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Abstract. We give a self-contained introduction to universal homogeneous models
(also known as rich models) in a general context where the notion of morphism
is taken as primitive. We produce an example of an amalgamation class where
each connected component has a saturated rich model but the theory of the rich
models is not model-complete.
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1. Introduction

Universal homogeneous models, here called rich models, are a fundamental
tool in model theory. They were first introduced by Fräıssé and in the last
two decades they have become a basic tool for the construction of a variety of
(counter)examples — see for instance [Hru], [Poiz], [BHMW] and many others.
Rich models are usually constructed by axiomatizing the notion of strong sub-
model. Here we present an axiomatization based on the notion of morphism.

The concept of model companion is closely related to the notion of rich model.
For instance, the random graph can be obtained as the Fräıssé limit of the class
of all finite graphs, but it can also be defined as the model companion of the
theory of infinite graphs. Generic automorphisms, introduced by Lascar as beaux

automorphismes in [Lasc], can be obtained either as Fräıssé limits or as model
companions as in [ChaPi] (see also [BaShe] and [BaZa]).

The connection between these two approaches is well understood when the
amalgamation class is connected , i.e. it satisfies the joint embedding property
(JEP), but the relationship is less clear when JEP fails. In Section 4 we produce
an example of an amalgamation class where each connected component has a
saturated rich model but the theory of the rich models is not model-complete (see
Remark 5.4). Sections 4 and 5 are dedicated to surveying the relation between the
saturation of the rich models and the model-completeness of their theory. They
collect facts that to our knowledge have never been treated in a comprehensive
self-contained way.

The first author gratefully acknowledges support by the Commission of the European Union
under contract MEIF-CT-2005-023302 ‘Reconstruction and generic automorphisms’.



682 S. Barbina, D. Zambella

2. Inductive amalgamation classes

In this section we present an axiomatization of inductive amalgamation classes

based on the notion of morphism. This differs from the approach commonly
found in the literature, where the primitive notion is that of strong submodel
(here denoted by ≤).

In order to state our axioms it is essential to explain the meaning of the word
map in this paper. A map f : M → N is a triple where M is a structure called
the domain of the map, N is a structure called the co-domain of the map, and f

is a function in the set-theoretic sense with dom f ⊆ M and rng f ⊆ N . We call
dom f the domain of definition of the map and rng f the range of the map. If
A ⊆ dom f we say that f is defined on A. So f : M → N and f : M ′ → N ′ are
different maps unless M = M ′ and N = N ′.

The composition of two maps is defined when the co-domain of the first map is
the domain of the second map. Clearly, composing two non total maps may give
the empty map as a result. When f : M → N is injective (which will always be
the case in this paper) its inverse is the map f−1 : N → M .

When M and N are structures in a given signature, a partial embedding is a
map f : M → N such that M |= ϕ(a) ⇔ N |= ϕ(fa) for every quantifier-free
formula ϕ(x) and every tuple a ⊆ dom f . An elementary map is defined similarly
but with ϕ(x) ranging over all formulas. A partial embedding which is a total
map is called an embedding and a total elementary map is called an elementary

embedding.

Definition 2.1. Fix a countable language L. An inductive amalgamation class K

is a category where Obj(K) consists of infinite structures of signature L, Mor(K)
contains partial embeddings between structures, and which satisfies axioms K0,
K1, K2, R, Ap and In below, where composition of morphisms is composition of
maps, a model is an element of Obj(K) and a morphism is an element of Mor(K).

K0. Models are closed under elementary equivalence.
K1. All elementary maps are morphisms.
K2. The inverse (in the sense above) of a morphism is a morphism.
R. If h : M → N is a morphism and f ⊆ h then f : M → N is a morphism.

A morphism that is total is called a strong embedding. The structure M is
a strong submodel of N , written M ≤ N , if M ⊆ N and idM : M → N is a
morphism (hence a strong embedding). We call h : M ′ → N ′ an extension of
f : M → N if M ≤ M ′, N ≤ N ′ and f ⊆ h.

Ap. Every morphism f : M → N has an extension to a strong embedding
h : M → N ′.

