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K Y BE R NE T IK A — VO L UM E 4 7 ( 2 0 1 1 ) , NU MB E R 1 , P AGE S 1 5 – 3 7

ON THE COMPOUND POISSON-GAMMA

DISTRIBUTION

Christopher S. Withers and Saralees Nadarajah

The compound Poisson-gamma variable is the sum of a random sample from a gamma
distribution with sample size an independent Poisson random variable. It has received
wide ranging applications. In this note, we give an account of its mathematical properties
including estimation procedures by the methods of moments and maximum likelihood.
Most of the properties given are hitherto unknown.
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1. INTRODUCTION

Suppose that the number of times it rains in a given time period, say N , has a
Poisson distribution with mean λ, so that

P (N = i) = exp(−λ) λi/i! = pi

say. Suppose also that when it rains the amount of rain falling has a gamma distri-
bution,

R ∼ αg(αx, ρ) = αρxρ−1 exp (−αx) /Γ(ρ)

for x > 0 with known shape parameter ρ. Suppose too that the rain falling with the
time period are independent of each other and of N . Then the total rainfall in the
time period is:

S =

N∑

i=1

Ri, (1.1)

where {Ri} are independent random variables with distribution that of R. Suppose
now we observe the rainfall for n such periods, say S1, . . . , Sn.

The model given by (1.1) is known as the Poisson-gamma model. It was proposed
on page 223 of Fisher and Cornish [5] for rainfall. Many authors have studied the
Poisson-gamma model since then. For the case ρ = 1, (that is exponential rainfall)
the maximum likelihood estimates are studied in Buishand [1], Ozturk [14] and
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Revfeim [15]. A moments estimate and allowance for seasonality are given in Revfeim
[15]. Hadjicostas and Berry [9] consider estimation based on Markov Chain Monte
Carlo. Xia et al. [19] consider estimation based on a combination of maximum
hierarchical-likelihood and quasi-likelihood.

Several generalizations of the Poisson-gamma model have also been proposed.
Nahmias and Demmy [13] propose a logarithmic version with applications to model
leadtime demand. Fukasawa and Basawa [6] propose a state-space version. Chris-
tensen et al. [3] propose a hierarchical version with applications to model environ-
mental monitoring. Henderson and Shimakura [10] propose a version to account for
between-subjects heterogeneity and within-subjects serial correlation. Galue [7] pro-
poses a generalization involving the intractable H function. Most recently, Choo and
Walker [2] have proposed a multivariate version with applications to model spatial
variations of disease.

Applications of the Poisson-gamma model have been wide ranging. Among oth-
ers, it has been used to model radiocarbon-dated depth chronologies, gravel bedload
velocity data, catch and effort data, distribution of micro-organisms in a food ma-
trix, numbers of ticks on red grouse chicks, regional organ blood flow, pluviometric
irregularity for the Spanish Mediterranean coast, identification of crash hot spots,
multiple lesions per patient, recruitment in multicentre trials, BSE in western France,
human capital distribution, mortality data, insurance, mall visit frequency, pump-
failure data, mine equipment injury rates, the influence of gamete concentration on
sperm-oocyte fusion and two-stage cluster sampling.

It appears however that many mathematical properties of (1.1) have not been
known. The purpose of this note is to provide an account of mathematical properties
of the Poisson-gamma distribution including estimation issues. Except possibly for
the cumulants and some of the estimation procedures, the results given are new
and original. It is expected that this note could serve as a source of reference and
encourage further research with respect to the Poisson-gamma model.

Section 2 gives various representations for the moment generating function, mo-
ments and cumulants of S. The representations for the moment generating function
and the moments involve the Bell polynomial.

Note that the probability of no rain in any such period is P (S = 0) = p0 =
exp(−λ) = 1− q0 say, and the amount of rain in any such period given that it does
rain is: S+ = S|(S > 0) with probability density function

f+
θ

(x) = q−1
0

∞∑

i=1

pi αg (αx, iρ) = {exp (λ) − 1}−1 exp (−αx) x−1 rρ (νxρ)

for θ = (λ, α, ρ) and x > 0, where ρ may or may not be known, ν = λαρ and

rρ(y) =

∞∑

i=1

yi/ {i!Γ(iρ)} . (1.2)

In terms of the Dirac δ-function, S has probability density function

fθ(x) = p0δ(x) + q0f
+
θ

(x) = exp (−λ) δ(x) + exp (−λ − αx) x−1rρ (ν xρ) . (1.3)
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Fig. 1.1. The truncated sum in (1.4) versus i0 for y = 1, 2, 5, 10 and ρ = 1.

For ρ = 1 this distribution was given by Le Cam [12] and equations (A2)-(A4) of
Buishand [1]. See also Revfeim [16]. The function rρ(y) converges quickly. Figure
1.1 shows how the truncated sum

i0∑

i=1

yi/ {i!Γ(iρ)} (1.4)

increases with respect to i0 for y = 1, 2, 5, 10 and ρ = 1. We can see that only a few
terms are needed to reach convergence even for y as large as 10.

Some exact expressions and expansions for rρ(y) are given in Section 3. Some
expansions for the probability density, cumulative distribution and the quantile func-
tions of S are also given in Section 3. These extend expansions for the percentiles
of S for the case ρ = 1 given by Fisher and Cornish [5].

