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Abstract. Consider a class of elliptic equation of the form

−∆u −
λ

|x|2
u = u2

∗−1 + µu−q in Ω \ {0}

with homogeneous Dirichlet boundary conditions, where 0 ∈ Ω ⊂ RN (N > 3), 0 < q < 1,
0 < λ < (N − 2)2/4 and 2∗ = 2N/(N − 2). We use variational methods to prove that for
suitable µ, the problem has at least two positive weak solutions.
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1. Introduction

In this note we study the existence of multiple positive weak solutions of the

equation

(Pλ,µ)







−∆u− λ

|x|2 u = u2∗−1 + µu−q in Ω \ {0},

u(x) > 0 in Ω \ {0}, u(x) = 0 on ∂Ω,

where 0 ∈ Ω and Ω ⊂ R
N (N > 3) is a bounded domain with smooth boundary,

2∗ = 2N/(N − 2) is the critical Sobolev exponent, 0 < λ < Λ = ((N − 2)/2)2 and

0 < q < 1. We say u ∈ H1
0 (Ω) is a weak solution of (Pλ,µ) if for any ϕ ∈ H1

0 (Ω), we

have ∫

(

∇u∇ϕ− λ

|x|2 uϕ− µu−qϕ− |u|2∗−2uϕ
)

= 0.
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Due to the Sobolev embedding theorem and the Hardy inequality (for any u ∈
H1

0 (Ω),
∫

Ω |x|−2|u|2 dx 6 Λ−1|∇u|2), (Pλ,µ) is variational in nature. Finding weak

solutions of (Pλ,µ) is equivalent to seeking critical points of the functional

I(u) =
1

2

∫

(

|∇u|2 − λ

|x|2 u
2
)

− µ

1 − q

∫

|u|1−q − 1

2∗

∫

|u|2∗

, u ∈ H1
0 (Ω)).

Problems like (Pλ,µ) have attracted great interests in the last two decades. When

λ = 0 and u2∗−1 is replaced by up with 1 < p < 2∗ − 1, Coclite et al. [6] proved that

there is µ1 such that the problem has at least one positive solution for 0 < µ < µ1

and has no positive solution for µ > µ1. Sun et al. [8] proved the existence of two

positive solutions if 0 < q < 1, λ = 0, µ > 0 suitably small and u2∗−1 replaced by

up with 1 < p < 2∗ − 1. Hirano et al. [7] proved that there is µ2 > 0 such that

the problem has at least two positive solutions in the case 0 < q < 1, λ = 0 and

0 < µ < µ2. The purpose here is to get two positive solutions of (Pλ,µ) for λ 6= 0.

Our main result is

Theorem 1.1. Let 0 < λ < Λ and 0 < q < 1. Then there is µ∗ > 0 such that for

any µ ∈ (0, µ∗), (Pλ,µ) possesses at least two positive solutions.

To get the existence of multiple solutions, we use variational methods. Comparing

(Pλ,µ) with the previous works [6], [8], [7], we are facing three difficulties at the same

time: (1) because of the critical nonlinearity u2∗−1, the functional I does not satisfy

a global Palais-Smale ((PS) in short) conditions; (2) since (Pλ,µ) contains a Hardy

term, we know that the solution does not belong to L∞(Ω); and (3) the functional

I is not differentiable due to the singular nonlinearity u−q. We need to use the

methods recently developed in [4], [5] and some ideas of [1], [7] to overcome them.

The paper is organized as follows: in Section 2, we give some preliminaries; in

Section 3, we prove Theorem 1.1.

Throughout this paper
∫

Ω
· dx is simply denoted by

∫

·; D1,2(RN ) is the closure of

C∞
0 (RN ) under the norm ‖ · ‖2

D1,2(RN ) =
∫

| · |2; and H1
0 (Ω) is the standard Sobolev

space with the usual norm.

2. Preliminaries

The following proposition was taken from [3], [9] and will play an important role

in what follows.
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Proposition 2.1. For 0 < λ < Λ = (N − 2)2/4, equation

(2.1) −∆u− λ

|x|2 u = |u|2∗−2u, x ∈ R
N \ {0}, u(x) → 0 as |x| → +∞,

has a family of solutions

Uε(x) =
[4ε(Λ − λ)N/(N − 2)](N−2)/4

[ε|x|γ′/
√

Λ + |x|γ/
√

Λ](N−2)/2
, ε > 0,

where Λ = (1
2 (N − 2))2, γ′ =

√
Λ −

√
Λ − λ, γ =

√
Λ +

√
Λ − λ. Moreover, Uε(x)

is the unique positive radial symmetric solution of Eq. (2.1) up to a dilation, and

Uε(x) is the extremal function of the minimization problem

Sλ = inf

{
∫

RN

(

|∇u|2 − λ

|x|2 |u|
2
)

dx : u ∈ D1,2(RN ),

∫

RN

|u|2∗

dx = 1

}

.

