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ASSOCIATIVE n–DIMENSIONAL COPULAS

Andrea Stupňanová and Anna Kolesárová

The associativity of n-dimensional copulas in the sense of Post is studied. These copulas
are shown to be just n-ary extensions of associative 2-dimensional copulas with special
constraints, thus they solve an open problem of R. Mesiar posed during the International
Conference FSTA 2010 in Liptovský Ján, Slovakia.
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1. INTRODUCTION

Copulas were introduced by Sklar [13] to capture the stochastic dependence structure
of random variables. Recall that for n ≥ 2, a function C : [0, 1]n → [0, 1] is called
an n-dimensional copula (n-copula, for short) whenever it is a restriction of an n-
dimensional distribution function with all univariate margins uniformly distributed
on [0, 1]. Hence an n-copula is characterized by the properties:

(C1) C(x1, . . . , xn) = xi whenever ∀j 6= i, xj = 1;

(C2) C(x1, . . . , xn) = 0 whenever 0 ∈ {x1, . . . , xn};

(C3) the n-increasing property, i. e., ∀x,y ∈ [0, 1]n, xi ≤ yi, i = 1, . . . , n, it holds

∑

J⊂{1,...,n}

(−1)|J|C
(
uJ

1 , . . . , uJ
n

)
≥ 0, where uJ

i =

{
xi, if i ∈ J,

yi, if i /∈ J.
(1)

By the Sklar theorem [13], for any n-dimensional random vector Z = (X1, . . . , Xn)
there is an n-copula C : [0, 1]n → [0, 1] such that for each (z1, . . . , zn) ∈ R

n

FZ(z1, . . . , zn) = C (FX1 (z1), . . . , FXn
(zn)) ,

where FZ , FX1 , . . . , FXn
are distribution functions of the corresponding random

vectors.
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There are two distinguished functions which are n-copulas for each n ≥ 2: the
so-called minimum n-copula M and the product n-copula Π, given by

M(x1, . . . , xn) = min{x1, . . . , xn},

Π(x1, . . . , xn) =

n∏

i=1

xi.

The minimum n-copula M describes the comonotone dependence of random vari-
ables X1, . . . , Xn and the product n-copula Π describes their independence. For
more details we recommend monographs [4, 11].

For each n-copula C it holds

W ≤ C ≤ M,

where W is the so-called Fréchet-Hoeffding lower bound, given by

W (x1, . . . , xn) = max

{

0,
n∑

i=1

xi − (n − 1)

}

.

It is a well-known fact that this function is a copula only for n = 2, and in that case
describes the countermonotone dependence of random variables X1 and X2.

All the three basic 2-copulas (copulas, for short) M , Π and W are associative,
i. e., for all x1, x2, x3 ∈ [0, 1] they satisfy the property

C (C(x1, x2), x3) = C (x1, C(x2, x3)) . (2)

Associativity as an algebraic property was originally introduced for binary functions
only, see formula (2). Recently, based on ideas of Post [12], Couceiro [1] has studied
the associativity of n-ary functions. Subsequently, during the open problem session
at FSTA 2010, R. Mesiar has posed the problem of representation of associative
n-copulas, see [8]. Recall that for n = 2 this problem was solved in seventies by Ling
[6] and Moynihan [10].

The aim of this paper is to solve the above mentioned open problem for any fixed
n > 2. The paper is organized as follows. In the next section, the representation
of associative copulas is recalled. In Section 3 we study n-ary associative functions
on [0, 1] possessing a neutral element and we show their relationship with binary
associative functions. In Section 4, we introduce a representation theorem for asso-
ciative n-copulas, together with some examples. Finally, some concluding remarks
are added.

