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On exit laws for subordinated

semigroups by means of C1-subordinators

Mohamed Hmissi, Ezzedine Mliki

Abstract. We study the integral representation of potentials by exit laws in the
framework of sub-Markovian semigroups of bounded operators acting on L2(m).
We mainly investigate subordinated semigroups in the Bochner sense by means of
C1-subordinators. By considering the one-sided stable subordinators, we deduce
an integral representation for the original semigroup.
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Introduction

Let P = (Pt)t>0 be a sub-Markovian semigroup of bounded operators on L2(m).
A P-exit law is a family ϕ = (ϕt)t>0 of L2

+(m) satisfying the functional equation

(0.1) Psϕt = ϕs+t (s, t > 0).

This notion is first introduced by Dynkin [6] in the framework of potential theory
without reference measure. Since, the integral representation of potentials by exit
laws was investigated in many papers (cf. [1], [7], [8] and [10]–[15]). Now, let
β = (βt)t>0 be a Bochner subordinator, that is, a vaguely continuous convolution
semigroup of sub-probability measures on [0,+∞[. The present paper is devoted
to the representation by P

β-exit laws, where P
β is the subordinated semigroup of

P by means of β, i.e.

(0.2) P β
t f :=

∫ ∞

0

Psf βt(ds) (f ∈ L2(m), t > 0).

More precisely, we suppose that β is a C1-subordinator (cf. 2.2 below) and we
prove the following integral representation: Let h be a P

β-pseudo-potential, i.e.

h ≥ 0, P β
t h ∈ L2

+(m), P β
t h ≤ h, and limt→0 P

β
t h = h. Then there exists a unique

P
β-exit law ψ = (ψt)t>0 such that

(0.3) h =

∫ ∞

0

ψs ds,
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where ψ is explicitly given by

ψt = −
∫ ∞

0

Ps(P
β
t/2h)β

′
t/2(ds) (t > 0).

As an application, we obtain a representation of P-potentials in terms of P-exit
laws. Namely, let u be a P-potential, that is u is a P-pseudo-potential and Ptu ∈
D(A), the domain in L2(m) of the L2(m)-generator A of P. Then there exist a
unique P-exit law ϕ = (ϕt)t>0 satisfying

(0.4) u =

∫ ∞

0

ϕs ds.

In fact, (0.4) is obtained from (0.3) by considering the one-sided stable subordi-
nator ηα of order α ∈]0, 1[.

A similar problem is investigated in [14] by considering subordinators with
complete Bernstein functions instead of C1-subordinators.

1. Preliminaries

Let (E, E) be a standard measurable space and let m be a σ-finite positive
measure on (E, E). We denote by L2(m) the Banach space of (classes of) square
integrable functions defined on E, by ‖ · ‖2 the associated norm and by L2

+(m)
the m-a.e. non-negative elements of L2(m). Moreover, in the sequel, equality and
inequality holds always m-a.e. (i.e. almost everywhere with respect to m).

In this section we summarize some known results (cf. [2], [3], [5] and [17]–[19]).

1.1 Sub-Markovian semigroup. A bounded operator N : L2(m) → L2(m) is
said to be sub-Markovian if

(0 ≤ f ≤ 1) ⇒ (0 ≤ Nf ≤ 1), f ∈ L2(m).

In this case, N can be extended to a pseudo-kernel on (E, E) with respect to the
class of m-negligible sets. According to a regularization theorem ([5, XIII, 43]),
we can assume that N is a sub-Markovian kernel (i.e. N1 ≤ 1) on (E, E).

Therefore, we can apply the potential theory defined by kernels (cf. [5] for
example), for such operators.

A sub-Markovian semigroup on E is a family P := (Pt)t≥0 of sub-Markovian
bounded operators on L2(m) such that P0 = I (the identity on E),

(1) PsPt = Ps+t for all s, t > 0,
(2) ‖Ptu‖2 ≤ ‖u‖2 for all t ≥ 0 and u ∈ L2(m),
(3) limt→0 ‖Ptu− u‖2 = 0, for every u ∈ L2(m).

