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Some fixed point theorems and existence of

weak solutions of Volterra integral equation

under Henstock-Kurzweil-Pettis integrability

Afif Ben Amar

Abstract. In this paper we examine the set of weakly continuous solutions for
a Volterra integral equation in Henstock-Kurzweil-Pettis integrability settings.
Our result extends those obtained in several kinds of integrability settings. Be-
sides, we prove some new fixed point theorems for function spaces relative to the
weak topology which are basic in our considerations and comprise the theory of
differential and integral equations in Banach spaces.

Keywords: fixed point theorems, Henstock-Kurzweil-Pettis integral, Volterra equa-
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1. Introduction

The resolution of differential and integral problems in a Banach space relative
to the strong topology, has been the subject of many papers (see [23], [25], [45]).
Besides, some results have been obtained for equations in Banach spaces relative to
the weak topology (see [4], [7], [8], [9], [20], [21], [24], [28], [35], [43]). Some exam-
inations of these problems were given under hypotheses of Lebesgue integrability
on the real line, respectively Bochner, weak Riemann integral and Pettis integral,
in the vector case. Recently, for problems involving highly oscillating functions,
many authors have examined the existence of solutions under Henstock-Kurzweil
[5], [14], [15], [32], [33], [36], [37], [38], [40], [41] and Henstock-Kurzweil-Pettis in-
tegrability [1], [6], [30], [31], [39], [42]. Motivated by those examinations, we first
prove some Sadovskii fixed point type results for function spaces which guarantee
an existence result for the general operator equation

x(t) = Fx(t), t ∈ [0, T ], T > 0

relative to the weak uniform convergence topology which is not metrizable. These
results improve and extend those in [28]. Then by using those results, we give
existence criteria of weak solutions for the Volterra integral equation

x(t) = h(t) +

∫ t

0

K(t, s)f(s, x(s)) ds on [0, T ], T > 0
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involving the Henstock-Kurzweil-Pettis integral and we prove the existence of
a non-empty and compact set of weak solutions on a closed subinterval of [0, T ].
The main tools used in our study are associated with the techniques of measure of
weak noncompactness, properties of the weak uniform convergence topology real
bounded variation functions and Henstock-Kurzweil-Pettis integrals. This result
generalizes and improves the corresponding results in [4], [28]. We notice in our
study that the techniques developed in [42] which are based on fixed point theory
for weakly sequentially continuous mappings defined on domains of a metrizable
locally convex topological vector space are not useful in establishing existence
principles for the problem we are interested in. The major problem encountered
is that we are working in function spaces under weak uniform convergence topol-
ogy features. However, we know that weak uniform convergence topology is not
metrizable. Also our theory provides an unified line to the theory of differential
and integral equations in Banach spaces relative to the weak topology and under
several well known kinds of integrability settings.

2. Preliminaries and fixed point results

The purpose of this section is to give some notations and preliminaries and
state some fixed point results for function spaces which will be used throughout
this paper.

Let I = [0, T ] be an interval of the real line equipped with the usual topology.
Let E be a Banach space with norm ‖·‖. E∗ will denote the dual of E and Ew will
denote the space E when endowed with its weak topology. On the space C(I, Ew)
of continuous functions from I to Ew we define a topology as follows. Let Fin(E∗)
be the class of all non-empty and finite subsets in E∗, Let O ∈ Fin(E∗) and let
us define ‖·‖O : C(I, Ew) −→ R+ by

‖f‖O := sup
t∈I

sup
x∗∈O

|x∗(f(t))|

for each f ∈ C(I, Ew). One may see that {‖·‖O;O ∈ Fin(E∗)} is a family of
seminorms on C(I, Ew) which defines a topology of a locally convex, separated
space, called the uniform weak convergence topology. We emphasize that this
topology (except for the case in which E is finite dimensional) is not metrizable.
We will denote by Cw(I, E) the space of weakly continuous functions on I with
the topology of weak uniform convergence. For more details see [29]. Moreover,
we will denote by β the De Blasi measure of weak noncompactness [10]. Recall
that for any nonvoid, bounded subset X of E,