2. ASSOCIATIVE 2-DIMENSIONAL COPULAS

As mentioned above, 2-dimensional copulas will be referred to as copulas only. Let
C : [0, 1]2 → [0, 1] be an associative copula satisfying C(x, x) < x for all x ∈]0, 1[.
Then C is called an Archimedean copula. Moynihan [10] has proved the next repre-
sentation theorem for Archimedean copulas.
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Theorem 2.1. A function C : [0, 1]2 → [0, 1] is an Archimedean copula if and only if
there is a continuous strictly decreasing convex function f : [0, 1] → [0,∞], f(1) = 0,
such that

C(x1, x2) = f (−1) (f(x1) + f(x2)) , (3)

where f (−1) is the pseudo-inverse of f .

Recall that the pseudo-inverse f (−1) : [0,∞] → [0, 1] is given by

f (−1)(u) = f−1 (min(f(0), u)) .

The function f in the above theorem is called a generator of an Archimedean copula
C. It is unique up to a positive multiplicative constant.

Copulas W and Π are Archimedean, with generators fW and fΠ, respectively,
given by fW(x) = 1− x and fΠ(x) = − logx. If we define the function f(1) : [0, 1] →

[0,∞] by f(1)(x) = 1
x
− 1, it is also a generator and the corresponding Archimedean

copula C(1) : [0, 1]2 → [0, 1] is given by

C(1)(x1, x2) =
x1 x2

x1 + x2 − x1x2

whenever (x1, x2) 6= (0, 0).

For a general associative copula C we have the next representation theorem [4, 11].

Theorem 2.2. A function C : [0, 1]2 → [0, 1] is an associative copula if and only if
there is a system ( ]ak, bk[ )k∈K of pairwise disjoint open subintervals of [0, 1] and a
system (Ck)k∈K of Archimedean copulas such that

C(x1, x2) =







ak + (bk − ak)Ck

(
x1−ak

bk−ak

, x2−ak

bk−ak

)

, if (x1, x2) ∈ ]ak, bk[2

for some k ∈ K,

M(x1, x2), else.

(4)

Observe that if K = ∅ then C in (4) is the strongest copula M . Archimedean copulas
are linked to K = {1} and ]a1, b1[ = ] 0, 1 [. Copula C given by (4) is called an ordinal
sum copula, with notation (〈ak, bk, Ck〉| k ∈ K).

Example 2.3. Let C =
(
〈0, 1

2 , Π〉
)
. Then

C(x1, x2) =

{
2x1x2, if (x1, x2) ∈ ]0, 1

2 [2,

M(x1, x2), else.

3. N-ARY ASSOCIATIVE FUNCTIONS WITH NEUTRAL ELEMENT

The associativity of n-ary functions was introduced by Post [12].

Definition 3.1. Let n ≥ 2 and I be a real interval. A function F : In → I is said
to be associative whenever for all x1, . . . , xn, . . . , x2n−1 ∈ I it holds

F (F (x1, . . . , xn), xn+1, . . . , x2n−1) = F (x1, F (x2, . . . , xn+1), xn+2, . . . , x2n−1)

= · · · = F (x1, . . . , xn−1, F (xn, . . . , x2n−1)) . (5)
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Evidently, for n = 2, formulas (5) and (2) coincide, i. e., the Post n-ary associativity
is a concept extending the standard notion of associativity for binary functions
(operations). In the next definition, we recall the notion of neutral element, see [3].

Definition 3.2. Let n ≥ 2 and I be a real interval. A function F : In → I is said
to have neutral element e ∈ I whenever F (x1, . . . , xn) = xi if xj = e for each j 6= i.

Evidently, property (C1) of n-copulas means that n-copulas have neutral element
e = 1. We say that a function F is an n-ary extension of a binary function G if it
holds

F (x1, . . . , xn) = G(G(. . . G(G(x1, x2), x3) . . . ), xn−1), xn)

for all n-tuples in In.

Example 3.3.

(i) Define a mapping F : R
3 → R by F (x1, x2, x3) = x1 − x2 + x3. Then F is a

ternary associative function. Observe that there is no binary associative func-
tion whose ternary extension coincides with F . Moreover, F has no neutral
element.