Clearly,
∫

RN

|Uε(x)|2
∗

dx =

∫

RN

(

|∇Uε|2 −
λ

|x|2U
2
ε

)

dx = S
N/2
λ .

According to the proof of [4, Theorem 1.1], we have the following exact local

behavior of the solutions of (Pλ,µ).

Proposition 2.2. Let 0 < λ < Λ. If u ∈ H1
0 (Ω) is a positive solution of (Pλ,µ),

then

(2.2) K2|x|−(
√

Λ−
√

Λ−λ) 6 |u(x)| 6 K1|x|−(
√

Λ−
√

Λ−λ), x ∈ B(0, r) \ {0}

for r > 0 sufficiently small and some positive constants K1, K2.

Define a cut-off function ζ(x) = 1 if |x| 6 δ, ζ(x) = 0 if |x| > 2δ, ζ(x) ∈ C1
0 (Ω)

and |ζ(x)| 6 1, |∇ζ(x)| 6 C. Denote vε(x) = ζ(x)Uε(x). Then using an argument

similar to [5, Proposition 2.4], we have the following lemma.

Lemma 2.1. If u ∈ H1
0 (Ω) is a positive solution of (Pλ,µ), then for ε > 0

sufficiently small,

∫

u2∗−1vε = O(ε
N−2

4 ),

∫

uv2∗−1
ε = O(ε

N−2

4 ).
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Next, we define some Nehari type sets, which are relevant in getting multiple

positive solutions. Denote ‖u‖2
λ =

∫

(|∇u|2 − λ|x|−2u2) and set

M :=

{

u ∈ H1
0 (Ω): ‖u‖2

λ = µ

∫

|u|1−q +

∫

|u|2∗

}

,

M+ :=

{

u ∈ M : (1 + q)‖u‖2
λ > (2∗ − 1 + q)

∫

|u|2∗

}

,

M0 :=

{

u ∈ M : (1 + q)‖u‖2
λ = (2∗ − 1 + q)

∫

|u|2∗

}

and

M− :=

{

u ∈ M : (1 + q)‖u‖2
λ < (2∗ − 1 + q)

∫

|u|2∗

}

.

Define also the minimization problems

(2.3) d+ = inf
u∈M+

I(u).

It is easy to see that d+ < 0 for µ > 0 and d+ → 0 as µ→ 0. Take µ3 > 0 such that

d+ +N−1S
N/2
λ > 0 for any µ ∈ (0, µ3). Denote

µ4 =
2∗ − 2

2∗ − 1 + q

( 1 + q

2∗ − 1 − q

)

N−2

4
(1+q)

S
N
4

(1+q)+ 1−q

2

λ |Ω| 1−q−2∗

2∗ .

Set

µ∗ = min{µ3, µ4}.

Lemma 2.2. If µ ∈ (0, µ∗), thenM0 = {0}. Moreover, for any u 6= 0 there exists

a unique t+ = t+(u) > 0 such that t+(u)u ∈ M− and

t+ > Tm :=
( ‖u‖2

λ

(2∗ − 1)
∫

|u|2∗

)
1

2∗−2

and

I(t+u) = max
t>Tm

I(tu),

and there exists a unique t− = t−(u) > 0 such that t−(u)u ∈ M+, t− < Tmax and

I(t−u) = inf
06t6Tm

I(tu).

P r o o f. The proof is similar to [5, Lemma 3.2]. We omit the details. �

416



3. Proof of theorem 1.1

In this section we will prove Theorem 1.1. The proof of Theorem 1.1 is based on

solving the minimization problem (2.3) and the minimization problem

(3.1) d− = inf
u∈M−

I(u).

We divide the proof into two steps. In the first step, we prove that if there is w ∈ M+

such that d+ = I(w) and there is v ∈ M− such that d− = I(v), then w and v are

two positive weak solutions of (Pλ,µ). In the second step, we prove that the minima

d+ in (2.3) and d− in (3.1) are achieved, respectively.

S t e p 1. Let w ∈ M+ be such that d+ = I(w) and v ∈ M− such that d− = I(v).

Lemma 3.1. For each ϕ ∈ H1
0 (Ω) and ϕ > 0, we have

(i) there is ̺0 > 0 such that I(w + ̺0ϕ) > I(w) for each 0 6 ̺ < ̺0;

(ii) t−̺ → 1 as ̺ → 0+, where t−̺ is the unique positive number satisfying t
−
̺ ×

(v + ̺ϕ) ∈ M−.

P r o o f. The proof follows exactly the scheme in the proof of Lemma 3 in [7]. �

Lemma 3.2. For each ϕ ∈ H1
0 (Ω) and ϕ > 0 we have that w−qϕ, v−qϕ ∈ L1(Ω).