β(X) = inf{ε > 0 : there exists a weakly compact set Y

such that X ⊂ Y + εBE},

where BE is the closed unit ball of E. For convenience, we bring back some
properties of β:

(i) X1 ⊂ X2 implies β(X1) ≤ β(X2);
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(ii) β(X1) = 0 iff Xw
1 is weakly compact, here Xw

1 is the weak closure of X1

in E;
(iii) β(X1) = β(Xw

1 );
(iv) β(X1 ∪X2) = max{β(X1), β(X2)};
(v) β(λX1) = λβ(X1) for all λ > 0;
(vi) β(conv(X1)) = β(X1);
(vii) β(X1 +X2) ≤ β(X1) + β(X2);
(viii) βt(

⋃
|λ|≤h λX1) = hβ(X1).

Definition 2.1. A function f : I × E −→ E is said to be weakly-weakly conti-
nuous at (t0, x0) if given ε > 0 and x∗ ∈ E∗, there exists δ > 0 and a weakly open
set U containing x0 such that |x∗(f(t, x) − f(t0, x0))| < ε whenever |t − t0| < δ

and x ∈ U . ♦

Definition 2.2. A family F = {fi, i ∈ I} (where I is some index set) of EI is
said to be weakly equicontinuous if given ε > 0, x∗ ∈ E∗ there exists δ > 0 such
that, for t, s ∈ I, if |t− s| < δ, then |x∗(fi(t)− fi(s))| < ε for all i ∈ I. ♦

Next we recall the Brouwer-Schauder-Tychonoff fixed point theorem.

Theorem 2.1 ([2]). Let K be a non-empty compact convex subset of a locally
convex Hausdorff space and let f : K −→ K be a continuous function. Then the
set of fixed points of f is compact and non-empty. ♦

Our next fixed point result is motivated by the weak sequential compactness
of weakly compact subsets of a Banach space.

Theorem 2.2 ([3]). LetQ be a non-empty, convex closed set in a Banach spaceE.
Assume F : Q −→ Q is a weakly sequentially continuous map which is also β-
condensing (i.e., β(F (X)) < β(X) for all bounded subsets X ⊂ Q such that
β(X) 6= 0). In addition, suppose that F (Q) is bounded. Then F has a fixed
point. ♦

The next lemma is basic for our study.

Lemma 2.1. (a) Let V be a bounded subset of C(I, E). Then

sup
t∈I

β(V (t)) ≤ β(V )

where V (t) = {x(t) : x ∈ V }.

(b) Let V ⊆ C(I, E) be a family of strongly equicontinuous functions. Then

β(V ) = sup
t∈I

β(V (t)) = β(V (I))

where V (I) =
⋃

t∈I{x(t) : x ∈ V }, and the function t 7−→ β(V (t)) is continuous.
♦



180 A. Ben Amar

Proof: For a proof of claim (a), see [28]. For a proof of claim (b), we refer to
[20], [24]. �

We are now ready to state our fixed point results.

Theorem 2.3. Let E be a Banach space with Q a non-empty subset of C(I, E).
Assume also that Q is a closed convex subset of Cw(I, E), F : Q −→ Q is conti-
nuous with respect to the weak uniform convergence topology, F (Q) is bounded
and F is β-condensing (i.e., β(F (X)) < β(X) for all bounded subsets X ⊂ Q such
that β(X) 6= 0). In addition, suppose the family F (Q) is weakly equicontinuous.
Then the set of fixed points of F is non-empty and compact in Cw(I, E). ♦

Proof: Let F the fixed points set of F in Q. We claim that F is non-empty.
Indeed, let x0 ∈ F (Q) and G be the family of all closed bounded convex subsets
D of C(I, E) such that x0 ∈ D and F (D) ⊂ D. Obviously G is non-empty, since
conv(F (Q)) ∈ G (the closed convex hull of F (Q) in C(I, E)). We denote K =⋂