In Appendix A, we show in a general setting that the unconditional maximum
likelihood estimates θ̂ are more efficient than the maximum likelihood estimates θ̂c

that condition on the number of zeros in the sample, say M = n − m. For our
problem this inefficiency of conditioning is particularly poor when λ is small, that
is when it seldom rains.

Sections 4 and 5 compare the maximum likelihood estimates with the maximum
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likelihood estimates conditioning on wet periods, and the maximum likelihood esti-
mates with the moments estimates. Both sections assume that ρ is known, so that
the unknowns are θ = (λ, α)′. The asymptotic relative efficiency of θ̂c to θ̂ is plot-
ted in Section 4. An exact expression and an expansion for the associated Fisher
information are also given in Section 4.

Section 6 extends most of the results of Sections 4 and 5 to the case, where ρ is
unknown. When considering moments estimates in Sections 5 and 6, we also give
their asymptotic distributions. Finally, Section 7 illustrates the results of Sections
4 and 5 using two real rainfall data sets.

The advantage of choosing R to be gamma is that an explicit form is available for
fθ, the probability density function of S, and so the maximum likelihood estimates
may be more easily computed. This is not the case for R lognormal or Weibull (both
positive random variables) since their convolutions do not have closed forms, but it
is the case for R ∼ N (µ, σ2), giving

f+
θ

(x) = (1 − p0)
−1

∞∑

i=1

piφ
(
(x − iµ) i−1/2σ−1

)
i−1/2σ−1

= β

∞∑

i=1

bi exp (−c/i) i−1/2/i!

for β = {exp(λ) − 1}−1 exp(µx)σ−1(2π)−1/2, b = λ exp(−µ2σ−2/2), c = x2σ−2/2
and φ(·) the standard normal probability density function. However, this rules out
applications such as rainfall, where R may not be negative.

Throughout, we shall write Cn ≈
∑∞

r=0 crn to mean that that for i ≥ 1 under

suitable regularity conditions Cn −
∑i−1

r=0 crn converges to zero as n → ∞. We shall
also write ω̇(·) to denote the first derivative of ω(·).

2. MOMENT PROPERTIES

Theorem 2.1 gives E exp(tS), ESr and µr(S) = E(S −ES)r in terms of the rth Bell
polynomial

Br(y) =

r∑

k=1

Brk(y)

for r ≥ 1. The partial exponential Bell polynomials {Brk} are tabled on page 307
of Comtet [4]. For y = (y1, y2, . . .), Br(y) may be defined by

exp

{
∞∑

i=1

yit
i/i!

}
= 1 +

∞∑

r=1

Br(y)tr/r!. (2.1)

Theorem 2.2 gives the cumulants of S.

Theorem 2.1. The moment generating function, raw moments and the central mo-
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ments of S are given by

E exp(tS) = exp

{
∞∑

i=1

yi(t/α)i/i!

}
, (2.2)

ESr = α−rBr (λρ1, λρ2, . . .) , (2.3)

µr(S) = α−rBr (0, λρ2, λρ3, . . .) (2.4)

for yi = λρi and ρi = [ρ]i = ρ(ρ + 1) · · · (ρ + i − 1). In particular,

µ2α
2 = y2 = λρ2,

µ3α
3 = y3 = λρ3,

µ4α
4 = y4 + 3y2

2 = λρ4 + 3λ2 ρ2
2,

µ5α
5 = y5 + 10y2y3 = λρ5 + 10λ2ρ2ρ3,

µ6α
6 = y6 + 15y2y4 + 10y2

3 + 15y3
2 = λρ6 + 5λ2

(
3ρ2ρ4 + 2ρ2

3

)
+ 15λ3ρ3

2,

µ7α
7 = y7 + 21y2y5 + 35y3y4 + 105y2

2 y3 = λρ7 + 7λ2 (3ρ2ρ5 + 5ρ3ρ4)

+105λ3ρ2
2ρ3,

ESα = y1 = λρ,

ES2α2 = y2 + y2
1 = λρ2 + λ2ρ2,

ES3α3 = λρ3 + 3λ2ρ1ρ2 + λ3ρ3
1,

ES4α4 = λρ4 + λ2
(
4ρ1ρ3 + 3ρ2

2

)
+ 6λ3ρ2

1ρ2 + λ4ρ4
1,

ES5α5 = λρ5 + 5λ2 (ρ1ρ4 + 2ρ2ρ3) + 5λ3
(
2ρ1ρ3 + 3ρ1ρ

2
2

)
+ 10λ4ρ3

1ρ2 + λ5ρ5
1,

ES6α6 = λρ6 + λ2
(
6ρ1ρ5 + 15ρ2ρ4 + 10ρ2

3

)
+ 15λ3

(
ρ2
1ρ4 + 4ρ1ρ2ρ3 + ρ3

2

)

+5λ4
(
4ρ3

1ρ3 + 9ρ2
1ρ4

)
+ 15λ5ρ4

1ρ2 + λ6ρ6
1,

ES7α7 = λρ7 + 7λ2 (ρ1ρ6 + 3ρ2ρ5 + 5ρ3ρ4)

+7λ3
(
3ρ2

1ρ5 + 15ρ1ρ2ρ4 + 10ρ1ρ
2
3 + 15ρ2

2ρ3

)

+35λ4
(
ρ3
1ρ4 + 6ρ2

1ρ2ρ3 + 3ρ1ρ
3
2

)

+35λ5
(
ρ4
1ρ3 + 3ρ3

1ρ
2
2

)
+ 21λ6ρ5

1ρ2 + λ7ρ7
1.