Let P be a sub-Markovian semigroup on E. The associated L2(m)-generator A
is defined by

Af := lim
t→0

1

t
(Ptf − f)
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on its domain D(A) which is the set of all functions u ∈ L2(m) for which this
limit exists in L2(m). It is known that

(1) D(A) is dense in L2(m) and A is closed,
(2) if u ∈ D(A) then Ptu ∈ D(A) and A(Ptu) = PtAu, for each t > 0.

1.2 Potentials and exit laws. Let P be a sub-Markovian semigroup on L2(m).

A non-negative measurable function u is said to be P-excessive if

(i) Ptu ≤ u for each t > 0,
(ii) limt→0 Ptu = u, m-a.e.

A P-excessive function u is called a P-pseudo-potential if

(iii) Ptu ∈ L2(m) for every t > 0.

A P-excessive function u is called a P-potential if

(iv) Ptu ∈ D(A) for every t > 0.

A P-exit law is a family ϕ := (ϕt)t>0 of elements of L2
+(m) satisfying the exit

equation:

(1.1) Psϕt = ϕs+t (s, t > 0).

In what follows, we consider P-exit laws satisfying

(1.2)

∫ ∞

t

ϕs ds ∈ L2(m) (t > 0).

As it is discussed in our paper [16], condition (1.2) is in fact not restrictive.
The following general result gives a first relation between potentials and exit

laws.

Proposition 1.1. Let P be a sub-Markovian semigroup on L2(m) and let ϕ be

a P-exit law such that (1.2) holds. Then the function

(1.3) u :=

∫ ∞

0

ϕs ds

is a P-potential. Moreover, we have

(1.4) ϕt = −APtu (t > 0).

Proof: By Fubini’s Theorem and (1.1) we get

Ptu =

∫ ∞

0

Ptϕs ds =

∫ ∞

0

ϕs+t ds =

∫ ∞

t

ϕs ds.

Therefore, Ptu ∈ L2(m) by (1.2) and

(1.5) Ptu =

∫ ∞

t

ϕs ds (t > 0).
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Now from (1.5), we easily deduce that u is P-excessive. Moreover, by (1.5) again
we have, for r, t > 0

1

r
(Pr+tu− Ptu) = −1

r

∫ r+t

t

ϕs ds.

Hence Ptu ∈ D(A) and APtu = −ϕt for each t > 0. �

Remarks 1.2. (1) In this paper, we will prove the converse of Proposi-
tion 1.1. Namely, each P-potential u admits an integral representation
by some P-exit law ϕ (i.e. such that (1.3) holds).

(2) From (1.4), we deduce immediately the unicity of the P-exit in the integral
representation (1.3).

(3) The representation by exit laws plays a fundamental role in the framework
of potential theory without Green function (cf. [6]–[8] and [10]).

(4) Under some regularity hypothesis on P, the condition Ptu ∈ D(A) for
t > 0, is always fulfilled (cf. [7], [8], [10]).

(5) In the next paragraph, we want first to investigate such representation
for subordinated semigroups by C1-subordinators.

(6) The proof of the following useful lemma is given in [16].

Lemma 1.3. Let P be a sub-Markovian semigroup on L2(m) and let u be a

P-potential. For t > 0, let ϕt be defined by (1.4). Then ϕ = (ϕt)t>0 is a P-exit

law.

2. Representation for subordinated semigroup

2.1 Bochner subordination. For the following classical notions, we refer the
reader to [2], [3] and [16]–[18].

We consider R endowed with its Borel field, we denote by λ the Lebesgue
measure on [0,∞[ and by εt the Dirac measure at point t. Moreover, for each
bounded measure µ on [0,∞[, L denotes its Laplace transform, i.e. L(µ)(r) :=
∫∞

0
exp(−rs)µ(ds) for r > 0.

A Bochner subordinator is a family β := (βt)t>0 of sub-probability measures
on R such that

(1) for each t > 0, the measure βt 6= ε0 and βt is supported by [0,∞[,
(2) βs ∗ βt = βs+t for all s, t > 0,
(3) limt→0 βt = ε0, vaguely.