D∈G D. We have that K is closed convex and x0 ∈ K. If x ∈ K, then F (x) ∈ D

for all D ∈ G and hence F (K) ⊂ K. Therefore we have that K ∈ G. We claim
that K is a compact subset of Cw(I, E). Denoting by K∗ = conv(F (K) ∪ {x0})
(the closed convex hull of F (K) in C(I, E)), we have K∗ ⊂ K, which implies that
F (K∗) ⊂ F (K) ⊂ K∗. Therefore K∗ ∈ G, K ⊂ K∗. Hence K = K∗. Clearly K is
bounded and if β(K) 6= 0, we obtain

β(K) = β(conv(F (K) ∪ {x0}) ≤ β(conv(F (K) ∪ {x0})) ≤ β(F (K)) < β(K),

which is a contradiction, so β(K) = 0. SinceK is a weakly closed subset of C(I, E)
(notice that a convex subset of a Banach space is closed iff it is weakly closed), K
is a weakly compact subset of C(I, E). We claim that K is closed in Cw(I, E). To
see this, let S = EI be endowed with the product topology. We consider C(I, E)
as a vector subspace of S. Hence its weak topology is the topology induced by
the weak topology of S. Suppose (xα) is a net in K with xα −→ z in Cw(I, E).
Then xα(t) tends weakly to z(t) for each t ∈ I. For each t ∈ I, let Ht = {xα(t)}.
Clearly the weak closure of Ht is a weakly compact subset of E. But the weak
topology of EI is the product topology of the weak topology of E. Hence the
subset H =

∏
t∈I H

w
t is a weakly compact subset of S by the Tychonoff theorem.

Obviously the subset {xα, z} ⊂ H . The set H ∩K is weakly compact in K, hence
in C(I, E). Using the fact that for each x∗ ∈ E∗ and t ∈ I the point evaluation
mapping y 7−→ x∗y(t) is a continuous linear functional on C(I, E), we get z ∈ K.
Now we apply the Arzela-Ascoli Theorem [19, p. 233]. Because the family F (Q) is
weakly equicontinuous, we have by [13, Lemma 6.2] that the family conv(F (Q))
(the closure is taken in Cw(I, E)) is weakly equicontinuous and therefore, K is
weakly equicontinuous. Thus, it remains to show that for each t ∈ I, the set
K(t) = {x(t), x ∈ K} is weakly relatively compact in E. By Lemma 2.1(a),
β(K(t)) ≤ β(K). Then β(K(t)) = 0 for each t ∈ I. Thus for each t ∈ I, K(t)
is weakly relatively compact in E. Now we apply Theorem 2.1 with the locally
convex Hausdorff space Cw(I, E) to obtain that F 6= ∅. It remains to show that
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F is compact in Cw(I, E). To do this, we consider H to be the family of all
closed bounded convex subsets D of C(I, E) such that F ⊂ D and F (D) ⊂ D.
Obviously H is non-empty, since conv(F (Q)) ∈ H (the closed convex hull of F (Q)
in C(I, E)). We denote R =

⋂
D∈H D. Arguing as above, we prove that R is

compact in Cw(I, E), F (R) ⊂ R and F ⊂ R. Finally, applying Theorem 2.1
again, we deduce that F is compact. �

Remark 2.1. Theorem 2.3 extends and improves Theorem 2.2 in [28] (note that
in [28], Q was a closed bounded subset of C(I, E), whereas here Q is only a subset
of C(I, E)).

Corollary 2.1. Let E be a Banach space and Q be a non-empty subset of
C(I, E). Also assume that Q is a closed convex subset of Cw(I, E), F : Q −→ Q

is continuous with respect to the weak uniform convergence topology, F (Q) is
bounded and F is β-condensing. In addition, suppose the family F (Q) is strongly
equicontinuous. Then the set of fixed points of F is non-empty and compact in
Cw(I, E). ♦

Proof: Thanks to Theorem 2.3, it suffices to prove that the family F (Q) is
weakly equicontinuous which is the case. �

Corollary 2.2. Let E be a Banach space and Q be a non-empty subset of
C(I, E). Also assume that Q is a closed convex subset of Cw(I, E), F : Q −→ Q

is continuous with respect to the weak uniform convergence topology and the
family F (Q) is bounded and strongly equicontinuous. In addition, suppose that

for each t ∈ I, F (Q)(t) is relatively weakly compact in E.