P r o o f . Note E exp(tS)|N = uN for u = (1 − t/α)−ρ = E exp(tG/α) and G ∼
gamma(ρ), a gamma random variable with unit scale parameter. So,

E exp(tS) =

∞∑

N=0

(1 − t/α)−Nρ λN exp(−λ)

N !

= exp
{
λ

[
(1 − t/α)

−ρ − 1
]}

= exp

{
λ

∞∑

i=1

(
−ρ

i

)
(−1)i(t/α)i

}
,
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so (2.2) follows. Next (2.3) follows by a direct application of the partial exponential
Bell polynomials defined by (2.1). Finally,

E exp {t (S − ES)} = exp

{
∞∑

i=2

yi(t/α)i/i!

}
,

so (2.4) follows. �

Theorem 2.2. The cumulants of S are given by

κr = κr(S) = λα−r[ρ]r. (2.5)

P r o o f . Follows from (2.2). �

3. EXPANSIONS

In this section, we provide various expansions. We begin with rρ(y) of (1.2). Theo-
rem 3.1 derives exact expressions for rρ(y). Some expansions for rρ(y) for large y are
given by Theorem 3.2. Finally, Theorem 3.3 provides expansions for the probability
density, cumulative distribution and the quantile functions of S.

Theorem 3.1. We have

rk(y) = kRk

(
y/kk

)
(3.1)

for k = 1, 2, . . ., where

Rk(z) = z

(
∂

∂z

)
0Fk

(
;
1

k
,
2

k
, . . . ,

k − 1

k
, 1; z

)

and 0Fq is the hypergeometric function defined by

0Fq (; τ1, τ2, . . . , τq; z) =
∞∑

i=0

1

[τ1]i [τ2]i · · · [τq]i

zi

i!
,

see Section 9.14 of Gradshteyn and Ryzhik [8]. In particular,

r1(y) = y
∞∑

i=0

yi/ {i!(i + 1)!} = zI1(z)/2

at z = 2y1/2, where Iν(·) is the modified Bessel function. So, if ρ = 1, S+ has
probability density function

f+
θ

(x) = {exp(λ) − 1}−1
exp (−αx)x−1zI1(z)/2 (3.2)

at z = 2(λαx)1/2 and S has (unconditional) probability density function exp(−λ)
δ(x) + exp(−λ − αx) x−1zI1(z)/2, where δ is the Dirac function.
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P r o o f . Note that

0Fk

(
;
1

k
,
2

k
, . . . ,

k − 1

k
, 1; z

)
=

∞∑

i=0

1

[1/k]i[2/k]i · · · [(k − 1)/k]i[1]i

zi

i!

=

∞∑

i=0

(
ki

)k

ki[1/k]iki[2/k]i · · ·ki[(k − 1)/k]iki[1]i

zi

i!

=
∞∑

i=0

(
kk

)i

(ki)!

zi

i!
,

so

Rk(z) =
∞∑

i=0

(
kk

)i

(ki)!

zi

(i − 1)!
.

The result in (3.1) follows. �

Equation (3.2) of Theorem 3.1 was given by Revfeim [15] (with µ = α−1, λ = ρT )
but the first term omitted. Consequently, the likelihood derivatives are wrong by
O(exp(−λ)) which is negligible for λ large.

Theorem 3.2. For large y,

rρ(y) ≈ exp {(ρ + 1)ξ}
{
ρξ(2π)−1(ρ + 1)−1

}1/2
∞∑

i=0

eiξ
−i,

where ξ = (yρ−ρ)1/(ρ+1), and ei is given by equation (3.3) in Withers and Nadarajah
[18, available on-line]. In particular, e0 = 1, e1 = −(ρ + 1)−1/24, and e2 = {(1 +
ρ−1)2/9 − 23(ρ + 1)−2/28}/32. So,

log rρ(y) = (ρ + 1)ξ + O(log ξ) = ayb + O(log y) (3.3)

for a = (ρ + 1)ρ−ρ/(ρ+1) and b = 1/(ρ + 1).

P r o o f . Follows by Example 4.2 of Withers and Nadarajah [18], available on-
line. �

Revfeim [15] conjectures that the function

Λρ(y) =

∞∑

i=0

yρ(i+1)/ {i!Γ[ρ(i + 1) + 1]}

satisfies ∂y log Λρ(y) ≈ (ρ/y)b and so log Λρ(y) ≈ (ρ + 1)(y/ρ)ρb, obtained by inte-
gration, as y → ∞ for b = (ρ + 1)−1. Since

rρ (yρ) =

∞∑

i=0

yρ(i+1)/ {(i + 1)!Γ [ρ(i + 1)]} ,



22 C. S. WITHERS, S. NADARAJAH

we have rρ(y) = ρΛρ(y
1/ρ), so this suggests that

log rρ(y) = log ρ + log Λρ

(
y1/ρ

)
≈ log ρ + ayb (3.4)

as y → ∞, where a = (ρ + 1)ρ−ρb. Equation (3.3) in Theorem 3.2 confirms (3.4).

