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Abstract. We extend a result of Rangaswamy about regularity of endomorphism rings
of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-
injective modules over compact rings modulo radical is proved. A characterization of torsion
LCA groups A for which Endc(A) is regular is given.
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1. Introduction

Regular in the sense of von Neumann rings form an important subclass of the

class of associative rings. Recall that a ring R is called regular in the sense of von

Neumann if for every a ∈ R there exists b ∈ R such that aba = a. We study in this

paper the following problems:

(i) What are the topological Abelian groups in which every endomorphic image is

a direct summand?

(ii) What are the locally compact Abelian groups for which the ring Endc(A) is

regular?

Rangaswamy studied analogous problems for abstract Abelian groups [8]. We note

that Problem (i) has no complete answer in the class of abstract Abelian groups. We

give a characterization of arbitrary topological Abelian groups whose rings Endc(A)

arem-regular. A complete characterization of torsion (in abstract sense) LCA groups
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with regular Endc(A) is given (Theorem 3.13). We give examples of: (i) a LCA

group (A, T ) for which End(A) is not regular but Endc(A) is regular; (ii) a LCA

group (A, T ) for which End(A) is regular but Endc(A) is not.

We give a nontrivial example of a linearly compact Abelian group whose ring

of continuous endomorphisms is regular. We indicate a natural ring topology for

Endc(A) for any linearly compact Abelian group which is analogous to the compact-

open topology.

2. Notation and conventions

P stands for the set of all positive prime numbers and N is the set {1, 2, 3, . . .}.

If m, n ∈ N, m 6 n, then [m, n] := {m, m + 1, . . . , n}. If f : X → Y is a mapping

and Z ⊆ X, then by f ↾Z we denote the restriction of f on Z. All topological rings

are assumed to be Hausdorff, associative and with identity. Topological groups are

assumed to be Hausdorff by default. If A is an internal direct sum of subgroups B

and C, we write A = B ⊕ C. R1
∼=top R2 means that the topological rings R1 and

R2 are isomorphic. We denote by Endc(A) the ring of all continuous endomorphisms

of a topological Abelian group A. No topology on Endc(A) is assumed. When

A is a locally compact Abelian group (briefly, LCA), the ring Endc(A) furnished

with the compact-open topology is a topological ring. The additive group of a

ring R is denoted by R(+) and the center by Z(R). Let {Rα}α∈Ω be a family of

topological rings. Fix for each α ∈ Ω an open subring Sα ⊆ Rα. Consider the

subring A ⊆
∏

α∈Ω

Rα of the Cartesian product of Rα, A = {(xα) ∈
∏

α∈Ω

Rα | xα ∈ Sα

for almost all α ∈ Ω}. Then the product
∏

α∈Ω

Sα of topological rings Sα, α ∈ Ω,

defines a ring topology on A. This ring A is called the local direct product of Rα

with respect to Sα, α ∈ Ω and is denoted by
∏

α∈Ω

(Rα : Sα) (see [2], p. 46 and [10],

p. 211). It is noteworthy that if all Sα are locally compact and almost all Sα are

compact, then the ring
∏

α∈Ω

(Rα : Sα) is locally compact.

3. Regular rings of continuous endomorphisms of LCA groups

Lemma 3.1. Let A be a topological Abelian not necessarily Hausdorff group and

α an idempotent of Endc(A). Then im α and kerα are direct summands of A.

P r o o f. Since a = αa + a − αa ∈ im α + kerα for each a ∈ A, we obtain that

A = imα + kerα. If x ∈ im α ∩ kerα, then there exists y ∈ A such that x = αy,

hence x = αx = 0 = α2y = αy. Therefore A = imα ⊕ kerα (a direct sum in the

algebraic sense).
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We claim that this decomposition is topological. It suffices to show that U ∩αA+

U ∩ (1 − α)A is a neighborhood of 0A for every neighborhood U of 0A. Let V be a

neighborhood of 0A such that αV ⊆ U , (1 − α)V ⊆ U . Then v = αv + (1 − α)v ∈

U ∩αA+U ∩ (1−α)A for every v ∈ V , hence V ⊆ (U ∩αA)+ (U ∩ (1−α)A), which

implies that the last set is a 0-neighborhood for A. �

Recall that an element a of a ring is called m-regular if there exists a positive

integer m such that am is regular. A ring is π-regular if each of its elements is m-

regular. A ring is called m-regular if all its elements are m-regular for a fixed m (see

[5], p. 239).