Then the set of fixed points of F is non-empty and compact in Cw(I, E). ♦

Proof: We claim that the set F (Q) is relatively weakly compact in C(I, E).
Indeed, the family F (Q) of C(I, E) is bounded and strongly equicontinuous, so
by Lemma 2.1, we have β(F (Q)) = supt∈I β(F (Q)(t)) = 0. Therefore F (Q) is
a relatively weakly compact subset of C(I, E). Accordingly, F is β-condensing.
The result now follows from Corollary 2.1. �

Remark 2.2. If F (Q) is bounded and E is reflexive, then for each t ∈ I, F (Q)(t)
is relatively weakly compact in E since a subset of a reflexive Banach space is
weakly compact iff it is closed in the weak topology and bounded in the norm
topology. ♦

We close this section by stating a fixed point theorem for weakly sequentially
continuous mappings.

Theorem 2.4. Let E a Banach space and Q be a non-empty, convex closed set
in E. Assume F : Q −→ Q is a weakly sequentially continuous map and the
family F (Q) is bounded and strongly equicontinuous. In addition, suppose that

for each t ∈ I, F (Q)(t) is relatively weakly compact in E.
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Then F has a fixed point. ♦

Proof: Arguing as in the proof of Corollary 2.2, we obtain that F (Q) is a re-
latively weakly compact subset of C(I, E). Hence, F is β-condensing. It suffices
now to apply Theorem 2.2 to prove the result. �

Remark 2.3. (a) Theorem 2.4 extends and improves Theorem 3.2 in [28].
(b) It can be proved that the set of fixed points of F is weakly compact in C(I, E).

♦

3. Henstock-Kurzweil-Pettis integrals

In this section, we introduce the concept of Henstock-Kurzweil-Pettis integra-
bility and give some related facts which are useful in Section 4. Concerning basic
definitions, we refer to [22] or [34]. Throughout this section and Section 4, E will
be considered as a real Banach space.

Definition 3.1. A function f : I −→ E is said to be Henstock-Kurzweil-
integrable, or simply HK-integrable on I, if there exists w ∈ E with the following
property : for ε > 0 there exists a gauge δ on I such that ‖σ(g,P)− w‖ < ε for

each δ-fine Perron partition P of I. We set w = (HK)
∫ T

0 f(s) ds. ♦

Remark 3.1. This definition includes the generalized Riemann integral (see [17]).
In a special case, when δ is a constant function, we get the Riemann integral. ♦

The following result states that the HK-integrability for real functions is pre-
served under multiplication by functions of bounded variation.

Lemma 3.1 ([18, Theorem 12.21]). Let f : I −→ R be an HK-integrable function
and let g : I −→ R be of bounded variation. Then fg is HK-integrable. ♦

Let us recall the following integration by parts result inspired from the previous
lemma and [18, Theorem 12.8]:

Lemma 3.2. f : [a, b] −→ R be HK-integrable function and let g : I −→ R be of
bounded variation. Then, for every t ∈ [a, b]

(HK)

∫ t

a

f(s)g(s) ds = g(t)(HK)

∫ t

a

f(s) ds−

∫ t

a

(
(HK)

∫ s

a

f(τ) dτ

)
dg(s),

the last integral being of Riemann-Stieltjes type. ♦

The generalization of the Pettis integral obtained by replacing the Lebesgue
integrability of the functions by the Henstock-Kurzweil integrability produces the
Henstock-Kurzweil-Pettis integral (for the definition of Pettis integral see [11]).

Definition 3.2 ([6]). A function f : I −→ E is said to be Henstock-Kurzweil-
Pettis integrable, or simply HKP-integrable, on I if there exists a function g :
I −→ E with the following properties:

(i) ∀x∗ ∈ E∗, x∗f is Henstock-Kurzweil integrable on I;
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(ii) ∀ t ∈ I, ∀x∗ ∈ E∗, x∗g(t) = (HK)
∫ t

0 x
∗f(s) ds.

