.27)

R em a r k. If we study the properties of the enriched moment matrix (2.27), we

see that it can be singular. This is the reason why we work with the ERKP moment

matrix (2.10) in such discontinuity neighborhoods where this matrix is nonsingular.

We use the classical RKP moment matrix (2.10) in the rest of Ω (see [4]).

In the next definition the n-dimensional analogues of (2.26) and (2.27) are given.

Definition 3. Interpolants constructed by means of the ERKPM in nD have

the form

(2.28) ũ(x) =
N∑

I

ΨI(x)uI .

The shape functions

(2.29) ΨI(x) = r(x − xI)b(x)
1

̺n
w

(x − xI

̺

)

∆xI ,

where r(x) is the complete monomial basis of order s enriched with a suitable level

set function uε (see above) and a vector b(x) is the solution of the system

M(x)b(x) = r(0),(2.30)

M(x) =

N∑

J=1

r(x − xJ )rT (x − xJ)
1

̺n
w

(x − xJ

̺

)

∆xJ .(2.31)
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3. Examples

3.1. BVP for Helmholtz equation. Let Ω = 〈0, 1〉×〈0, 1〉. Solve the boundary

value problem

∆u(x, y) + 162u(x, y) = 1 in Ω,

∂u(x, y)

∂n
= 2 on ∂Ω.

S o l u t i o n: We develop the approximation for uniformly distributed particles

(xI , yI), I = 1, . . . , 100, the polynomial basis p(x, y) = (1, x, y), the conical weight

function

w(x, y) =

{ (
(1 − x2)(1 − y2)

)2
for |x| 6 1, |y| 6 1,

0 otherwise,

and the dilatation parameter ̺ = 0.3.

The errors of the computed RKP and RKHPU approximations are

‖ũRKPM − u(x)‖L2
= 0.0948 and ‖ũRKHPUM − u(x)‖L2

= 0.0203

in this case.

3.2. BVP with discontinuous coefficient.

We consider the problem

(k(x)T ′(x))′ = 2 if x ∈ (0, 1),

u(0) = 0,

u(1) = 0,

where

k(x) =

{

1 if x ∈ (0, 0.5),

10 if x ∈ (0.5, 1).

S o l u t i o n: The solution was constructed for N = 8 particles, the polynomial

basis p(x) = (1, x), the function uε(x) = x − 0.5 and the conical weight function

w(x) =

{

(1 − x2)2 if |x| < 0.3,

0 otherwise.

The errors of the computed ERKP approximation and RKP approximation are

‖ũERKPM(x) − u(x)‖ L2(0,1) = 0.0003 and ‖ũKPM(x) − u(x)‖L2(0,1) = 0.0021

in this case.
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4. Conclusion

Different reproduction conditions were used to construct different meshless meth-

ods in this text. We received the form of the RKP, RKHPU and ERKP interpolants.

We can see that the methods presented differ from each other especially in the form

of the moment matrix. The resulting shape functions have the same smoothness

as the chosen weight functions. The size of suppw together with the distribution

of particles x1, . . . , xn affect the convergence of our methods. The RKHPUM was

presented in Example 1. It gives in this case of oscillatoric solution better results

than the RKPM. Also the results obtained using the ERKPM on the problem with

discontinuity given in Example 2 were more accurate from the point of view of the

associated level of error than the results received by means of the RKPM.
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