(ii) Let C : [0, 1]3 → [0, 1] be given by C(x1, x2, x3) = x1 min{x2, x3}. Then e = 1
is neutral element of C, but C is not associative. Note that C is a ternary
copula.

Theorem 3.4. Consider n ≥ 2. Let I be a real interval and e ∈ I. Then the
following claims are equivalent:

(i) A mapping F : In → I is associative function with neutral element e.

(ii) There is a binary associative function G : I2 → I with neutral element e whose
n-ary extension is F .

P r o o f . If n = 2, the claim is trivial. Suppose that n > 2.

• (i) ⇐ (ii) The proof is trivial.

• (i) ⇒ (ii) Define a function G : I2 → I by G(x1, x2) = F (x1, x2, e, . . . , e).
Then G(x1, e) = F (x1, e, . . . , e) = x1 and G(e, x2) = F (e, x2, e, . . . , e) = x2,
i. e., e is a neutral element of G. Moreover, for any x1, x2, x3 ∈ I it holds

G(G(x1, x2), x3) = F (F (x1, x2, e, . . . , e), x3, e, . . . , e)

= F (x1, x2, F ( e, . . . , e,
︸ ︷︷ ︸

(n−2)-times

x3, e), e, . . . , e
︸ ︷︷ ︸

(n−3)-times

) = F (x1, x2, x3, e, . . . , e
︸ ︷︷ ︸

(n−3)-times

),

and
G(x1, G(x2, x3)) = F (x1, F (x2, x3, e, . . . , e), e, . . . , e)

= F (x1, x2, F (x3, e, . . . , e
︸ ︷︷ ︸

(n−1)-times

), e, . . . , e
︸ ︷︷ ︸

(n−3)-times

) = F (x1, x2, x3, e, . . . , e
︸ ︷︷ ︸

(n−3)-times

),
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which proves the associativity of G. From this proof it is also obvious that if
n = 3, then F (x1, x2, x3) = G(G(x1, x2), x3). For n > 3, G(G(x1, x2), x3) =
= F (x1, x2, x3, e, . . . , e

︸ ︷︷ ︸

(n−3)-times

) and similarly we can show that

G(G(G(x1, x2), x3), x4) = F (x1, x2, x3, x4, e, . . . , e
︸ ︷︷ ︸

(n−4)-times

).

By induction on n it can be proved that for any n > 2,

G(G(. . . G(G(x1, x2), . . . ), xn−1), xn) = F (x1, . . . , xn).

�

Theorem 3.4 shows that under the neutral element existence, the associativity of
n-ary functions is classically related to the associativity of binary functions.

4. ON THE STRUCTURE OF ASSOCIATIVE N-DIMENSIONAL COPULAS

Based on Theorems 2.1, 2.2, 3.4 and recent results on ordinal sum structure of
n-copulas proved by Mesiar and Sempi [9], we have the next result.

Corollary 4.1. Let n ≥ 2. A function C : [0, 1]n → [0, 1] is an associative n-copula
if and only if there is a system ( ]ak, bk[ )k∈K of pairwise disjoint open subintervals
of ] 0, 1 [, and a system (Ck)k∈K of associative n-copulas satisfying the diagonal
inequality Ck(x, . . . , x) < x for all x ∈] 0, 1 [ and k ∈ K such that

C(x1, . . . , xn) =







ak + (bk − ak)Ck

(
min{x1,bk}−ak

bk−ak

, . . . , min{xn,bk}−ak

bk−ak

)

,

if min{x1, . . . , xn} ∈ ]ak, bk[ for some k ∈ K,

M(x1, . . . , xn), else.

(6)

To complete the representation of associative n-copulas, the characterization of such
copulas satisfying the diagonal inequality is necessary.