This function g will be called a primitive of f and by g(T ) =
∫ T

0 f(t) dt we will
denote the Henstock-Kurzweil-Pettis integral of f on the interval I. ♦

Remark 3.2. (i) Any HK-integrable function is HKP-integrable. The converse is
not true (see an example in [16]). Then the family of all Henstock-Kurzweil-Pettis
integrable functions is larger than the family of all Henstock-Kurzweil integrable
ones.
(ii) Since each Lebesgue integrable function is HK-integrable, we find that any Pet-
tis integrable function is HKP-integrable. The converse is not true (see also [16]).

♦

In the sequel we will investigate some properties of the HKP integral which are
important in the next part of the paper.

Theorem 3.1. Let f : [a, b] −→ E be HKP-integrable on [a, b]. Then

(a) for any compact interval J of [a, b], f is HKP-integrable on J ;

(b) if a1 = a < a2 < . . . < an = b, then
∫ b

a
f(s) ds =

∑n

i=2

∫ ai

ai−1

f(s) ds. ♦

Proof: The proof is straightforward. �

Theorem 3.2 (Mean value theorem [6]). If the function f : [a, b] −→ E is HKP-
integrable, then

∫

J

f(t) dt ∈ |J | conv(f(J)),

where J is an arbitrary subinterval of [a, b] and |J | is the length of J . ♦

4. Main result

We deal with the existence of weak solution of the Volterra integral equation

x(t) = h(t) +

∫ t

0

K(t, s)f(s, x(s)) ds on I,

here “
∫
” denotes the HKP-integral.

Theorem 4.1. Let f : I ×E −→ E, h : I −→ E and K : I × I −→ R satisfy the
following conditions:

(1) h is weakly continuous on I.
(2) For each t ∈ I, K(t, ·) continuous, K(t, ·) ∈ BV (I,R) and the mapping

t 7−→ K(t, ·) is ‖·‖BV -continuous. (Here BV (I,R) represents the space of
real bounded variation functions with its classical norm ‖·‖BV .)

(3) f : I × E −→ E is a weakly-weakly continuous function such that for
all x ∈ Cw(I, E), for all t ∈ I, f(·, x(·)) and K(t, ·)f(·, x(·)) are HKP-
integrable on I.
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(4) For all r > 0 and ε > 0, there exists δε,r > 0 such that

(4.1)

∥∥∥∥
∫ t

τ

f(s, x(s)) ds

∥∥∥∥ < ε, ∀ |t− τ | < δε,r, ∀x ∈ Cw(I, E), ‖x‖ ≤ r.

(5) There exists a nonnegative function L(·, ·) such that:
(a) for each closed subinterval J of I and bounded subset X of E,

(4.2) β(f [J ×X ]) ≤ sup{L(t, β(X)), t ∈ J};

(b) the function s 7−→ L(s, r) is continuous for each r ∈ [0,+∞[, and

(4.3) sup
t∈I

{
(HK)

∫ t

0

|K(t, s)|L(s, r) ds

}
< r

for all r > 0.

Then there exist an interval J = [0, a] such that the set of weakly continuous
solutions of the Volterra-type integral equation

(4.4) x(t) = h(t) +

∫ t

0

K(t, s)f(s, x(s)) ds,

defined on J is non-empty and compact in the space Cw(J,E). ♦

Remark 4.1. (a) If f(·, x(·)) is HKP-integrable on I and for all τ ∈ I the
mapping Tt,τ : E∗ −→ R, defined by y∗ 7−→ (HK)

∫ τ

0 K(t, s)y∗f(s, x(s)) ds, is
weak∗-continuous, then K(t, ·)f(·, x(·)) is HKP-integrable on I. Indeed, for τ ∈ I,
because Tt,τ is a linear functional on E∗ that is weak∗-continuous, then by [29,
Theorem 3.10] there exists wt,τ in E such that Tt,τ(y

∗) = y∗wt,τ for all y∗ ∈ E∗.