A chain of models is a sequence of models 〈Mi : i < λ〉 such that Mi ≤ Mj

whenever i < j.

In. The union M of a chain of models 〈Mi : i < λ〉 is a model and Mi ≤ M

for every i < λ.
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In K2 the word inverse does not have the meaning it has in a category: the
composition of f : M → N and f−1 : N → M is not idM but merely the identity
on dom f . Axiom R is not essential but it is assumed to simplify the exposition. If
K satisfies all the axioms above except for R, we define an inductive amalgamation
class K

′ whose objects are those of K and whose morphisms are

Mor(K′) =
{

h : M → N | Mor(K) contains a restriction of h : M → N
}

.

For our purposes, we can safely replace K with K
′. Axiom Ap is a convenient way

to formulate the amalgamation property. This is usually stated as in Ap′ below.

Proposition 2.2. Modulo K0–K2, axiom Ap is equivalent to the following

Ap′. if fi : M → Ni for i = 1, 2 are morphisms then there is a model N and two
strong embeddings hi : Ni → N such that h1 f1↾ dom f2 = h2 f2↾ dom f1.

Proof: Observe first that if f : M → N is a strong embedding then f [M ] ≤ N .
In fact, f−1 : f [M ] → M is an isomorphism so, in particular, an elementary
map. Then, by K0, f [M ] is a model and by K1 f−1 : f [M ] → M is a morphism.
Composing it with f : M → N , we can conclude that the natural embedding of
f [M ] into N is a morphism.

To prove Ap′ ⇒ Ap, amalgamate f : M → N and idM : M → M . For
the converse, apply Ap to the morphism f2f

−1
1 : N1 → N2 to obtain a strong

embedding h : N1 → N into some N2 ≤ N . This and idN2
: N2 → N are the two

embeddings hi : Ni → N required in Ap′. �

We say that K is connected if between any two models there is a morphism.
The following is an immediate consequence of amalgamation.

Proposition 2.3. The following are equivalent for any amalgamation class K.

C. K is connected.
Jep. For every pair of models M1 and M2 there are a model N and embeddings

fi : Mi → N for i = 1, 2.

An example of an inductive amalgamation class is obtained by taking all inte-
gral domains as models (or, generally, the class of Krull-minimal models [Zam])
and all partial embeddings as morphisms. This class is not connected: a con-
nected component contains the domains of a fixed characteristic. In the terminol-
ogy defined in the next section, the rich models of this class are the algebraically
closed fields. As a second example, take the class whose models are all infinite
structures of signature L and whose morphisms are all partial elementary maps
between models. This class is not connected unless T is complete. The connected
components consist of models that are elementarily equivalent. The saturated
models are the rich models of this class. Finally, highly non trivial examples are
obtained from Hrushovski-style constructions such as [Hru]: in such settings, one
works with an inductive amalgamation class where models are the models of some
theory T0 and morphisms are partial embeddings between self-sufficient subsets.
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We conclude this section by stating an important consequence of our axioms:
the finite character of morphisms, which will be proved in Theorem 3.7.

Fc. If all finite restrictions of f : M → N are morphisms then f : M → N is
a morphism.

3. Rich models

The arguments in this and the following section are either folklore or have
appeared in several places e.g. [Lasc], [Goode], [Poiz]. We fix an inductive amal-
gamation class K.

Definition 3.1. Let λ be an infinite cardinal. A model U is λ-rich if every
morphism f : M → U such that |f | < |M | ≤ λ has an extension to a strong
embedding of M into U . That is, there is a total morphism h : M → U such that
f ⊆ h. When λ = |U | we say that U is rich.

Using the downward Löwenheim-Skolem Theorem and FC, it is not difficult to
prove that when λ is uncountable we can replace |f | < |M | ≤ λ with |M | < λ (as
in [ChaPi]) and obtain an equivalent notion. The case λ = ω does not apply as
we do not allow models to be finite.

Example 3.2. The countable random graph is a rich model of the inductive
amalgamation class which contains all infinite graphs and all partial embeddings
between them. All Fräıssé limits of finitely generated structures can also be
thought of as rich models of a suitably defined inductive amalgamation class.
When K consists of models of some theory T and partial embeddings between
them, the λ-rich models are exactly the existentially closed models of T that are
λ-saturated with respect to quantifier-free types.