In this case the associated potential measure is given by κ :=
∫∞

0 βs ds. It is
known that κ is a Borel measure (cf. [2, Proposition 14.1]).

Let P be a sub-Markovian semigroup and let β be a Bochner subordinator. For
every t > 0 and for every f ∈ L2(m), we may define

(2.1) P β
t f :=

∫ ∞

0

Psf βt(ds) (t > 0).
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Let P0 = I, then P
β := (P β

t )t>0 is a sub-Markovian semigroup on L2(m). It is
said to be subordinated to P in the sense of Bochner by means of β. We denote
by Aβ the associated generator.

The following two remarks will be used later.

(1) D(A) is a subset of D(Aβ) (cf. [17, p. 269] for example).
(2) Each P-potential is a P

β-potential (for the proof, we can adapt those of
[3, p. 185]).

2.2 C1-subordinator. Let S be the Banach algebra of complex Borel measures
on [0,∞[, with convolution as multiplication, and normed by the total variation
‖ · ‖S . A Bochner subordinator β = (βt)t>0 is said to be a C1-subordinator pro-
vided

t 7→ βt is continuously differentiable from ]0,∞[ to S and ‖β′
t‖S <∞ for each

t > 0.

This class of subordinators, is considered in [4]. For the following examples,
we will refer also to this paper.

(1) One-sided stable subordinator: For each α ∈]0, 1[ and t > 0, let ηα
t be the

unique probability measure on [0,∞[ such that L (ηα
t )(r) = exp(−trα) for

r > 0. Then ηα := (ηα
t )t>0 is a convolution semigroup on [0,∞[ called

the one-sided stable subordinator of index α. ηα is a C1-subordinator for
each α ∈]0, 1[.

(2) Gamma subordinator: For t > 0, let gt(s) := 1]0,∞[(s)(1/Γ(t)) st−1 exp(−s)
and βt := gt · λ. Then γ := (γt)t>0 is a subordinator, called the Γ-
subordinator. Moreover γ is a C1-subordinator.

(3) Compound Poisson subordinator: Let q be an arbitrary probability measure
on [0,∞[ and let c > 0. Put

βt := e−ct
∞
∑

j=0

(ct)j

j!
qj (t > 0),

where q0 := ε0 and qj := {q}∗j. Then β is a C1-subordinator, called the
compound Poisson subordinator . Moreover, the Bernstein function of β
is given by

k(r) = cL(ε0 − q)(r) (r > 0).

This construction includes many explicitly known Bochner subordinators.
Thus, for q = ε1, we obtain the Poisson subordinator with jump c. Simi-

larly, for q =
∑∞

j=1
(1−b)j

cj εj where 0 < b < 1 and c = − log(b), we obtain

the negative Binomial subordinator .
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(4) Let (bn)n≥0 and (an)n≥0 be any two sequences satisfying

0 < bn < 1; an > 0; lim
n→∞

bn = 1;
∞
∑

n=0

an <∞,

and define k(r) =
∑∞

n=0 anr
bn , r > 0. Then k is the Bernstein function

of some Bochner subordinator which is not a C1-subordinator.

(5) (εt ∗ βt)t>0 is not a C1-subordinator, even when β is a C1-subordinator.

(6) If β1, β2 are C1-subordinators then so is β1 ∗ β2.

(7) Let β be a C1-subordinator with Bernstein function f . Suppose that
‖β′

t‖S < c/t for some constant c > 0 when t ↓ 0. f is bounded if and only
if β is a compound Poisson family.

Lemma 2.1. Let β be a C1-subordinator. Then

(2.2) β
′

s+t = β′
s ∗ βt (s, t > 0)

and

(2.3) βt = −β′

t ∗ κ (t > 0),

where β
′

t := ∂
∂tβt and κ =

∫∞

0 βt dt.