Theorem 3.3. Let X = κ
−1/2
2 (S − κ1), where κr = κr(S). Then, in terms of Φ,

the standard normal cumulative distribution function, and φ, we have

P (X ≤ x) = Pλ(x) ≈ Φ(x) − φ(x)

∞∑

r=1

λ−r/2 hr(x), (3.5)

Φ−1 (Pλ(x)) ≈ x −
∞∑

r=1

λ−r/2fr(x), (3.6)

P−1
λ (Φ(x)) ≈ x +

∞∑

r=1

λ−r/2gr(x), (3.7)

Ṗλ(x) = pλ(x) ≈ φ(x)

{
1 +

∞∑

r=1

hr(x)

}
, (3.8)

where hr, hr, fr and gr are polynomials in x and {lr = (ρ2 + ρ)−r/2[ρ]r} given by
Section 3 of Withers [17] with l1 = l2 = 0. In particular, in terms of the Hermite
polynomials Her(x) = φ(x)−1 (−d/dx)r φ(x),

h1 = f1 = g1 = l3He2/6,

h2 = l4He3/24 + l23He5/72,

hr(x) =

r∑

j=1

Her+2j−1(x)crj/j!, (3.9)

and

hr(x) =

r∑

j=1

Her+2j(x)crj/j!, (3.10)

where

crj =
∑{

lr1
· · · lrj

/ (r1! · · · rj !) : r1 ≥ 3, . . . , rj ≥ 3, r1 + · · · + rj = r + 2j
}

=
(
ρ2 + ρ

)−r/2−j ∑
{(

ρ + 1 + s1

s1 + 2

)
· · ·

(
ρ + 1 + sj

sj + 2

)

: s1 ≥ 1, . . . , sj ≥ 1, s1 + · · · + sj = r

}
.

The number of terms in this last sum is the number of partitions of r into j parts
allowing for permutations, that is Nrj =

(
r−1
j−1

)
.
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P r o o f . By (2.5), κr = κr(S) = λα−r [ρ]r, so X = κ
−1/2
2 (S − κ1) satisfies κr(X) =

λ1−r/2lr for r ≥ 3. So, the expansions of Fisher and Cornish [5] apply for large λ to
Pλ(x) = P (X ≤ x) and its probability density function pλ(x). �

Suppose ρ = 1. Then crj = 2−r/2−j
(
r−1
j−1

)
so (3.9), (3.10) give hr and hr explicitly.

Also {gr(x), 1 ≤ r ≤ 6} are given by m1/2I, mII, . . . on pages 223-224 of Fisher and
Cornish [5] and tabled for various levels on page 223.

Since S has a discrete component, it would seem preferable to apply (3.8) to
the probability density function of its continuous component, S+, rather than for S

itself, that is to X+ = κ
−1/2
2 (S+ − κ1). This can be justified since it is easy to show

that κr(S+) = κr +O(exp(−λ)) as λ → ∞, so for Pλ, pλ the cumulative distribution
and probability density functions of X+, O(exp(−λ)) should be added to the right
hand sides of (3.5) – (3.8).

The moments of S+ are related to those of S by E(S+)r = ESr/q0. Also

E (S+ − ES+)
r

=

r∑

i=0

(
r

i

)
(E (S+))

r−i
E

(
Si

+

)

=
r∑

i=0

(
r

i

)
(λρ)r−i αi−rqi−r−1

0 E
(
Si

)

=

r∑

i=0

(
r

i

)
(λρ)

r−i
αi−rqi−r−1

0 E
(
(S − E(S) + E(S))

i
)

=

r∑

i=0

i∑

j=0

(
r

i

)(
i

j

)
(λρ)

r−j
αj−rqi−r−1

0 µj (S)

for r ≥ 1.

4. THE MAXIMUM LIKELIHOOD ESTIMATE

Consider a random sample of size n from S with probability density function (1.3).
Let the positive values be S1, . . . , Sm, so there are M = n − m zeros. We assume
m > 0. We also assume that ρ is known - an assumption that is maintained in
Section 5.

Here, we consider unconditional maximum likelihood estimates, θ̂, and condi-
tional maximum likelihood estimates, θ̂c. From standard maximum likelihood esti-
mation theory,

n1/2
(
θ̂ − θ

)
L
→ N

(
0, I(θ)−1

)
(4.1)

and

m1/2
(
θ̂c − θ

)
L
→ N

(
0, I+(θ)−1

)
(4.2)

as m, n → ∞, where, setting ∂θ = ∂/∂θ,

I(θ) = E∂θ log fθ(S)∂′

θ
log fθ(S),

I+(θ) = E∂θ log f+
θ

(S+) ∂′

θ
log f+

θ
(S+) .
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Then by Appendix A,

I(θ) = p0q
−1
0

(
10

00

)
+ q0I

+(θ). (4.3)

Since qI+(θ)−1 > I(θ)−1, θ̂ is more efficient θ̂c.

Theorem 4.1 provides the unconditional maximum likelihood estimates for θ.

Theorem 4.1. Set ν = λαρ, ∆(y) = ∂y log rρ(y), u(x) = xρ∆(ν xρ), U(ν) = u(S),
Ui(ν) = u(Si), S+ the sample mean of the {Si}, U is the sample mean of the {Ui},

and W (ν) = νU(ν). Then, the maximum likelihood estimates, θ̂, are given by

α̂ =
(
ρ/S+

)
W (ν̂) , λ̂ = Q−1 (2m) , (4.4)

where Q−1(·) is the inverse function of Q(λ) = (n−2m)/{exp(λ)−1}+(m/λ)W (ν̂).
Furthermore, ν̂ satisfies

F (ν̂) = 0, (4.5)

where F (ν̂) = ν̂ − {Q−1(2m)}(ρ/S+)ρW ρ(ν̂).

