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K Y BE R NE T IK A — VO L UM E 4 6 ( 2 0 1 0 ) , NU MB E R 6 , P AGE S 9 4 8 – 9 5 2

EVERY UNIFORMLY ARCHIMEDEAN ATOMIC

MV–EFFECT ALGEBRA IS SHARPLY DOMINATING

Vladiḿır Olejček

Following the study of sharp domination in effect algebras, in particular, in atomic

Archimedean MV-effect algebras it is proved that if an atomic MV-effect algebra is uniformly

Archimedean then it is sharply dominating.
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1. INTRODUCTION AND BASIC DEFINITIONS

Effect algebras were introduced by D. J. Foulis and M. K. Bennett in 1994 [2] for
modeling unsharp measurements in a Hilbert Space. In a general form they are very
natural structures to be carriers of states or probability measures when events are
unsharp, fuzzy or imprecise and some of them may be mutually non-compatible.
Simultaneously, F. Kôpka and F. Chovanec [7, 8] introduced in a sense equivalent
structures called D-posets.

Definition 1.1. (Foulis and Bennett [2]) A partial algebra (E; ⊕, 0, 1) is called
an effect algebra if 0, 1 are two distinct elements of E and ⊕ is a partially defined
binary operation on E which satisfies the following conditions for any x, y, z ∈ E:

(i) x ⊕ y = y ⊕ x if x ⊕ y is defined,

(ii) (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) if one side is defined,

(iii) for every x ∈ E there exists a unique y ∈ E such that x⊕ y = 1 we put x′ = y,

(iv) if 1 ⊕ x is defined then x = 0.

We often denote the effect algebra (E; ⊕, 0, 1) briefly by E. On every effect
algebra E a partial order ≤ and a partial binary operation ⊖ can be introduced as
follows:

x ≤ y and y ⊖ x = z iff x ⊕ z is defined and x ⊕ z = y

If E, with the partial order ≤ defined above, is a lattice (a complete lattice) then
(E; ⊕, 0, 1) is called a lattice effect algebra (a complete lattice algebra).
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Lattice effect algebras generalize orthomodular lattices and MV-algebras. A lat-
tice effect algebra is called an MV-effect algebra iff every two elements x, y ∈ E are
compatible, i. e. x ∨ y = x ⊕ (y ⊖ (x ∧ y)) [6].

Recall that a minimal non-zero element of an effect algebra E is called an atom

and E is called atomic if under every non-zero element of E there is an atom.
In an effect algebra E elements x and non x, denoted by x′, need not be disjoint.

The notions of a sharp element and sharply dominating effect algebra are due to S.
P. Gudder ([3, 4]). An element w of an effect algebra E is called sharp, if w∧w′ = 0,
and E is called sharply dominating if for every x ∈ E there exists the smallest sharp
element w among all the sharp elements v with the property x ≤ v.

For an element x of an effect algebra E we write ord(x) = ∞ if nx = x⊕x⊕· · ·⊕x
(n-times) exists for every positive integer n and we write ord(x) = nx if nx is the
greatest positive integer such that nxx exists in E (nx is called isotropic index of x).
An effect algebra is called Archimedean if ord(x) < ∞ for all x ∈ E.

Definition 1.2. A direct product
∏

{Ek | k ∈ H} of effect algebras Ek is the Carte-
sian product with ⊕, 0, 1 defined “coordinate-wise”, i. e. (ak)k∈H ⊕ (bk)k∈H exists
iff ak ⊕ bk is defined for every k ∈ H and then (ak)k∈H ⊕ (bk)k∈H = (ak ⊕k bk)k∈H .
Moreover, 0 = (0k)k∈H , 1 = (1k)k∈H .

A sub-direct product of a family {Ek}k∈H of lattice effect algebras is a sub-lattice
sub-effect algebra Q (i. e. Q is simultaneously a sub-lattice and a sub-effect algebra)
of the direct product

∏

{Ek | k ∈ H} such that each restriction of the natural
projection prk to Q is onto Ek.

In [5] the following example of an atomic Archimedean MV-effect algebra that is
not sharply dominating is given.

Example 1.3. Let M be a direct product of countably many finite chains Cn =
0, 1, . . . , n (and consequently MV-effect algebras). Then M =

∏

∞

n=1 {0, 1, . . . , n}
with coordinate-wise defined partial operation ⊕ is a complete (consequently Archi-
medean by [9, Theorem 3.3]) atomic MV-effect algebra. Consider the subset E of M
as E = F0∪F1. F0 is the set of all sequences of M with all but finitely many of even
coordinates equal to 0 and all but finitely many of odd coordinates constant. F1 is
the set of all sequences of M with all but finitely many of even coordinates equal to
n and all but finitely many of odd coordinates smaller than n by a constant.

The essential property of the MV-effect algebra E in the above example is that the
set of isotropic indices of its elements is unbounded. It leads to an idea of a “bounded
isotropic index” for all elements of E defined here as a “uniformly Archimedean”
MV-effect algebra. Thereafter we prove that such an atomic MV-algebra is sharply
dominating.

2. MAIN RESULT

Definition 2.1. An effect algebra E is called uniformly Archimedean if there is a
positive number m ∈ N such that for every non-zero element x ∈ E the isotropic
index nx of x does not exceed m.
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Other terms playing key role in the proof of the following Theorem are local
versions of “atom” and “isotropic index” in an MV-effect algebra E. According
to [1] and [10], E can be isomorfically embedded into a product M of intervals
{0, 1, . . . , np}, i. e.