Proof: Let β be a C1-subordinator. Since L(βt)(r) = exp(−tf(r)), by differen-
tiation with respect to t under the integral sign, we obtain

(2.4) L(β
′

t) =
∂

∂t
L(βt)(r) = −f(r) exp(−tf(r)) (t, r > 0).

Let s, t, r > 0, using (2.4), we get

L(β
′

s ∗ βt)(r) = L(β
′

s)(r)L(βt)(r)

= −f(r) exp(−sf(r)) exp(−tf(r))

= −f(r)e−(s+t)f(r)

= L(β
′

s+t)(r).

Similarly, we have

L(−β′

s ∗ κ)(r) = −L(β
′

s)(r)L(κ)(r)

= f(r) exp(−sf(r))
1

f(r)

= L(βt)(r).

We deduce (2.2) and (2.3) by the injectivity of Laplace transform. �
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Proposition 2.2. Let P be a sub-Markovian semigroup on L2(m), let β be a

C1-subordinator and let P
β be the subordinated semigroup of P by means of β.

Then P β
t (L2(m)) ⊂ D(Aβ) and

(2.5) AβP β
t u =

∫ ∞

0

Psu β
′

t(ds) (t > 0, u ∈ L2(m)).

Proof: Let β be a C1-subordinator. For each u ∈ L2(m), we have

∥

∥

∥

∫ ∞

0

Psu β
′

t(ds)
∥

∥

∥

2
≤ ‖u‖2 ‖β

′

t‖S (t > 0).

Therefore the function x 7→
∫∞

0 Psu β
′

t(ds), is well defined and lies in L2(m).
Moreover, following [4, Theorem 4], the differentiation with respect to t under the

integral sign is justified in P β
t u and by (2.1) we have

∫ ∞

0

Psu β
′
t(ds) =

∂

∂t
P β

t u = AβP β
t u (t > 0, u ∈ L2(m)).

�

Theorem 2.3. Let P be a sub-Markovian semigroup on L2(m), let β be a C1-

subordinator and let P
β be the subordinated semigroup of P by means of β. For

each P
β-pseudo-potential h, there exists a unique P

β-exit law ψ = (ψt)t>0 such

that

(2.6) h =

∫ ∞

0

ψs ds,

where ψ is explicitly given by

ψt = −
∫ ∞

0

Ps(P
β
t/2h)β

′
t/2(ds) (t > 0).

Moreover, if h ∈ L2
+(m), then ψ is on the form

(2.7) ψt = −
∫ ∞

0

Pshβ
′
t(ds) (t > 0).

Proof: Let β be a C1-subordinator and let h be a P
β-pseudo-potential.

Step 1: We prove that h is a P
β-potential. Indeed, for all s, t > 0 we have

P β
s+th = P β

s (P β
t h) ∈ P β

s (L2(m))

by hypothesis. Hence P β
s+th ∈ D(Aβ) by Proposition 2.2. We conclude that for

all t > 0 we have P β
t h = P β

t/2+t/2h ∈ D(Aβ) and therefore h is a P
β-potential.
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Step 2: From the first step we may define

(2.8) ψt := −Aβ(P β
t h) (t > 0).

If we apply Lemma 1.3 for P
β instead of P, we deduce that ψ = (ψt)t>0 is a

P
β-exit law.

Step 3: We prove the representation (2.6): For s, t > 0,

P β
s+th =

∫ ∞

0

Pr(P
β
s h)βt(dr)

(2.3)
= −

∫ ∞

0

Pr(P
β
s h) (β′

t ∗ κ)(dr)

= −
∫ ∞

0

∫ ∞

0

Pr+ℓ(P
β
s h)β

′

t(dr)κ(dℓ)

= −
∫ ∞

0

∫ ∞

0

∫ ∞

0

Pr+ℓ(P
β
s h)β

′

t(dr)βq(dℓ) dq

= −
∫ ∞

0

(
∫ ∞

0

Pr(P
β
s h)(β

′
t ∗ βq)(dr)

)

dq

(2.2)
= −

∫ ∞

0

∫ ∞

0

Pr

(

P β
s h
)

β
′

t+q(dr) dq

(2.5)
= −

∫ ∞

0

Aβ
(

P β
t+qP

β
s h
)

dq

= −
∫ ∞

0

Aβ
(

P β
t+q+sh

)

dq

(2.8)
=

∫ ∞

0

ψt+s+q dq

=

∫ ∞

t+s

ψq dq.