P r o o f . Note that m ∼ Bi(n, 1 − exp(−λ)) and P (m = 0) = exp(−nλ). The
likelihood is

L =

(
n

m

)
pn−m
0 qm

0

m∏

i=1

f+
θ

(Si) .

Recall that p0 = 1 − exp(−λ) = 1 − q0. So, the maximum likelihood estimates,

θ̂ = (λ̂, α̂), satisfy

αρ
m∑

i=1

Sρ
i

ṙρ (λαρSρ
i )

rρ (λαρSρ
i )

= 2m −
n − 2m

exp(λ) − 1
(4.6)

and

λραρ−1
m∑

i=1

Sρ
i

ṙρ (λαρSρ
i )

rρ (λαρSρ
i )

=

m∑

i=1

Si. (4.7)

Equations (4.6) and (4.7) reduce to

(m/λ)W (ν) = 2m −
n − 2m

exp(λ) − 1

and

(mρ/α)W (ν) = mS+,

respectively, so (4.4) follows. Finally, (4.5) follows by using ν̂ = λ̂α̂ρ and (4.4). �

Theorem 4.2 checks that θ = p limn→∞ θ̂ is in fact a solution of (4.4).
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Theorem 4.2. We have θ̂ = θ satisfying (4.4) in the limit as n → ∞.

P r o o f . For a general function g, Eg(S) = p0g(0)+q0Eg(S+), so ES+ = λq−1
0 ρα−1;

also EU(ν) = {exp(λ) − 1}−1∂νL(ν, α) for

L(ν, α) =

∫ ∞

0

x−1 exp(−αx) rρ (νxρ) dx = exp (λ) − 1 at λ = να−ρ.

So, ∂νL(ν, α) = q−1
0 λν−1, and the result follows. �

The information matrix corresponding to θ̂ is given by Theorem 4.3 in terms of
the function:

K (λ, ρ) =

∫ ∞

0

exp
{
− (y/λ)

1/ρ
}

ṙρ(y)2rρ(y)−1y dy. (4.8)

Theorem 4.4 provides an expansion for K(λ, ρ) for small λ.

Theorem 4.3. The information matrix for f+(θ) is given in terms of Lcd = E Sc
+

U(ν)d by If+
(θ) = B + bL02, where B and b are 2 × 2 matrices given by:

B11 = q−2
0 − 2q−1

0 λ−1νL01,

B22 = L20 − 2ρα−1νL11,

B12 = q−1
0

(
L10 − ρα−1νL01

)
− λ−1νL11,

and
b11 = λ−2ν2,

b22 = ρ2α−2 ν2,

b12 = ρα−1λ−1ν2.

The required {Lcd} are:

L10 = q−1
0 α−1λρ, (4.9)

L20 = q−1
0 α−2λρ {1 + ρ(λ + 1)} , (4.10)

L01 = EU(ν) = q−1
0 α−ρ/ {exp(λ) − 1} , (4.11)

L11 = −{exp(λ) − 1}−1
∂ν∂α L(ν, α) = q−1

0 {exp(λ) − 1}−1
ρα−ρ−1,(4.12)

L02 = {exp(λ) − 1}−1
ρ−1ν−2K(λ, ρ) (4.13)

for K(λ, ρ) of (4.8).

Theorem 4.4. We have

K(λ, ρ) ≈ ρ

∞∑

j=0

a−1
j g∗j εj+1,
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where

ε = λρ2

, aj = Γ(ρ)−1Γ ((j + 1)ρ) , bj = aj/(j + 1),

Ωa =

∞∑

j=1

ajx
j/j!, Ωb =

∞∑

j=1

bjx
j/j!,

G(x) = ṙρ(x)2r−1
ρ (x)x = Γ(ρ)−1 (1 + Ωa)

2
(1 + Ωb)

−1
,

gj = G(j)(0)/j!, g∗j = gj/g0.

So,

g∗j = (j!)−1

j∑

r=0

(
j

r

)
drej−r,

where dr = 2ar + Cr(2,a), er = Cr(−1,b) and

Cr(λ, a) =
r∑

i=0

Bri(a)〈λ〉i

for 〈λ〉i = Γ(λ + 1)/Γ(λ + 1 − i) = λ(λ − 1) · · · (λ − i + 1) and Bri(a) the partial
exponential Bell polynomial tabled on pages 307–308 of Comtet [4].

P r o o f . Follows by Theorem 2.1 of Withers and Nadarajah [18], available on-
line. �

A plot of K(λ, ρ) is given by Figure 4.1 for ρ = 0.5, 1, 2, 4, 8. Note that K was
computed for ρ = 1, 2, 4, 8 using Gauss–Laguerre quadrature formula. The transfor-
mation x = (y/λ)−1/ρ gives K in the required form K(λ, ρ) =

∫ ∞

0
exp(−x)f(x) dx;

here, f(x) = ṙρ(y)2rρ(y)−1ydy/dx. However, f was found to increase at a faster
than polynomial rate, necessitating the introduction of an exponential scaling fac-
tor: a second transformation z = (1 − c)x gives the more useful form K(λ, ρ) =∫ ∞

0 exp(−z)g(z) dz ≈
∑J

i=1 wig(zi), where g(z) = exp(−cx)f(x)dx/dz. The weights
and abscissae were provided by the NAG FORTRAN Library Routine D01BBF. The
constant, c, was set to 0.01. For ρ = 0.5 , K was found to be better approximated by
automatic integration with the NAG FORTRAN Library Routine D01AMF. Note
that K for ρ = 8 could not be estimated accurately for λ > 5, so the graph of K for
ρ = 8 has been truncated at λ = 5.