Moreover,

∫

(

∇w∇ϕ − λ

|x|2wϕ − µw−qϕ− w2∗−1ϕ
)

> 0(3.2)

and
∫

(

∇v∇ϕ − λ

|x|2 vϕ− µv−qϕ− v2∗−1ϕ
)

> 0.(3.3)

In particular, w, v > 0 a.e. in Ω \ {0}.

P r o o f. We only prove (3.2) since the proof of (3.3) is similar. Let ϕ > 0 and

ε > 0. By (i) of Lemma 3.1 and simple computations we have that

µ

1 − q

∫

(w + εϕ)1−q − w1−q

ε
6

1

2ε

(

‖w + εϕ‖2
λ − ‖w‖2

λ

)

− 1

2∗ε

(

|w + εϕ|2∗ − |w|2∗
)

.

Since the right hand side of the inequality has a finite limit value as ε ↓ 0 for each

x ∈ Ω \ {0}, we conclude ε−1((w + εϕ)1−q − w1−q) increases monotonically as ε ↓ 0
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and

lim
ε↓0

(w + εϕ)1−q − w1−q

ε
=











0 if ϕ(x) = 0,

(1 − q)w−qϕ if ϕ(x) > 0 and w(x) > 0,

∞ if ϕ(x) > 0 and w(x) = 0.

The monotone convergence theorem yields w−qϕ ∈ L1(Ω) and we get (3.2). �

Proposition 3.1. We have that w and v are positive weak solutions of (Pλ,µ).

P r o o f. We borrow some ideas from [6], [8]. For any ϕ ∈ H1
0 (Ω) and ̺ > 0, we

define ψ = (w + ̺ϕ) and ψ+ = max{ψ, 0}. Then ψ+ ∈ H1
0 (Ω). Since w ∈ M, we

obtain from (3.2) that

0 6

∫

(

∇w∇ψ+ − λ

|x|2wψ
+ − µw−qψ+ − w2∗−1ψ+

)

=

∫

[w+̺ϕ>0]

(

∇w∇ψ+ − λ

|x|2wψ
+ − µw−qψ+ − w2∗−1ψ+

)

=

∫

(

∇w∇ψ − λ

|x|2wψ − µw−qψ − w2∗−1ψ
)

−
∫

[w+̺ϕ60]

(

∇w∇ψ+ − λ

|x|2wψ
+ − µw−qψ+ − w2∗−1ψ+

)

6 ̺

∫

(

∇w∇ϕ − λ

|x|2wϕ− µw−qϕ− w2∗−1ϕ
)

− ̺

∫

[w+̺ϕ60]

∇w∇ϕ.

Dividing by ̺ and letting ̺ → 0, since the measure of [w + ̺ϕ 6 0] tends to 0 as

̺→ 0, we get that
∫

[w+̺ϕ60]
∇w∇ϕ → 0. Therefore

∫

(

∇w∇ϕ − λ

|x|2wϕ− µw−qϕ− w2∗−1ϕ
)

> 0.

Since ϕ is arbitrary, we get that w is a solution of (Pλ,µ). Similarly, we can prove

that v is also a solution of (Pλ,µ). �

S t e p 2. The minima d+ and d− are achieved. We only prove that d− is achieved

by some v ∈ M− since proving that d+ is achieved is similar but quite simpler. Since

we are faced with critical nonlinearity and the Hardy term, the functional I does not

satisfy (PS) conditions. We need some technique developed in [4], [5] and some ideas

from [1], [7] to overcome them. We point out that vε and the exact local behavior

of w (see Proposition 2.2) play essential roles. From Proposition 2.2, we also know

that there is m > 0 such that w(x) > m for x ∈ suppw \ {0}.
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Lemma 3.3. Under the assumptions of Theorem 1.1,

d− < I(w) +
1

N
S

N/2
λ .

P r o o f. First, using an argument similar to the proofs in [7, Lemma 8], we have

t∗ > 0 such that w + t∗vε ∈ M−. It remains to prove that

(3.4) sup{I(w + tvε) : t > 0} < I(w) +
1

N
S

N/2
λ .

Since w is a solution, we obtain by direct computation that

I(w + tvε) − I(w) =
t2

2
‖vε‖2

λ + t

∫

(

∇w∇vε −
λ

|x|2wvε

)

− µ

∫

((w + tvε)
1−q

1 − q
− w1−q

1 − q

)

−
∫

( (w + tvε)
2∗

2∗
− w2∗

2∗

)

=
t2

2
‖vε‖2

λ − µ

∫

( (w + tvε)
1−q

1 − q
− w1−q

1 − q
− w−qtvε

)

−
∫

( (w + tvε)
2∗

2∗
− w2∗

2∗
− w2∗−1tvε

)

.