Therefore, we obtain the representation

(2.9) P β
t h =

∫ ∞

t

ψs ds (t > 0)

in L2(m). Now, by letting t ↓ 0 in (2.9), we obtain (2.6).
Moreover if h ∈ L2

+(m), then (2.7) is immediate from (2.5) and (2.8). �

Remarks 2.4. Let P be a sub-Markovian semigroup on L2(m).

(1) Let β be a C1-subordinator. From (2.9) and Proposition 1.1, we deduce
that each P

β-pseudo-potential is a P
β-potential.
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(2) Let h ∈ L2
+(m). By application of (2.7), we obtain the following formulas:

(i) If h is a P
η

1

2 -potential then

h =
1√
4π

∫ ∞

0

∫ ∞

0

Prhr
−3

2

(

1 − 2s2

4r

)

exp

(−s2
4r

)

dr ds.

(ii) If h is a P
γ-potential then

h =

∫ ∞

0

1

Γ(s)

∫ ∞

0

Prh

(

Γ
′

(s)

Γ(r)
− log r

)

rs−1 exp(−r) dr ds.

3. Application to the original semigroup

For each α ∈]0, 1[ let ηα
t be the one-sided stable subordinator. Following [19,

p. 263], the measure ηα
t has a density, denoted by ρα

t , with respect to λ where

ρα
t (s) =

1

π

∫ ∞

0

rα exp(rs cos θ − trα cosαθ) sin(sr sin θ − trα sinαθ + θ) dr

for all s, t > 0 and for some θ ∈ [π
2 , π].

Let qα
t (s) = ∂

∂tρ
α
t (s) we have

qα
t (s) :=

−1

π

∫ ∞

0

exp(sr cos θ − trα cosαθ) sin(sr sin θ − trα sinαθ + αθ + θ)rα dr

For all s, t > 0, we denote

Υα
t (s) :=

∫ s

0

ρα
t (r) dr,

qα
t (s) :=

∂

∂t
ρα

t (s),

Λα
t (s) :=

∫ s

0

qα
t (r) dr.

Let u be a P-potential. Then u is a P
β-potential and therefore Theorem 2.3 may

be applied for such function. In particular, if we take βt = ηα
t , the one-sided

stable subordinator of index α ∈]0, 1[, we obtain the following result:

Corollary 3.1. Let u be a P-potential. Then

(3.1) Ptu =

∫ ∞

0

ψt
r dr (t > 0),

where

(3.2) ψt
r = −

∫ ∞

0

Ps+tu q
α
r (s) ds (r > 0).
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Proof: Let u be a P-potential and let t > 0 be fixed. Then Ptu is a P-potential
and therefore a P

ηα

-potential. Using Theorem 2.3, there exists a unique P
ηα

-exit
law ψt = (ψt

s)s>0 such that

(3.3) P ηα

s Ptu =

∫ ∞

s

ψt
r dr (s > 0),

where ψt
r is given by (3.2). Letting s ↓ 0 in (3.3), we obtain (3.1). �

Lemma 3.2. Let α ∈]0, 1[. For each t > 0, s 7→ Υα
t (s) is an increasing bounded

continuous function from ]0,∞[ to [0, 1]. Moreover for all s > 0, we have

(3.4) lim
t→∞

Υα
t (s) = 0

and

(3.5) lim
t→0

Υα
t (s) = 1.

