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Cellularity and the index

of narrowness in topological groups

M. Tkachenko

Abstract. We study relations between the cellularity and index of narrowness in
topological groups and their Gδ-modifications. We show, in particular, that the

inequalities in((H)τ ) ≤ 2τ ·in(H) and c((H)τ ) ≤ 22
τ·in(H)

hold for every topo-
logical group H and every cardinal τ ≥ ω, where (H)τ denotes the underlying
group H endowed with the Gτ -modification of the original topology of H and
in(H) is the index of narrowness of the group H.

Also, we find some bounds for the complexity of continuous real-valued func-
tions f on an arbitrary ω-narrow group G understood as the minimum cardinal
τ ≥ ω such that there exists a continuous homomorphism π : G → H onto a
topological group H with w(H) ≤ τ such that π ≺ f . It is shown that this

complexity is not greater than 22
ω

and, if G is weakly Lindelöf (or 2ω-steady),
then it does not exceed 2ω .

Keywords: cellularity, Gδ-modification, index of narrowness, ω-narrow, weakly
Lindelöf, R-factorizable, complexity of functions

Classification: 54H11, 54A25, 54C30

1. Introduction

Passing to a subspace of a (compact) space can increase the cellularity of a
space. Indeed, for every uncountable cardinal τ , the Tychonoff cube Iτ of weight
τ contains a discrete subspace of cardinality τ , while the cellularity of the cube
itself is countable. The same happens in (compact) topological groups — it suffices
to replace the Tychonoff cube Iτ with Tτ , where T is the circle group with the
usual multiplication and topology inherited from the complex plane C.

However, the gap between the cellularity c(G) of a topological group G and
the cellularity of subgroups of G becomes considerably smaller. According to [1,
Theorem 5.4.11], the inequality c(H) ≤ 2c(G) holds for every subgroup H of G. In
addition, if G is precompact, then every subgroup of G has countable cellularity.

Another important fact for our study was proved by I. Juhász in [3]: If X is a
compact space and γ is a disjoint family of Gδ-sets in X , then the cardinality of
γ is at most 2c(X). This result shows that the cellularity of the Gδ-modification

of X , say (X)ω, does not exceed 2c(X). As usual, by Gδ-modification of X we
mean the underlying set X which carries the topology whose base consists of
Gδ-sets in X . Similarly, one defines the Gτ -modification of X , for any cardinal
τ ≥ ω, which will be denoted by (X)τ .
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Our main concern here is to find a bound for the cellularity of the Gτ -modi-
fication of a topological group H in terms of the cellularity of H . This is done
in Theorem 3.1 where we show that the inequalities in((H)τ ) ≤ 2τ ·in(H) and

c((H)τ ) ≤ 22
τ·in(H)

hold for every topological group H and every cardinal τ ≥ ω,
where in(H) is the index of narrowness of H (see Section 2 below). This means,
in particular, that every τ -narrow topological group H satisfies c((H)τ ) ≤ 22

τ

.
It turns out that this bound is exact — in Example 3.4 we present an ω-narrow
Abelian group H such that c((H)ω) = 22

ω

.
A topological group G is called R-factorizable if every continuous real-valued

function f on G can be represented as a composition of a continuous homomor-
phism of G to a second countable group H and a continuous real-valued function
on H (see [7, Section 5] or [1, Chapter 8]). In other words, G is R-factorizable
if every continuous real-valued function on G has ‘countable complexity’. By [7,
Proposition 5.3], every R-factorizable group is ω-narrow, but ω-narrow groups
need not be R-factorizable according to [7, Example 5.14]. These facts give rise
to the problem of finding bounds for the complexity of continuous real-valued
functions on ω-narrow groups (see [6, Problem 3.3] or Problem 4.1 below).

We show in Theorem 4.2 that 22
ω

is such a bound. However, we do not know
whether this bound is exact. However, it is shown in Proposition 4.3 that 2ω is a
bound for the complexity of continuous real-valued functions on weakly Lindelöf

topological groups, while Proposition 4.4 extends this fact to 2ω-steady groups
(the terms are explained in the next section).