Theorem 4.2. Let n ≥ 2. A function C : [0, 1]n → [0, 1] is an associative n-copula
satisfying the diagonal inequality C(x, . . . , x) < x for all x ∈] 0, 1 [ if and only if
there is a generator f whose pseudo-inverse f (−1) is an (n − 2)-times differentiable

function with derivatives alternating the sign, such that (−1)n d
n−2f(−1)

d xn−2 is a convex
function, and

C(x1, . . . , xn) = f (−1)

(
n∑

i=1

f(xi)

)

. (7)

P r o o f . The sufficiency of conditions follows from [7].
By Theorem3.4, C is an n-ary extension of an associative copula G. Suppose that
G(x0, x0) = x0 for some x0 ∈ ] 0, 1 [. Then

C(x0, . . . , x0) = G(G(. . . G(G(x0, x0), . . . ), x0), x0) = x0,
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which violates the diagonal inequality satisfied by C. Therefore G also satisfies the
diagonal inequality, i. e., G(x, x) < x for all x ∈] 0, 1 [. By Theorem 1, formula (7) is
satisfied for some generator f . Moreover, C given by (7) is n-increasing and hence,
according to the results of McNeil and Nešlehová in [7], the required properties of f
are necessary. �

Example 4.3.

(i) As already mentioned, the product n-copula Π is associative for any n ≥ 2.
Evidently, Π(x, . . . , x) = xn < x whenever x ∈] 0, 1 [. As the generator fΠ of

the copula Π is given by fΠ(x) = − logx, it holds f
(−1)
Π (x) = f−1

Π (x) = e−x,

hence for any k,
d

kf
−1
Π (x)

d xk = (−1)ke−x. Derivatives alternate the sign and for

any n ≥ 2, (−1)n d
n−2f

(−1)
Π (x)

d xn−2 = e−x is a convex function.

(ii) A similar result can be shown for the generator f(1) introduced in Section 2,

given by f(1)(x) = 1
x
− 1. It holds f

(−1)
(1) (x) = f−1

(1) (x) = (1 + x),−1 which

implies that

(−1)n d
n−2f

(−1)
Π (x)

d xn−2 = (n − 2)! (1 + x)−n+1 is convex. The corresponding n-

copula C(1) is given by C(1)(x) =
(
∑n

i=1
1
xi

− (n − 1)
)−1

.

(iii) The weakest associative n-copula is the Clayton copula C(− 1
n−1 ) generated by

the generator f(− 1
n−1 ) : [0, 1] → [0,∞], f(− 1

n−1 ) = 1−x
1

n−1 . The corresponding

pseudo-inverse f
(−1)

(− 1
n−1 )

: [0,∞] → [0, 1] is given by

f
(−1)

(− 1
n−1 )

(x) =

{
(1 − x)n−1, if x ≤ 1,

0, if x > 1.

Then (−1)n
d

n−2f
(−1)

(− 1
n−1

)
(x)

d xn−2 = (n − 1)! max{1 − x, 0} is convex but not differ-
entiable. For more details we recommend [7].

(iv) The function C : [0, 1]n → [0, 1] given by

C(x1, . . . , xn) =







2n−1
n∏

i=1

min
{
xi,

1
2

}
, if min{x1, . . . , xn} < 1

2 ,

M(x1, . . . , xn), else,
(8)

is an n-ary extension of the ordinal sum copula
(
〈0, 1

2 , Π〉
)

introduced in Ex-
ample 2.3. As n-ary function Π is an associative n-copula for each n ≥ 2, our
function C given by (8) is also an associative n-copula for each n ≥ 2.

5. CONCLUDING REMARKS

We have solved the Problem 2.1 posed in [8], showing that associative n-copulas
are just n-ary extensions of appropriate associative copulas. Based on Theorem 3.4,
similar results can be formulated for the representation of continuous n-ary triangu-
lar norms or triangular conorms [5], and also for n-ary uninorms [2] continuous up
to the case when {0, 1} ⊆ {x1, . . . , xn}.
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