Note that the following inequality (see [7]) holds: there is α > 0 and 0 < δ <

N/(N − 2) such that

µ
( (r + s)1−q

1 − q
− r1−q

1 − q
− r−qs

)

> −αsδ for each r > m and s > 0.

Another useful inequality is: for r, s > 0 we have

(r + s)2
∗

2∗
− r2

∗

2∗
− s2

∗

2∗
− r2

∗−1s > rs2
∗−1.

Thus we get that

I(w + tvε) − I(w) 6
t2

2
‖vε‖2

λ − t2
∗

2∗

∫

|vε|2
∗ − t2

∗−1

∫

wv2∗−1
ε + αtδ

∫

vδ
ε .

So when t → 0 and t → ∞, then I(w + tvε) → 0. Hence we only consider the right

hand side of the above inequality in the case of t ∈ [t0, t1] for some 0 < t0 < t1 <∞.
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Hence, we obtain from Lemma 2.1 that

sup
t>0

I(w + tvε) − I(w) 6
1

N

(
∫

(|∇vε|2 −
λ

|x|2 |vε|2)
)

2∗

2∗−2

−
(

∫

|vε|2
∗

)− 2

2∗−2

−O(ε
N−2

4 ) +O(ε
N−2

4
δ)

=
1

N
S

N
2

λ +O(ε
N−2

2 ) −O(ε
N−2

4 ) +O(ε
N−2

4
δ)

<
1

N
S

N
2

λ for ε > 0 sufficiently small.

The proof is complete. �

Lemma 3.4. The minimum d− in (3.1) is achieved by v ∈ M− with I(v) = d−.

P r o o f. Let {vn}n∈N ⊂ M− be such that I(vn) → d−. It is easy to see that

{vn} is bounded in H1
0 (Ω). We may assume that vn ⇀ v weakly in H1

0 (Ω). Set

zn = vn − v and assume that

‖zn‖2
λ → a2 and

∫

|zn|2
∗ → b2

∗

.

Since vn ∈ M, by using the Brezis-Lieb lemma and the Sobolev embedding theorem
we get that

a2 + ‖v‖2
λ = µ

∫

|v|1−q + b2
∗

+

∫

|v|2∗

.

We claim that v > 0 and v 6= 0. Indeed, if v = 0, then a 6= 0 (since for any u ∈ M−,

‖u‖λ is bounded away from zero) and this means that

d− = lim
n→∞

I(vn) = I(0) +
1

2
a2 − b2

∗

2∗
>

1

N
S

N/2
λ ,

which contradicts the previous lemma.

From the assumption on µ ∈ (0, µ∗) we have 0 < t+ < Tm < t− such that

t+v ∈ M+ and t−v ∈ M−. For t > 0, we define

η(t) =
a2

2
t2 − b2

∗

2∗
t2

∗

and g(t) = I(tv) + η(t).

Now, we consider the cases

(i) t− < 1;

(ii) t− > 1 and b > 0, and

(iii) t− > 1 and b = 0.
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C a s e (i). From t− < 1, g′(1) = 0 and g′(t−) > 0 we can see that g is increasing

on [t−, 1]. Then we have

d− = g(1) > g(t−) > I(t−v) +
(t−)2

2
(a2 − b2

∗

) > I(t−v) > d−,

which is a contradiction.

C a s e (ii). We set T0 = (a2/b2
∗

)(N−2)/4. We know that η attains the unique

maximum at T0 and η(T0) > N−1S
N/2
λ . Moreover, η′(t) > 0 for 0 < t < T0 and

η′(t) < 0 for t > T0.

By the assumption µ ∈ (0, µ∗), we also know g(1) > g(T0). If T0 6 1, we have

d− = g(1) > g(T0) = I(T0v) + η(T0) > I(T0v) +
1

N
S

N/2
λ ,

which contradicts the previous lemma. Thus we have T0 > 1. By virtue of g′(t) 6 0

for t > 1, we obtain ∂
∂tI(tv) 6 −η′(t) 6 0 for 1 6 t 6 T0 and

d− = g(1) = I(v) +
1

2
a2 − b2

∗

2∗
> I(v) +

1

N
S

N/2
λ ,

which also contradicts the previous lemma.

C a s e (iii). If a 6= 0, then we obtain from the fact that vn ∈ M− by some

computations that (∂/∂t)I(tv)|t=1 < 0 and (∂2/∂t2)I(tv)|t=1 < 0, which contradicts

t− > 1. Thus a = 0 and vn → v strongly in H1
0 (Ω). Hence, we have v ∈ M− and

I(v) = d−.

The proof of Lemma 3.4 is complete. �

P r o o f of Theorem 1.1. The proof follows directly from Lemma 3.4 and Propo-

sition 3.1. �
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