Theorem 3.3 (Existence). Let λ and κ be cardinals such that 2λ ≤ κ = κ<λ.

Then every model U0 of cardinality ≤ κ embeds in a λ-rich model U of cardina-

lity κ.

Proof: Let U0 be given. We may assume |U0| = κ. We define by induction a
chain of models 〈Uα : α < κ〉 such that |Uα| = κ for all α < κ. Let U :=

⋃

α<κ Uα.
At successor stage α + 1, let f : M → Uα be the least morphism — in a well-

ordering that we specify below — such that |f | < |M | ≤ λ and f has no extension
to a strong embedding f ′ : M → Uα. Apply Ap to obtain a strong embedding
f ′ : M → U ′ that extends f : M → Uα. By Löwenheim-Skolem we may assume
|Uα| = |U ′|. Let Uα+1 = U ′. At stage α with α limit, simply let Uα :=

⋃

β<α Uβ.
We choose the required well-ordering so that in the end we forget nobody. At
each stage we well-order the isomorphism types of the morphisms f : M → Uα

such that f < |M | ≤ λ. The required well-ordering is obtained by dovetailing all
these well-orderings. The length of this enumeration is at most 2λ · κ<λ, which is
κ by hypothesis.

We check that U is λ-rich. Suppose that f : M → U is a morphism and
|f | < |M | ≤ λ. Since κcfκ > κ for all κ, the cofinality of κ is larger than |f |,
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hence rng f ⊆ Uα for some α < κ. So f : M → Uα is a morphism and at some
stage β we have ensured the existence of an extension of f : M → Uα that embeds
M into Uβ+1. �

Theorem 3.3 is too general to yield a sharp bound on the cardinality of U .
For instance, it cannot be used to infer the existence of countable rich models.
However, it will enable us to define Trich for any inductive amalgamation class.

Corollary 3.4. Let λ be an uncountable inaccessible cardinal. Then every model

of cardinality ≤ λ embeds in a rich model of cardinality λ.

We prefer to work with rich, rather than λ-rich, models. We assume the exis-
tence of as many inaccessible cardinals as needed.

Theorem 3.5 (Uniqueness). Let U and V be λ-rich models. Then any morphism

f : U → V is an elementary map. When |f | < |U | = |V | = λ, f can be extended

to an isomorphism.

Proof: To prove that f : U → V is elementary, it suffices to prove that all
its finite restrictions are elementary. Therefore we may assume that f itself is
finite. Now extend f by back-and-forth to an isomorphism between countable
elementary substructures of U and V and the claim is proved. The details are
left to the reader.

To prove the second part of the claim, we extend f : U → V by back-and-forth,
taking care to ensure totality and surjectivity. At limit stages we can safely take
unions, since by the first part of the theorem morphisms between U and V are
elementary. �

There is a morphism between U and V only if the two models belong to the
same connected component. Therefore in each connected component there is at
most one rich model of given cardinality.

Corollary 3.6 (Homogeneity). Rich models are homogeneous in the sense that

every morphism f : U → U of cardinality < |U | has an extension to an automor-

phism of U .

Theorem 3.7 (Finite character). The map f : M → N is a morphism if and

only if h : M → N is a morphism for every finite h ⊆ f .

Proof: One direction is axiom R. For the converse, suppose that for every finite
h ⊆ f the map h : M → N is a morphism. By Theorem 3.3 we may assume
M, N ≤ U for some rich model U . Then h : U → U is a morphism and, by
Theorem 3.5, elementary. So f is also elementary on U , hence it is a morphism
by K2. Since M, N ≤ U , the map f : M → N is a morphism because it is a
composition of morphisms. �

A chain of morphisms is a sequence of morphisms fα : Mα → Nα, where the
α-th morphism extends the β-th morphism for every β < α. The following is an
immediate consequence of the finite character of morphisms.
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Corollary 3.8. The union of a chain of morphisms is a morphism that extends

every element of the chain.