Solution of ν̂ of (4.5) can be done by Newton’s method:

ν̂ = ν∞, where νi+1 = νi − Ḟ (νi)
−1 F (νi) (4.14)

and ν0 is an initial estimate, obtained possibly by some prior knowledge. If ν0 =
ν +Op(n

−1/2), for example, if ν0 is the moments estimate of Section 5, then ν∗ = ν1

has the same asymptotic properties as ν̂ so no further iterations are necessary: let
θ

⋆ = P (ν∗), where θ̂ = P (ν̂) is given by (4.4), then

n1/2 (θ∗ − θ)
L
→ N

(
0, I(θ)−1

)
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Fig. 4.1. K(λ, ρ) of (4.8).

as n → ∞, so for t(θ) any function in R, a confidence interval for t(θ) of level
2Φ(x) − 1 + O(n−1) is given by

|t (θ) − t (θ∗)| ≤ n−1/2xv (θ∗)
1/2

,

where v(θ) = ṫ(θ)
′

I(θ)−1ṫ(θ), ṫ(θ) = ∂θt(θ) and I(θ) is given by (4.3), (4.9)-(4.13)
and (4.14). A test of H0 : t(θ) = t0 of the same level is given by accepting H0 if

|t(θ) − t0| ≤ n−1/2xv (θ∗)
1/2

.

Theorem 4.5 is the analogue of Theorem 4.1 for maximum likelihood estima-
tion conditional on m. Theorem 4.6 compares the unconditional and conditional
maximum likelihood estimates.

Theorem 4.5. The maximum likelihood estimates, θ̂c, conditional on m, are given
by

α̂ =
(
ρ/S+

)
W (ν̂) , λ̂ = Q−1

0 (W (ν̂)) ,

where Q−1
0 (·) is the inverse function of Q0(λ) = λ/{1 − exp(−λ)}.

P r o o f . The likelihood is

L ∝
m∏

i=1

f+
θ

(Si) .
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So, the maximum likelihood estimates, θ̂ = (λ̂, α̂), satisfy

αρ
m∑

i=1

Sρ
i

ṙρ (λαρSρ
i )

rρ (λαρSρ
i )

=
m

1 − exp(−λ)
(4.15)

and

λραρ−1
m∑

i=1

Sρ
i

ṙρ (λαρSρ
i )

rρ (λαρSρ
i )

=

m∑

i=1

Si. (4.16)

Equations (4.15) and (4.16) reduce to

(m/λ)W (ν) =
m

1 − exp(−λ)

and

(mρ/α)W (ν) = mS+,

respectively, so the result follows. �

Theorem 4.6. By (A.3) of Appendix A, the asymptotic relative efficiency of the

conditional maximum likelihood estimates θ̂c to the unconditional maximum likeli-
hood estimates θ̂ is given by:

ARE
(
λ̂c to λ̂

)
= q2

0

{
p0I

+
22 /δ+ + q2

0

}−1
= eλ, say, (4.17)

ARE (α̂c to α̂) =
{
p0 q−2

0 /I+
11 + 1

}
eλ = eα, say, (4.18)

where I+ = If+
(θ) of Theorem 4.3 and δ+ = det(I+). So, eα > eλ and neither

depend on α.

The eα and eλ are plotted against λ in Figures 4.2 and 4.3. Clearly, the conditional
maximum likelihood estimate for λ is very poor if λ is small, that is if it seldom rains
in each period. The same is true of the conditional maximum likelihood estimate
for the scale parameter α near ρ = 1, that is when the rainfall amounts {Ri} are
nearly exponential.

For exponential rainfall (that is ρ = 1) Buishand [1] gives the correct maximum
likelihood estimate, but Ozturk [14] and Revfeim [15] do not: in effect they take the
probability density function of S as q0f

+
θ

(x) and ignore the zeros in the data; see,
for example, equation (3) of Revfeim [15]. The error will be small if λ is large.

5. THE MOMENTS ESTIMATE

Theorem 5.1 provides the moments estimates of θ and its asymptotic distribution.

Theorem 5.1. If S and ϑ̂ are the sample mean and variance for a random sample
of size n from S, the moments estimators θ are given by

λ̃ =
(
1 + ρ−1

)
S

2
/ϑ̂, α̃ = (ρ + 1) S/ϑ̂ (5.1)
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Fig. 4.2. eλ of (4.17).

Fig. 4.3. eα of (4.18).
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with

n1/2
(
θ̃ − θ

)
L
→ N (0,V(θ))

as n → ∞, where V = V(θ) is given by

V11 = 2λ2 + λ
(
ρ2 + ρ + 2

)
ρ−1 (ρ + 1)

−1
,

V12 = −(2/α)
{
λ + ρ−1 (ρ + 1)

−1
}

,

V22 = (1/α)2
{
2 + λ−1 (ρ + 3)ρ−1 (ρ + 1)−1

}
.