Proof: The proof is adapted from [19, p. 263].
Since for all t > 0, ηα

t is a probability measure on ]0,∞[, it follows that

s 7→ Υα
t (s) =

∫ s

0

ηα
t (dr)

is an increasing bounded continuous function from ]0,∞[ into [0, 1].
On the other hand by the change of variables r = t−1/αv, z = t1/αu, we get

Υα
t (s) =

∫ s

0

ρα
t (z) dz

=
1

π

∫ s

0

∫ ∞

0

rαerz cos θ+trα cos αθ sin(zr sin θ − trα sinαθ + θ) dr dz

=
1

π

∫ s

0

∫ ∞

0

vαet
−1

α vz cos θ+trα cos αθ sin(zt
−1

α v sin θ − vα cosαθ + θ) dv dz

=
1

π

∫ st
−1

α

0

∫ ∞

0

vαeuv cos θ+vα cos αθ sin(uv sin θ − vα cosαθ + θ) dv du

=

∫ st
−1

α

0

ρα
1 (v) dv = Υα

1 (st
−1

α ).

Therefore (3.4) and (3.5) hold. �



On exit laws for subordinated semigroups by means of C1-subordinators 615

Lemma 3.3. Let α ∈]0, 1[. For each s > 0, t 7→ Υα
t (s) is a differentiable function

on ]0,∞[. Moreover for all s > 0, we have

Λα
t (s) =

∂

∂t
Υα

t (s),(3.6)
∫ ∞

0

Λα
t (s) dt = −1,(3.7)

lim
s→0

Λα
t (s) = lim

s→∞
Λα

t (s) = 0 (t > 0).(3.8)

Proof: Since t 7→ ρα
t (s) is differentiable on [0,∞[, using a derivation theorem

under the integral sign with respect to t, the function t 7→ Υα
t (s) is differentiable

and

∂

∂t
Υα

t (s) =
∂

∂t

(
∫ s

0

ρα
t (z) dz

)

=

∫ s

0

qα
t (z) dz = Λα

t (s).

Hence (3.6) holds. Moreover by Lemma 3.2, we have

∫ ∞

0

Λα
t (s) dt =

∫ ∞

0

∂

∂t
Υα

t (s) dt = lim
t→∞

Υα
t (s) − lim

t→0
Υα

t (s).

Therefore (3.7) holds.
If we take θα = π

1+α , then by the derivation theorem under the integral sign
with respect to t, we obtain

qα
t (s) =

1

π

∫ ∞

0

rα exp ((rs+ trα) cos θα) sin ((sr − trα) sin θα) dr.

It follows that s → qα
t (s) is integrable on ]0,∞[. Hence by differentiation of

∫∞

0 ηα
t (ds) =

∫∞

0 ρα
t (s) ds = 1 with respect to t, we obtain (3.8). �

Theorem 3.4. Let P be a sub-Markovian semigroup on L2(m). Then, for each

P-potential u there exists a unique P-exit law ϕ such that

(1.3) u =

∫ ∞

0

ϕs ds.

Proof: Let u be a P-potential. By Lemma 1.3, the family ϕ := (ϕt)t>0 defined
by (1.4), i.e.

(1.4) ϕt := −APtu (t > 0)

is a P-exit law.
On the other hand, there exists by Corollary 3.1, a unique P

ηα

-exit law ψt

(given by (3.2)) such that (3.1) holds. Using an integration by parts we obtain

ψt
s = [−Pr+thΛ

α
s (r)]

∞

0 +

∫ ∞

0

∂

∂r
Pr+tuΛ

α
s (r) dr (s > 0)
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and by Lemma 3.2 we get

(3.9) ψt
s = −

∫ ∞

0

ϕr+t Λα
s (r) dr (s > 0).

Now by (3.2), (3.10), (3.1) and Fubini’s Theorem we get

Ptu =

∫ ∞

0

∫ ∞

0

−ϕr+t Λα
s (r) dr ds

=

∫ ∞

0

−ϕr+t

(
∫ ∞

0

Λα
s (r) dr

)

ds

=

∫ ∞

0

ϕr+t dr

=

∫ ∞

t

ϕr dr.

We conclude as in the proof of Proposition 1.1. �

Remark 3.5. In this paper, we have used a representation for the subordinated
structure (Theorem 2.3), in order to obtain a representation for the original one
(Theorem 3.4). A similar idea is already investigated in [9, Theorem 2].
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