Corollary 3.9. Let 〈Mα : α < λ〉 be a chain of models. Let Mλ :=
⋃

α<λ Mα. If

N is a model such that Mα ≤ N for every α < λ then Mλ ≤ N .

Proof: By 3.7 and 3.8. �

Since λ-rich models are ω-rich, the following corollary of Theorem 3.5 is imme-
diate.

Corollary 3.10. In each connected component, all rich models have the same

theory and this is also the theory of λ-rich models, for any λ.

Let Trich be the set of sentences that hold in every rich model of the class K.
This is called the theory of the rich models and it is complete if and only if K is
connected (by Theorem 3.5).

4. Saturation

In this section we show that the saturation of rich models is an intrinsic prop-
erty of an amalgamation class. This generalizes Proposition 10 in [Lasc] or also
Theorem 2.5 of [KueLa]. We also isolate a natural property, which we call fullness,
and show that it does not hold in general (but it holds trivially in all connected
amalgamation classes). In the next section, we shall use this property to obtain
another characterization of the saturation of rich models.

We fix an inductive amalgamation class K.

Theorem 4.1. Assume that K is connected. The following are equivalent:

1. some λ-rich model is λ-saturated;

2. all λ-rich models are λ-saturated;

3. every λ-saturated model M |= Trich is λ-rich.

Proof: We prove 1 ⇒ 2. Let U be a λ-rich and λ-saturated model. Let V be
λ-rich. We shall use the fact that every morphism between U and V , or between
elementary substructures of them, is an elementary map. This a consequence of
Theorem 3.5. Let a ∈ V be a tuple of length < λ. Let x be a finite tuple of
variables. We claim that any type p(x, a) is realized in V . Let V ′ be a model of
cardinality ≤ λ such that a ∈ V ′ � V . Since K is connected there is an elementary
embedding f : V ′ → U . Let c be such that U |= p(c, fa). Let U ′ be a model
of cardinality ≤ λ such that fa, c ∈ U ′ � U . Let h : U ′ → V be an elementary
embedding that extends f−1 : U ′ → V . Then hc is the required realisation of
p(x, a) in V .

To prove 2 ⇒ 3, assume that M is a λ-saturated model such that M |= Trich.
Let U be a λ-rich model such that |U | > |M |. Let f : N → M be a morphism,
where |f | < |N | ≤ λ. We claim that f can be extended to a strong embedding.
Let M ′ be a structure of cardinality ≤ λ such that rng f ⊆ M ′ � M . As Trich is a
complete theory, U ≡ M ′ and, by λ-saturation, there is an elementary embedding
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g : M ′ → U . By λ-richness, there is a morphism h : N → U that extends gf :
N → U . As M is λ-saturated, there is an elementary embedding k : h[N ] → M .
Then k : U → M is a morphism, so kh : N → M is the required embedding.

Finally, the implication 3 ⇒ 1 is clear. �

An analogous theorem holds for saturated rich models. The proof is similar.

Theorem 4.2. Assume that K is connected. The following are equivalent:

1. some rich model is saturated;

2. all rich models are saturated;

3. every saturated model M |= Trich is rich.

When K is not connected these results hold within each connected component.

Theorem 4.3. Let λ be any infinite cardinal. The following are equivalent:

1. all λ-rich models are λ-saturated;

2. all rich models are saturated;

3. if U is rich, M ≡ U , and M ≤ U , then M � U ;

4. if U is rich, M ≡ U , then any morphism f : M → U is elementary.

Proof: The equivalence 3 ⇔ 4 is clear. We prove 1 ⇒ 3. Suppose that U is
rich. We may assume that λ ≤ |U | (otherwise we prove the claim for a sufficiently
large rich model in the same connected component as U ; then 3 follows easily).
By 1, U is saturated. Let A ⊆ M be any finite set and let M ′ be a countable
model such that A ⊆ M ′ � M . If we show that M ′ � U , M � U follows from the
arbitrariness of A. As M ′ ≡ U , by saturation there is a model M ′′ � U which is
isomorphic to M ′. Let f : M ′ → M ′′ be this isomorphism. Then f : U → U is a
morphism and, as U is rich, an elementary map by 3.5. So M ′ � U as required.
The implication 2 ⇒ 3 is similar.