E ∼= Q ⊆ M =
∏

{{0, 1, . . . , np} | p ∈ A}

where A is the set of all atoms of E. Every element x of E is represented as a
function x : A → N = {0, 1, . . .}, with the pth coordinate denoted by xp.

Definition 2.2. Let x be an element of an MV-effect algebra E and let p be an
atom in E with the isotropic index np, satisfying p ≤ x. Denote qp the greatest
common divisor (GCD) of the numbers xp and np. The element qpp is called local

atom with respect to the atom p and to the element x. The number rp = np/qp is
called local isotropic index of the atom p with respect to the element x. Note that if
xp = 0 then qp = np and rp = 1. Similarly, if xp > 0 then qpp ≤ xp ≤ npp. In both
cases rp ≥ 1.

Theorem 2.3. Every uniformly Archimedean atomic MV-effect algebra is sharply
dominating.

P r o o f . Assume that E is a uniformly Archimedean atomic effect algebra repre-
sented as above. Consider an arbitrary element x ∈ E. Obviously, y is a sharp
element of M iff for every p ∈ A, yp = 0 or yp = np. Hence, the element y with

yp =

{

0 if xp = 0

np if xp > 0

is the smallest element in M dominating x. It is enough to prove that y belongs
to E.

In the following construction we will apply a simple version of the Euclidean
algorithm for counting the greatest common divisor of two positive integers a, b.
Define c0 = a, c1 = b and

cn+2 = max(cn+1, cn) − min(cn+1, cn) (1)

for n = 0, 1, 2, . . ..
It is well known that after finitely many steps of the above construction zero out-

put is obtained. The last non-zero output preceding the zero-output is the greatest
common divisor d of the integers a, b. Note that if the algorithm continues, 0 is
followed again by d and the pattern d− 0− d repeats ad infinitum. Apply the same
algorithm for the inputs x, 1 ∈ E, i. e. denote t(0) = 1E , t(1) = x and

t(n+2) = (t(n+1) ∨ t(n)) ⊖ (t(n+1) ∧ t(n)) (2)

for n = 0, 1, 2, . . .. For every p ∈ A, np and xp are the two inputs and the last
non-zero output qp is GCD of the numbers np and xp. Then element qpp is the local
atom with respect to the atom p and to the element x.
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The operations in (2) are lattice and MV-effect algebra operations. Thus, every
output in each step is an element of E. Since the values of np are bounded, after

finitely many, say L, steps of the algorithm, for every p ∈ A, the output t
(L)
p is qp or

0. Moreover, for every p ∈ A, at least one of the outputs t(L), t(L+1) does not equal
0. It follows that the join t = t(L) ∨ t(L+1) of the outputs after L and L + 1 steps
belongs to E and all its coordinates are equal to the local atoms coefficients qp.

Define z(1) ∈ M as z(1) = x ∧ t. Then z(1) ∈ E and

z(1)
p =

{

0 if xp = 0

qp if xp > 0.

Note that the zero element in E is a sharp element, thus, we can assume that x 6= 0,

whence z(1) is not identically equal to 0. Denote m1 = min{rp | p ∈ A, z
(1)
p > 0}

and put z(2) = z(1) ∧ (m1z
(1))′. Then z(2) ∈ E and

z(2)
p =

{

0 if rp ≤ m1

qp if rp > m1.

Continue by induction. Suppose z(i), mi were already constructed by the induction,

i. e. z(i) ∈ E, z(i) is not identically equal to 0 and mi = min{rp | p ∈ A, z
(i)
p > 0}.

Put z(i+1) = z(i) ∧ (miz
(i))′ and mi+1 = min{rp | p ∈ A, z

(i)
p > 0}. Then z(i+1) ∈ E

and

z(i+1)
p =

{

0 if rp ≤ mi

qpp if rp > mi.

Note that z
(i)
p > 0, i ≥ 3 for some p implies z

(i+1)
p < z

(i)
p < · · · < z

(2)
p < z

(1)
p .

Since E is uniformly Archimedean, the set {np | p ∈ A} is bounded, hence finite.
Consequently the set {rp | p ∈ A} is finite. Hence, there is an index k + 1 such that
z(k+1) is, and z(k) is not identically equal to 0. We will show that

y =
∨

{miz
(i) | i = 1, 2, . . . , k}.

Let p ∈ A. If xp = 0 then z
(i)
p = 0 for all i = 1, 2, . . . , k, whence yp = 0. If 0 < xp ≤

m1 then z
(1)
p = qp and z

(i)
p = 0 for all i = 2, . . . , k. Hence yp = m1z

(1)
p = rpqp = np.

Finally, for any j = 2, . . . , k, if mj−1 < xp ≤ mj we have z
(i)
p = qp for all i, i ≤ j

and z
(i)
p = 0 for all i, i > j. Hence yp = max{miz

(i)
p | i = 1, 2, . . . , j} = mjz

(j)
p =

rpqp = np. �
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[8] F. Kôpka and F. Chovanec: D-posets. Math. Slovaca 44 (1994), 21–34.
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Vladimı́r Olejček, Department of Mathematics, Faculty of Electrical Engineering and In-

formation Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava.
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