2. Notation and terminology

Given a topological group G, we define the index of narrowness of G, in(G),
as the minimum infinite cardinal τ such that G can be covered by at most τ
translates of every neighborhood of the identity. It is easy to verify that in(G) ≤
c(G) for every topological group G, where c(G) is the cellularity of G (see [1,
Proposition 5.2.1]). We say that G is τ-narrow if it satisfies in(G) ≤ τ .

Suppose that p : G → H is a continuous homomorphism. Given a continuous
mapping f : G → X of the group G to a space X , we write p ≺ f if there exists
a continuous mapping h : H → X such that f = h ◦ p.

A space X is weakly Lindelöf if every open covering of X contains a countable
subfamily whose union is dense in X . All Lindelöf spaces as well as all spaces
of countable cellularity are weakly Lindelöf. By virtue of [1, Proposition 5.2.8],
every weakly Lindelöf topological group is ω-narrow.

A topological group G is called τ-steady (see [1, Section 5.6]) if every contin-
uous homomorphic image H of G with ψ(H) ≤ τ satisfies nw(H) ≤ τ . By [1,
Corollary 5.6.11], every τ -steady topological group is τ -narrow.

The Nagami number of a Tychonoff space X is Nag(X) (see [1, Section 5.3]).
Every topological group G with Nag(G) ≤ τ is τ -steady and the class of τ -steady
groups is productive according to [1, Theorem 5.6.4]. It is also clear that a
continuous homomorphic image of a τ -steady group is τ -steady.
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3. Cellularity and index of narrowness

Let us consider the behavior of the cellularity in topological groups when pass-
ing from a group H to (H)ω or (H)τ , for an infinite cardinal τ . It is known that
if H is σ-compact or, more generally, a Lindelöf Σ-group, then every family γ of
Gδ-sets in H contains a countable subfamily λ such that

⋃
λ is dense in

⋃
γ (see

[9, Theorem 2] or [7, Theorem 4.14]). Further, the cellularity of an ω-bounded
group G cannot be greater than 2ω [7, Theorem 4.29], and this bound is attained
even if G is Lindelöf [2, Example 8]. An interesting complement to the former
fact was found in [4]: If H is a Lindelöf topological group, then every family γ of
Gδ-sets in H contains a subfamily λ with |λ| ≤ 2ω such that

⋃
λ is dense in

⋃
γ.

It is an open problem whether this result remains valid for the class of ω-narrow
groups [4]. We also recall that if X is a compact space of countable cellularity,
then the cellularity of the space (X)ω does not exceed 2ω [3]. It turns out that
if H is a τ -narrow topological group, then the cellularity of (G)τ does not exceed
the second exponent of τ :

Theorem 3.1. The inequalities in((G)τ ) ≤ 2τ ·in(G) and c((G)τ ) ≤ 22
τ·in(G)

hold

for every topological group G and every cardinal τ ≥ ω. In particular, if G is

τ -narrow, then c((G)τ ) ≤ 22
τ

.

Proof: First we show that in((G)τ ) ≤ 2λ, where λ = τ · in(G). Let O be a
neighbourhood of the identity e in (G)τ . Then there exists a family γ = {Uα :
α < τ} of open neighbourhoods of e in G such that

⋂
γ ⊆ O. By [7, Lemma 3.7],

for every α < τ , one can find a continuous homomorphism pα : G → Hα onto
a topological group Hα with w(Hα) ≤ λ and an open neighbourhood Vα of the
identity in Hα such that p−1

α (Vα) ⊆ Uα. Denote by p the diagonal product of
the homomorphisms pα, α < τ . Then the homomorphism p : G →

∏
α<τ Hα is

continuous and the group H = p(G) ⊆
∏
α<τ Hα satisfies w(H) ≤ λ. Therefore,

|H | ≤ 2λ. For every α < τ , there exists a continuous homomorphism πα : H → Hα

such that pα = πα ◦ p. Then Wα = π−1
α (Vα) is an open neighbourhood of the

identity in H and p−1(Wα) = p−1π−1
α (Vα) = p−1

α (Vα) ⊆ Uα for each α < τ . Hence
the set W =

⋂
α<τ Wα contains the identity of H and satisfies p−1(W ) ⊆ O. In

particular, ker p ⊆ O. Since |H | ≤ 2λ, we can find a subset A of G such that
p(A) = H and |A| ≤ 2λ. Then