So, (HK)
∫ τ

0 K(t, s)y∗f(s, x(s)) ds = (HK)
∫ τ

0 y∗K(t, s)f(s, x(s)) ds = y∗wt,τ for
all y∗ ∈ E∗. Therefore K(t, ·)f(·, x(·)) is HKP-integrable on I.

(b) For τ ∈ I, if we suppose the HK-equi-integrability of the family
{y∗K(t, ·)f(·, x(·)), y∗ ∈ E∗, ‖y∗‖ ≤ 1} on [0, τ ], then we guarantee the continuity
of Tt,τ with respect to weak∗-topology (see [12]). ♦

Remark 4.2. The condition (4.1) is satisfied if we suppose that f(·, x(·)) is
HKP-integrable on I and for all r > 0, there exists a HK-integrable function
Mr : I −→ R+ such that

‖f(t, y)‖ ≤ Mr(t) for all t ∈ I and y ∈ E, ‖y‖ ≤ r.

To see this, let r > 0 and x∗ ∈ E∗ such that ‖x∗‖ ≤ 1. For 0 ≤ t1 < t2 ≤

1, we have |x∗
∫ t2

t1
f(s, x(s), T x(s)) ds| ≤ |(HK)

∫ t2

t1
x∗f(s, x(s), T x(s)) ds|. Be-

cause s 7−→ Mb0(s) is Henstock-Kurzweil integrable and |x∗f(s, x(s), T x(s))| ≤
‖x∗‖‖f(s, x(s), T x(s))‖ ≤ Mb0(s) for all s ∈ [0, 1], then by [22, Corollary 4.62]),
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s 7−→ x∗f(s, x(s), T x(s)) is absolutely Henstock-Kurzweil integrable on [t1, t2]
and

∣∣∣∣(HK)

∫ t2

t1

x∗f(s, x(s), T x(s)) ds

∣∣∣∣ ≤ (HK)

∫ t2

t1

Mb0(s) ds.

Thus
∥∥∥∥
∫ t2

t1

f(s, x(s), T x(s)) ds

∥∥∥∥ = sup
‖x∗‖≤1

∣∣∣∣x
∗

∫ t2

t1

f(s, x(s), T x(s)) ds

∣∣∣∣

≤ (HK)

∫ t2

t1

Mb0(s) ds,

which thanks to the continuity of the primitive in Henstock-Kurzweil integral,
becomes less then ε for t2 sufficiently close to t1, and this proves the claim. ♦

Remark 4.3. The inequality condition in Remark 4.2 is fulfilled if we suppose
that E is reflexive and the function Mr is independent of t ∈ I (see [28]). ♦

Proof: Let c = supt∈I ‖h(t)‖, d = supt∈I ‖K(t, ·)‖BV and µ > 0. There exists

b > 0 such that µ < b−c
d
. From (4.1), there exists a ≤ T such that

sup
t∈[0,a]

∥∥∥∥
∫ t

0

f(s, x(s)) ds

∥∥∥∥ < µ,

for any x ∈ Cw(I, E) satisfying ‖x‖ ≤ b. Put J = [0, a], denote by Cw(J,E)
the space of weakly continuous functions J −→ E, endowed with the topology of

weak uniform convergence, and by B̃ the set of all weakly continuous functions

J −→ Bb, where Bb = {y ∈ E : ‖y‖ ≤ b}. We shall consider B̃ as a topological

subspace of Cw(J,E). It is clear that the set B̃ is convex and closed. Put

Fx(t) = h(t) +

∫ t

0

K(t, s)f(s, x(s)) ds on J.

We require that F : B̃ −→ B̃ is continuous.