Finally, we assume 4 and prove that if U is λ-rich then it is λ-saturated. As
λ is arbitrary, both 4 ⇒ 1 and 4 ⇒ 2 follow. Let p(x) be a type over some set
A ⊆ U of cardinality < λ. Fix some model M ≡A U of cardinality ≤ λ that
realizes p(x). By 4, there is an elementary embedding f : M → U over A. Hence
U realizes p(x). �

Corollary 4.4. Let U be a rich saturated model. Then for any M ≡ N ≡ U ,

every morphism f : M → N is elementary.

Proof: Let V be a rich model and let h : N → V be a strong embedding. Since
V and U are in the same connected component, they are elementarily equivalent.
Then h : N → V and hf : M → V are elementary by Theorem 4.3. It follows
that f : M → N is elementary. �

The models M and N in Theorem 4.3 and its corollaries are required to be
elementarily equivalent to some rich model. It would be convenient to replace this
condition by M, N |= Trich but this is not possible in general: the following exam-
ple shows that there may be models where Trich holds which are not elementarily
equivalent to any rich model.
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Example 4.5. The language L0 contains a binary predicate r and the constants
cn, for n ≤ ω. Consider the structures of signature L0 where the following axioms
hold:

0. ci 6= cj for every distinct i, j ≤ ω,
1. ∀x ¬r(x, x),
2. ∀x y [r(x, y) ↔ r(y, x)],
3. ∃x r(ci, x) → ¬∃x r(cj , x) for every distinct i, j ≤ ω.

These are graphs with countably many vertices named. The named vertices are,
with one possible exception, isolated. The inductive amalgamation class K is the
disjoint union of the classes Kn defined as follows for n ≤ ω. For n < ω, the
models of Kn are the graphs that satisfy Axioms 0–3 above and

a. ∃x r(cn, x), or
b. ¬∃x r(ci, x) for every i ≤ ω and there are exactly n triangles (i.e. cliques

of size 3).

The models of Kω satisfy Axioms 0–3 above and

a′. ∃x r(cω , x), or
b′. ¬∃x r(ck, x) and there are more than k triangles for every k < ω

Each Kn contains two sorts of graphs: those where cn is the unique constant
which is non-isolated and those where all constants are isolated. When all the
constants are isolated, the graph contains exactly n triangles if n < ω, or infinitely
many if n = ω.

The morphisms of Kn are the partial embeddings. In K there is no other
morphism than those between models in the same component Kn. It is easy to see
that K is an inductive amalgamation class. Since models in different components
are not elementarily equivalent K1 holds. To prove Ap it suffices to show that if
M1 and M2 are models in the same component Kn and M1 ∩ M2 is a common
substructure, then there is a model N that is a superstructure of both M1 and M2.
There are two cases. If Mi |= ∃x r(cn, x) for either one of i ∈ {1, 2}, we let N be
the free amalgam of M1 and M2 over M1 ∩ M2, that is, N = M1 ∩ M2 with no
extra edges added. Otherwise we take N = M1∪M2∪{a}, were a is a new vertex
and let rN := rM1 ∪ rM2 ∪ {〈cn, a〉, 〈a, cn〉}. Axioms 0–3 clearly hold in N .

We now describe a countable rich model U ∈ Kn. This is the disjoint union of
two structures Urand and Uisol: the first is a random graph, and the second contains
only isolated vertices. The structure Urand contains cn, while Uisol contains all
other constants and infinitely many other vertices.

The model U is rich. Let f : M → U be a morphism, with |f | < |M | ≤ |U |.
We can extend f to f ′ so that {ci : i ≤ ω} ⊆ dom f ′. Let f ′ = frand ∪ fisol where
rng frand ⊆ Urand and rng fisol ⊆ Uisol. We can extend frand to an embedding of
M r dom fisol into Urand, because this is a random graph. This proves that U is
rich.