G = A · ker p ⊆ A ·O ⊆ G,

that is, A · O = G. This proves the inequality in((G)τ ) ≤ 2λ.
By [7, Theorem 4.29], every topological group K satisfies c(K) ≤ 2in(K). We

apply this inequality with (G)τ in place of K to conclude that c((G)τ ) ≤ 22
λ

. �

Corollary 3.2. Every topological group G satisfies c((G)τ ) ≤ 22
τ·c(G)

. In parti-

cular, c((G)ω) ≤ 22
c(G)

.
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Proof: Since in(G) ≤ c(G) by [7, Proposition 3.3(b)], the conclusion follows
from Theorem 3.1. �

Let us show that the upper bounds for the cellularity given in Theorem 3.1
and Corollary 3.2 are exact. First, we need a lemma.

Lemma 3.3. The free Abelian group Ac with c generators admits a second count-

able Hausdorff precompact group topology, where c = 2ω.

Proof: Denote by T the maximal precompact group topology on Ac (i.e., the
Bohr topology of Ac, see [1, Section 9.9]). Since |Ac| = c, T contains a weaker
metrizable group topology Tω by [1, Proposition 9.9.37]. Since every precompact
group has countable cellularity, we conclude that the group K = (Ac,Tω) is
Hausdorff, second countable, and precompact. �

Example 3.4. There exists a precompact Abelian topological group H such that

c((H)ω) = 2c.

Proof: We apply Uspenskij’s result in [8]: For every infinite cardinal τ , there
exists a subgroup Gτ of (Aτ,d)

2τ such that c(Gτ ) = 2τ , where Aτ,d is the free
Abelian group Aτ with τ generators endowed with the discrete topology (the
construction in [9] makes the use of the free group Fτ with τ generators instead
of Aτ , but a similar argument works as well for Aτ , see [1, Example 5.4.13]).

By Lemma 3.3, the free Abelian group A = Ac admits a second countable,
Hausdorff, precompact group topology Tω. Put K = (A,Tω) and λ = 2c. It
is clear that (K)ω coincides with the discrete group A, say, Ad. Consider the
identity isomorphism ϕ : Kλ → Aλd and let H = ϕ−1(G), where G is a subgroup
of Aλd satisfying c(G) = λ. Then H is precompact being a subgroup of the
precompact group Kλ and, therefore, c(H) ≤ ω. In addition, ϕ : (Kλ)ω → (Aλd)ω
is a topological isomorphism and the topology of (Aλd)ω is finer than that of Aλd .
Therefore, the restriction of ϕ : (Kλ)ω → Aλd to the subgroup (H)ω of (Kλ)ω is
a continuous isomorphism of (H)ω onto G and, hence, 2c = c(G) ≤ c((H)ω). On
the other hand, c((H)ω) ≤ 2c by Theorem 3.1, so c((H)ω) = 2c. �

4. Complexity of continuous real-valued functions on ω-narrow groups

Since R-factorizable groups form a proper subclass of ω-narrow groups, it is
natural to consider the following problem (see also [6, Problem 3.3]):

Problem 4.1. Let G be an ω-narrow topological group and f be a continuous

real-valued function on G. Does there exist a continuous homomorphism π : G→
K onto a topological group K with w(K) ≤ 2ω such that π ≺ f?

It turns out that the complexity of continuous real-valued functions on ω-
narrow topological groups does not exceed 2c, where c = 2ω. We do not know,
however, if this bound is exact.
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Theorem 4.2. Let f be a continuous real-valued function on an ω-narrow topo-

logical group G. Then there exists a continuous homomorphism π : G→ H onto

a topological group H satisfying w(H) ≤ 2c such that π ≺ f .