P r o o f . It follows from Theorem 2.2 that ES = λρ/α, var S = λρ(ρ + 1)/α2. So,

(5.1) follows. For a general function f : R
2 → R, w̃ = f(S, ϑ̂) satisfies

n1/2 (w̃ − w)
L
→ N (0, V ) (5.2)

as n → ∞, where

w = f (ES, varS) ,

V = f2
·1v11 + 2f·1f·2v12 + f2

·2v22,

f·i = f·i (ES, varS) , f·i (x1, x2) = ∂xi
f (x1, x2) ,

v11 = µ2 = κ2, v12 = µ3 = κ3, v22 = µ4 − µ2
2 = κ4 + 2κ2

2,

µr = E (S − κ1)
r
.

For f a vector, (5.2) also holds with

V12 = f1·1f2·1v11 + (f1·2f2·1 + f1·1f2·2) v12 + f1·2f2·2v22,

where fi·j = f·j for fi the ith component of f . Applying this to (5.1), we obtain the
remainder the theorem. �

The asymptotic covariances of θ̂, θ̂c and θ̃ all have the form
( U11 U12/α
U12/α U22/α2

)
, where

U depends on λ but not α.
Plots of the asymptotic relative efficiency of λ̃ to λ̂, and ã = 1/α̃ to â = 1/α̂

against λ are given in Figures 5.1 and 5.2.

6. THE THREE PARAMETER PROBLEM

So far we have assumed ρ known. Typically ρ is taken as one. We now remove this
assumption and set θ = (λ, α, ρ)′. This augmented model can be used to test ρ = 1

say before using the first. The resulting maximum likelihood estimates, θ̂, given by
Theorem 6.1 are awkward, but the moments estimates, θ̃, given by Theorem 6.2 are
manageable.

Theorem 6.1. We have θ̂ satisfying (4.4), (4.5) at ρ̂ and h·ρ(S+) = 0, where
h·ρ(S+) is the sample mean of {h·ρ(Si)}, h·ρ(x) = ν(log x)xρ∆(νxρ, ρ) + Q(νxρ, ρ),
∆(y, ρ) = ∆(y) and Q(y, ρ) = ∂ρ log rρ(y).
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Fig. 5.1. Asymptotic relative efficiency of eλ to bλ.

Fig. 5.2. Asymptotic relative efficiency of ea = 1/eα to ba = 1/bα.



32 C. S. WITHERS, S. NADARAJAH

P r o o f . Follows since (4.1) – (4.3) hold with 2 replaced by 3, and
(
10
00

)
by

0

@

1 0 0
0 0 0
0 0 0

1

A.

�

Again one can use Newton’s equation to solve the equations (4.4), (4.5) and

h·ρ(S+) = 0 for (ν̂, ρ̂) = (ν∞, ρ∞) or use θ̂ obtained from the first iteration of:

(
νi+1

ρi+1

)
=

(
νi

ρi

)
− Ḟ (ν, ρ)

−1
F (ν, ρ) , (6.1)

where F(ν, ρ)′ = (F (ν), h·ρ(S+)) and Ḟ(ν, ρ) = ∂F(ν, ρ)/∂(ν, ρ), or one can use θ
∗

given by (4.4) at (ν1, ρ1) of (6.1), where (ν0, ρ0) is a moments estimate.

In practice, one may be prepared to sacrifice efficiency and just use the moments
estimates from κr(S), 1 ≤ r ≤ 3 given by Theorem 6.2.

Theorem 6.2. The moments estimates of θ are given by

θ̃ =
(
λ̃, α̃−1, ρ̃

)′

=
(
k2
1 k−1

2 (2 − l)−1, k−1
2 k3 − k2k

−1
1 , (l − 1)−1 − 1

)′
,

where ki is the ith sample cumulant (biased or unbiased) and l = k1k
−2
2 k3. Also

n1/2
(
θ̃ − θ

)
L
→ N (0,V)

as n → ∞, where

V11 =

3∑

k=1

λk V11·k,

where

V11·1 = −ρ−3 (ρ + 1)−1 (
11ρ4 + 28ρ3 − 2ρ2 + 36ρ + 127

)
,

V11·2 = ρ−2
(
18ρ2 + 69ρ + 74

)
,

V11·3 = 6ρ−1(ρ + 1)

and

Vij =
2∑

k=−1

λkVij·k
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for (i, j) 6= (1, 1), where

V12·−1 = 0, V12·0 = ρ−2(ρ + 1)−1
(
3ρ4 − 12ρ3 − 110ρ2 − 206ρ− 112

)
,

V12·1 = −ρ−1
(
24ρ2 + 55ρ + 18

)
, V12·2 = ρ + 1,

V13·−1 = 0, V13·0 = ρ−2
(
3ρ4 + 11ρ3 + 15ρ2 − ρ − 18

)
,

V13·1 = −ρ−1(ρ + 1)(ρ + 2)
(
12ρ2 + 28ρ + 3

)
, V13·2 = −6(ρ + 1)2,

V22·−1 = ρ−1(ρ + 1)−1
(
4ρ6 + 40ρ5 + 156ρ4 + 289ρ3 + 219ρ2 − 27ρ− 89

)
,

V22·0 = 2(2ρ + 3)
(
2ρ3 + 7ρ2 + 2ρ− 9

)
,

V22·1 = ρ(ρ + 2)(2ρ + 5), V22·2 = 6ρ(ρ + 1),

V23·−1 = (ρ + 2) (5ρ + 14) , V23·0 = −(ρ + 1)(ρ + 2)/(26ρ + 57),

V23·1 = −6ρ(ρ + 1)2, V23·2 = 0,

V33·−1 = 2ρ−1(ρ + 5), V33·0 = −(ρ + 1)2(ρ + 2)(2ρ − 5),

V33·1 = 6ρ(ρ + 1)3, V33·2 = 0.