Consider a structure M which is the disjoint union of a countable random
graph and a set of isolated vertices containing all the constants and infinitely
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many other elements. Since in M all constants are isolated, M is not elementary
equivalent to any rich model. But every formula ϕ true in M also holds in some
rich model U (e.g. if cn does not occur in ϕ, then ϕ will hold in U ∈ Kn).

The example above motivates the following definition.

Definition 4.6. An inductive amalgamation class is full if for every model M

the following holds: if each sentence true in M is also true in some rich model
Uϕ then some rich model U satisfies Th(M). Equivalently, K is full if in each
connected component only one completion of Trich is realized by a model.

The following theorem generalizes Theorems 4.1 and 4.3.

Theorem 4.7. Suppose K is full. Then the following are equivalent:

1. all rich models are saturated;

2. all λ-rich models are λ-saturated;

3. all saturated models M |= Trich are rich;

4. all morphisms between models M, N |= Trich are elementary;

5. M ≤ N ⇔ M � N , for any pair of models M, N |= Trich.

5. Model companions

In this section we review some results of [ChaPi], namely Section 3.4 and Propo-
sition 3.5 and we show that they hold in the context of inductive amalgamation
classes. We also prove that the existence of model companions is equivalent to
fullness of the class plus saturation of rich models.

We will work under the following condition

# If M, N |= Trich are models of K, then M ⊆ N ⇔ M ≤ N .

This is equivalent to requiring that any embedding f : M → N between
M, N |= Trich is strong, i.e. a morphism. In fact, as M is isomorphic to f [M ], then
f [M ] is in K and entails Trich, so # implies that f [M ] ≤ N . Then f : M → N is
the composition of two morphisms, hence a morphism.

Theorem 5.1. Assume that # holds in K. Then the following are equivalent:

1. Trich is model-complete;

2. all rich models are saturated and K is full.

Proof: By # we can replace ‘≤’ with ‘⊆’ in the last assertion of Theorem 4.7
and obtain

† if M, N |= Trich, then M ⊆ N ⇔ M � N .

Observe that † implies that K is full. �

We say that K is axiomatizable if there is a theory T0 such that M is a model
if and only if M |= T0. In this case, we also say that K is axiomatised by T0.

Theorem 5.2. Assume that K is axiomatised by a theory T0. Then T0,∀ = Trich,∀.
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Proof: Clearly T0 ⊆ Trich. Since every structure modelling T0 is a model, it is a
substructure of a rich model. Therefore Trich,∀ ⊆ T0,∀. �

Theorem 5.3. Assume that K is axiomatized by T0 and that # holds in K.

Then the following are equivalent:

1. Trich is model-complete;

2. Trich is the model companion of T0;

3. all rich models are saturated and K is full.

Conversely, if T0 has a model companion, then Trich is this model companion.

Proof: The equivalences 1 ⇔ 2 ⇔ 3 are clear by Theorems 5.1 and 5.2. To
prove the second claim, we assume T0 has a model companion Tc. To see that
Tc ⊆ Trich it suffices to observe that, by #, rich models are existentially closed, so
Tc holds in every rich model. To prove the converse inclusion, let M0 |= Tc be any
structure. We claim that M0 |= Trich. As T0,∀ = Trich,∀, every structure M |= Tc

is a substructure of a rich model. Conversely, every rich model is a substructure
of some M |= Tc, so we can construct a chain of substructures

M0 ⊆ U0 ⊆ M1 ⊆ U1 ⊆ M2 ⊆ . . . . . . ,

where Mi |= Tc and Ui is a rich model. It follows that Mi � Mi+1 and Ui � Ui+1.
Let

Uω :=
⋃

i∈ω

Ui =
⋃

i∈ω

Mi.

Then M0 � Uω. The union of a chain of rich models is ω-rich, so the theorem
follows. �

Remark 5.4. The requirement of fullness in 3 of Theorem 5.3 is necessary. All
rich models in Example 4.5 are saturated, but Trich is not model-complete: the
formula ∃y r(x, y) is not equivalent over Trich to any universal formula. In fact
∃y r(x, y) is not preserved under substructure: if U is a rich model in Kω then
U |= ∃y r(cω , y), but in the model M ⊆ U constructed at the end of Example 4.5
we have ¬∃y r(cω , y).
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