Proof: By [7, Theorem 4.29], the cellularity ofG is not greater than c. Hence, ac-
cording to [1, Theorem 8.1.18], one can find a continuous homomorphism ϕ : G→
K onto a topological group K with ψ(K) ≤ c such that ϕ ≺ f . Take a contin-
uous real-valued function g on K satisfying f = g ◦ ϕ. Clearly, the group K is
ω-narrow as a continuous homomorphic image of the ω-narrow group G. We can
now apply [7, Theorem 4.6] according to which |K| ≤ 2in(K)·ψ(K) ≤ 2c. In parti-
cular, nw(K) ≤ |K| ≤ 2c. Now we use the following weak form of Shakhmatov’s
theorem in [5] (with τ = 2c): If K is a topological group with nw(K) ≤ τ and
g : K → R is a continuous function, then there exist a continuous isomorphism
i : K → H onto a topological group H with w(H) ≤ τ and a continuous function
h : H → R such that g = h ◦ i.

G
f //

ϕ

��

π

  ❆
❆

❆

❆

❆

❆

❆

❆

R

K
i // H

h

OO

Then the continuous homomorphism π = i ◦ ϕ of G onto H and the function h

satisfy the equality f = h ◦ π, i.e., π ≺ f . Since w(H) ≤ 2c, this finishes the
proof. �

The following result provides a partial solution to Problem 4.1 in the special
case when H is weakly Lindelöf. As usual we denote by c the power of the
continuum.

Proposition 4.3. Let f : G→ X be a continuous mapping, where G is a weakly

Lindelöf topological group and X is a Tychonoff space with w(X) ≤ c. Then

there exists a continuous homomorphism π : G → L onto a topological group L

with w(L) ≤ c such that π ≺ f .

Proof: Clearly X is homeomorphic to a subspace of Rc. Taking compositions
of f with projections of Rc to the factors, we can assume that X = R. Then by
[1, Theorem 8.1.18], one can find a continuous homomorphism ϕ : G→ K onto a
topological group K of countable pseudocharacter and a continuous real-valued
function g : K → R such that f = g◦ϕ. The group G is ω-narrow since it is weakly
Lindelöf [7, Proposition 4.4], so K is also ω-narrow as a continuous homomorphic
image of G. Therefore, |K| ≤ 2in(K)·ψ(K) = c by [7, Theorem 4.6]. In particular,
nw(K) ≤ c. By a theorem in [5], there exist a continuous isomorphism i : K → L

onto a topological group L with w(L) ≤ c and a continuous function h : L → R

such that g = h◦i. Hence the homomorphism π = i◦ϕ : G→ L is as required. �
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We are now in the position to present another subclass of ω-narrow groups
where Problem 4.1 is solved in the affirmative.

Proposition 4.4. Let G be an ω-narrow topological group. If G is c-steady,

then for every continuous real-valued function f on G there exists a continuous

homomorphism π : G → H onto a topological group H with w(H) ≤ c such that

π ≺ f .

Proof: Given a continuous real-valued function f on G, we can find, as in the
proof of Theorem 4.2, a continuous homomorphism ϕ : G → K onto a topologi-
cal group K with ψ(K) ≤ c and a continuous real-valued function g on K such
that f = g ◦ ϕ. Since G is c-steady, the group K satisfies nw(K) ≤ c. Apply-
ing Shakhmatov’s theorem in [5] once again, we find a continuous isomorphism
i : K → H of K onto a topological group H with w(H) ≤ c and a continuous
real-valued function h on H such that g = h ◦ i. Therefore, the continuous homo-
morphism π = i ◦ ϕ of G onto H satisfies π ≺ f . �

5. Open problems

There exist ω-narrow groups H satisfying c(H) = c [9]. In fact, there are even
Lindelöf groups with the same property [2, Example 8]. We do not know, however,
whether large pairwise disjoint families of open sets in ω-narrow groups can be
discrete:

Problem 5.1. Does there exist an ω-narrow topological group which contains a

discrete family γ of open sets with |γ| = c?

Another related problem concerns regular closed subsets of Lindelöf groups:

Problem 5.2. Is every regular closed subset of a Lindelöf topological group the

intersection of at most 2ω open sets?

Example 3.4 leaves the following open problem.

Problem 5.3. Let γ be a family of Gδ-sets in a precompact topological groupK.

Does there exist a subfamily γ0 of γ such that |γ0| ≤ c and
⋃
γ0 is dense in

⋃
γ?

What if the group K is ω-narrow?
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