P r o o f . The covariance follows by Rule 10 of Section 12.14, equations (10.10) and
(3.38) of Kendall and Stuart [11], v1i = κi+1, v22 = κ4 + 2κ2

2, v23 = κ5 + 6κ3κ2 and
v33 = κ6 + 9κ4κ2 + 9κ2

3 + 6κ3
2. �

To test say H : ρ = 1, one accepts H at level Φ(x) − 1 + O(n−1) if and only if

m1/2|ρ̃ − 1| ≤ xV33(λ̃, 1)1/2, where V33(λ, 1) = 12(λ−1 + 3 + 4λ).

7. APPLICATION

Here, we illustrate the results of Sections 4 and 5 using real data. We use the annual
maximum daily rainfall data for the years from 1907 to 2000 for fourteen locations in
west central Florida: Clermont, Brooksville, Orlando, Bartow, Avon Park, Arcadia,
Kissimmee, Inverness, Plant City, Tarpon Springs, Tampa International Airport,
St Leo, Gainesville, and Ocala. The data were obtained from the Department of
Meteorology in Tallahassee, Florida.

Consider the distribution of S for ρ = 1, so the unknown parameters are λ
and α. We fitted this distribution by the three methods: unconditional maximum
likelihood estimation (Theorem 4.1), conditional maximum likelihood estimation
(Theorem 4.5), and moments estimation (Theorem 5.1). The computer code used for
implementing these estimation procedures can be obtained from the corresponding
author.

Remarkably, unconditional maximum likelihood estimation provided the best fit
for each location. The details for two of the locations, Orlando and Bartow, are
given.

For Orlando, the estimates are λ̂ = 9.565, α̂ = 2.373, λ̂c = 9.115, α̂c = 1.895,
λ̃ = 7.394×10−7 and α̃ = 0.183. For Bartow, the estimates are λ̂ = 8.447, α̂ = 2.055,
λ̂c = 8.988, α̂c = 1.530, λ̃ = 3.404× 10−6 and α̃ = 0.184.

The corresponding fitted probability density functions superimposed with the ob-
served histograms are shown in Figures 7.1. and 7.2. It is clear that the general
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pattern of the data is best captured by unconditional maximum likelihood estima-
tion.

APPENDIX A

Theorem A.1 shows that it is less efficient to condition on M when finding the max-
imum likelihood estimate. Corollary A.1 derives the relative asymptotic efficiency
of the maximum likelihood estimate versus the moments estimate of Section 4.

Theorem A.1. Consider a random variable

X =

{
0, with probability p = p(θ),
X+, with probability q = 1 − p,

where X+ has probability density function f+
θ

(x) with respect to Lebesgue measure
and θ in R

s. Suppose we have a random sample of size n from X . Let M be
the number of zeros, and X1, . . . , Xm the non-zero values, where m = n − M . Let
I+
f (θ) and If (θ) denote the Fisher information matrix for X+ and X , that is for

f+
θ

(X) and fθ(x) = pδ(x) + qf+
θ

(x). Then θ̂ is more efficient asymptotically with
equality if and only if p does not depend on θ. The relative asymptotic efficiency
is qIii/I+ii = ei say, where Iij and I+ij are the (i, j)th elements of If (θ)−1 and
I+
f (θ)−1, respectively.

P r o o f . Note that

If (θ) = E∂θ log fθ(X)∂′

θ log fθ(X),

so

If (θ) = (pq)−1p·θp
′

·θ + qI+
f (θ),

where p·θ = ∂p(θ)/∂θ. So, if θ̂c and θ̂ are the conditional (on M) and unconditional
maximum likelihood estimates,

m1/2
(
θ̂c − θ

)
L
→ N

(
0, I+

f (θ)−1
)

, n1/2
(
θ̂ − θ

)
L
→ N

(
0, If (θ)−1

)
(A.1)

as n → ∞, so

m1/2
(
θ̂ − θ

)
L
→ N

(
0, qIf(θ)−1

)
(A.2)

as m → ∞. Comparing (A.1) and (A.2), θ̂ is more efficient asymptotically since
qIf (θ)−1 = q(Iij) is less than or equal to I+

f (θ)−1 = (I+ij) elementwise. �

Corollary A.1. Suppose θ ∈ R
2 and p depends on θ1 but not θ2. Set p1 = ∂p/∂θ1,

I = If (θ) and I+ = I+
f (θ). Then

I = p2
1(pq)−1

(
10

00

)
+ qI+,

det I = p2
1p

−1I+
22 + q2 det I+.



36 C. S. WITHERS, S. NADARAJAH

Also,

e1 = q2
(
p2
1p

−1I+
22/ det I+ + q2

)−1
, e2 = e1

(
1 + p2

1p
−1q−2/I+

11

)
. (A.3)

Here, e1 and e2 are the relative asymptotic efficiencies defined in the statement of
Theorem A.1. They are compared in Theorem 4.6.
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