1. Let t ∈ [0, a]. For any x∗ ∈ E∗ such that ‖x∗‖ ≤ 1, and for any x ∈ B̃,

x∗Fx(t) = x∗h(t)+
∫ t

0 K(t, s)x∗f(s, x(s)) ds. Using Lemma 3.2 and the definition
of the Riemann-Stieltjes integral, we obtain

∣∣∣∣
∫ t

0

K(t, s)x∗f(s, x(s)) ds

∣∣∣∣

=

∣∣∣∣K(t, t)(HK)

∫ t

0

x∗f(s, x(s))−

∫ t

0

(
(HK)

∫ s

0

x∗f(τ, x(τ)) dτ

)
dKt

∣∣∣∣

≤ |K(t, t)| sup
υ∈[0,t]

∥∥∥∥
∫ υ

0

f(s, x(s)) ds

∥∥∥∥+ (V [Kt; 0, t]) sup
s∈[0,t]

∥∥∥∥
∫ s

0

f(τ, x(τ)) dτ

∥∥∥∥
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≤ |K(t, t)| sup
υ∈J

∥∥∥∥
∫ υ

0

f(s, x(s)) ds

∥∥∥∥+ (V [Kt; 0, t]) sup
s∈J

∥∥∥∥
∫ s

0

f(τ, x(τ)) dτ

∥∥∥∥

≤ ‖K(t, ·)‖BV sup
s∈J

∥∥∥∥
∫ s

0

f(τ, x(τ)) dτ

∥∥∥∥ .

Here Kt(·) denotes K(t, ·) and V [Kt; 0, t] denotes the total variation of Kt on the
interval [0, t]. Hence,

|x∗Fx(t)| ≤ c+ dµ ≤ b.

Then

sup{|x∗Fx(t)| , x
∗ ∈ E∗, ‖x∗‖ ≤ 1} ≤ b.

So, Fx(t) ∈ Bb.

2. Now, we will show that F (B̃) is a strongly equicontinuous subset.
Let t, τ ∈ J . We suppose without loss of generality that τ < t and that

Fx(t) 6= Fx(τ). By the Hahn-Banach theorem, there exists x∗ ∈ E∗, such that
‖x∗‖ = 1 and

‖Fx(t)− Fx(τ)‖ = x∗(Fx(t)− Fx(τ))

≤ |x∗(h(t)) − x∗(h(τ))| +

∣∣∣∣(HK)

∫ τ

0

(K(t, s)−K(τ, s))x∗f(s, x(s)) ds

∣∣∣∣

+

∣∣∣∣(HK)

∫ t

τ

K(t, s)x∗f(s, x(s)) ds

∣∣∣∣

≤ |x∗(h(t)) − x∗(h(τ))| + ‖K(t, ·)−K(τ, ·)‖BV sup
υ∈J

∥∥∥∥
∫ υ

0

f(s, x(s)) ds

∥∥∥∥

+ d sup
ζ∈[τ,t]

∥∥∥∥∥

∫ ζ

τ

f(s, x(s)) ds

∥∥∥∥∥ .

So, the result follows from hypotheses (1), (2) and (4.1).

3. Now we will prove the continuity of F .
Since f is weakly continuous, we have by the Krasnoselskii type Lemma (see

[44]) that for any x∗ ∈ E∗, ε > 0 and x ∈ B̃ there exists a weak neighborhood U

of 0 in E such that |x∗(f(t, x(t))− f(t, y(t)))| ≤ ε
ad

for t ∈ J and y ∈ B̃ such that
x(s)−y(s) ∈ U for all s ∈ J . Because the function s 7−→ x∗(f(s, x(s))−f(s, y(s)))
is HK-integrable on J and the function s 7−→ ε

a d
is Riemann integrable on J , then

by [22, Corollary 4.62], s 7−→ x∗(f(s, x(s)) − f(s, y(s))) is absolutely Henstock-
Kurzweil-integrable on J and for all t ∈ J we have:

∣∣∣∣(HK)

∫ t

0

K(t, s)x∗(f(s, x(s)) − f(s, y(s)))

∣∣∣∣ ds

≤ sup
ζ∈I

‖K(ζ, ·)‖BV sup
τ∈[0,t]

(∣∣∣∣(HK)

∫ τ

0

x∗(f(s, x(s)) − f(s, y(s))) ds

∣∣∣∣
)
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≤ d sup
τ∈J

(
(HK)

∫ τ

0

|x∗(f(s, x(s)) − f(s, y(s)))| ds

)
≤ ε.

Thus F is continuous.

We have already shown that F (B̃) is bounded and strongly equicontinuous,

thus by Lemma 2.1 in [27], Q = convF (B̃) (the closed convex hull of F (B̃) in
C(J,E)) is also bounded and strongly equicontinuous. Clearly F (Q) ⊂ Q ⊂

B̃. We claim that F is β-condensing on Q. Indeed, let V be a subset of Q

such that β(V ) 6= 0, V (t) = {x(t), x ∈ V } and F (V )(t) = {Fx(t), x ∈ V }.
Because V is bounded and strongly equicontinuous, we have by Lemma 2.1(b)
that supt∈J β(V (t)) = β(V ) = β(V (J)). Fix t ∈ J and ε > 0. From the continuity
of the functions s 7−→ K(t, s) and s 7−→ L(s, β(V )) on I, it follows that there
exists δ > 0 such that

(4.5) |K(t, τ)L(q, β(V ))−K(t, s)L(s, β(V ))| < ε,

if |τ − s| < δ, |q − s| < δ, q, s, τ ∈ I. Divide the interval [0, t] into n subintervals
0 = t0 < t1 . . . < tn = t so that ti− ti−1 < δ (i = 1, . . . , n) and put Ti = [ti−1, ti].
For each i, there exists si ∈ Ti such that L(si, β(V )) = sups∈Ti

L(s, β(V )). By
Theorem 3.1(b) and Theorem 3.2, we have

Fx(t) = h(t) +

n∑

i=1

∫ ti

ti−1

K(t, s)f(s, x(s)) ds

∈ h(t) +

n∑

i=1

(ti − ti−1)conv{K(t, s)f(s, x(s)), s ∈ Ti, x ∈ V }.

Using (4.2), (4.3) and the proprieties of the measure of weak non-compactness,
we have

β(F (V )(t)) ≤
n∑

i=1

(ti − ti−1)β(conv{K(t, s)f(s, x(s)), s ∈ Ti, x ∈ V })

≤
n∑

i=1

(ti − ti−1)β({K(t, s)f(s, x(s)), s ∈ Ti, x ∈ V })

≤
n∑

i=1

(ti − ti−1) sup
s∈Ti

|K(t, s)|β(f(Ti × V (Ti)))

≤
n∑

i=1

(ti − ti−1) |K(t, τi)|L(si, β(V )),
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here for each i, τi ∈ Ti is a number such that |K(t, τi)| = sups∈Ti
|K(t, s)|. Hence,

using (4.5), we have

β(F (V )(t)) ≤
n∑

i=1

(
(HK)

∫ ti

ti−1

|K(t, τi)L(si, β(V ))−K(t, s)L(s, β(V ))| ds

)

+

n∑

i=1

(
(HK)

∫ ti

ti−1

|K(t, s)|L(s, β(V )) ds

)

≤ εt+ (HK)

∫ t

0

|K(t, s)|L(s, β(V )) ds

≤ εt+ sup

{
(HK)

∫ t′

0

|K(t, s)|L(s, β(V )), t′ ∈ J

}
.

As the last inequality is satisfied for every ε > 0, we get

β(F (V )(t)) ≤ sup

{
(HK)

∫ t′

0

|K(t, s)|L(s, β(V ))ds, t′ ∈ J

}
.

Applying Lemma 2.1(b) again for the bounded strongly equicontinuous subset
F (V ), we obtain β(F (V )) = supt∈J{F (V )(t)}. Accordingly

β(F (V )) ≤ sup

{
(HK)

∫ t′

0

|K(t, s)|L(s, β(V )) ds, t′ ∈ J

}
< β(V ),

so, F is β-condensing on Q. Since Q is a closed convex subset of C(J,E), the set
Q is weakly closed, and using similar arguments as in the proof of Theorem 2.2, we
can suppose that Q is a closed convex subset of Cw(J,E) and so by Corollary 2.1

the set of the fixed points of F in B̃ is non-empty and compact. This means that
there exists a set of weakly continuous solutions of the problem (4.4) on J which
is non-empty and compact in Cw(J,E). �
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