Theorem 3.2. Let A be a topological Abelian group and α ∈ Endc(A). Then

α is an m-regular element if and only if imαm and kerαm are topological direct

summands of A.

P r o o f. (⇒) There exists β ∈ Endc(A) such that αm = αmβαm. Then

im αm = αmA = αmβαmA ⊆ im(αmβ) ⊆ imαm,

which implies im αm = im(αmβ). According to Lemma 3.1 imαm is a topological

direct summand.

Furthermore, kerαm ⊆ ker(βαm) ⊆ kerαm, therefore kerαm = ker(βαm).

Lemma 3.1 implies that ker(βαm) is a topological direct summand.

(⇐) Let B = imαm, C = kerαm. There exists a subgroup D of A such that

A = C ⊕ D is a direct topological sum of subgroups C and D. Then αm ↾D is a

continuous isomorphism of D on B:

im αm = αmA = αm(C ⊕ D) = αmD,

therefore (αm ↾D)D = B. If x ∈ D, (αm ↾D)x = 0, then αmx = 0, hence x ∈ C∩D =

0, and so αm ↾D is an isomorphism of D on B.

The mapping αm ↾D is open on its image: Indeed, the mapping

A → αmA,

a 7→ αma,

is open since it coincides with the projection of A to αmA. Furthermore, if W is a

neighborhood of 0D, then C +W is a neighborhood of 0A. It follows that there exists

a neighborhood U of 0A such that αm(C + W ) ⊇ U ∩ αmA = U ∩ B, which implies

αmW ⊇ U ∩ B, hence (αm ↾B)W ⊇ U ∩ B and so αm ↾D is open on its image.
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Define a topological isomorphism γ : B → D, b 7→ (αm ↾D)−1b. Let θ ∈ Endc(A)

be a continuous extension of γ. Then αmθαm = αm.

Indeed, if a ∈ A, then αma ∈ B; let a = c + d, c ∈ C and d ∈ D. Then

αma = αmd = (αm ↾D)d, hence d = (αm ↾D)−1(αma) = γ(αma) = θαma,

therefore αma = αmθαma. Since a was arbitrary, αm = αmθαm. �

Corollary 3.3. The ring Endc(A) of all continuous endomorphisms of a topolog-

ical Abelian group A is π-regular iff for every α ∈ Endc(A) there exists a positive

integer m such that im αm and kerαm are topological direct summands of A.

Corollary 3.4. The ring Endc(A) of all continuous endomorphisms of a topo-

logical Abelian group A is regular if and only if the image and the kernel of every

endomorphism are direct summands of the group.

Lemma 3.5. Let A be a topological Abelian group and let Endc(A) be regular.

If p ∈ P, x ∈ A and p2x = 0 then px = 0.

P r o o f. Indeed, consider ε : A → A, a 7→ pa. There exists β ∈ Endc(A) such

that ε = εβε. Since ε is in the center of Endc(A), ε = βε2. Then p2x = 0 implies

ε2x = 0, hence

βε2x = εx = px = 0.

�

Corollary 3.6. If A is a topological Abelian group, Endc(A) is regular and A is

a p-group then px = 0 for every x ∈ A.

Theorem 3.7. Let A be a torsion free LCA-group. If Endc(A) is regular then

Endc(A)(+) is divisible.

P r o o f. Let 0 6= n ∈ N and α ∈ Endc(A). Let εn : A → A, a 7→ na. Then

εn ∈ Z(Endc(A)). There exists β ∈ Endc(A) such that εnα = εnαβεnα. If a ∈ A,

we obtain that εn(α − εnαβα)a = 0, hence n[(α − εnαβα)a] = 0. Since n 6= 0, we

obtain (α − εnαβα)a = 0. Then α = n(αβα), therefore Endc(A) is divisible. �
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Corollary 3.8. If Endc(A)(+) is divisible then A is a divisible group.

P r o o f. For 1A = 1 ∈ Endc(A) and n ∈ N there exists β ∈ Endc(A) such that

1 = nβ. If a ∈ A, then a = n(βa), hence A(+) is divisible. �

Example 3.9. Let p ∈ P and A =
∏

i∈ω

(Ri : Si) where Ri = Qp, Si = Zp. Then

Endc(A) is not regular.

According to Corollary 3.8 it suffices to show that A is not divisible. Let a = (1) ∈
∏

i∈ω

Si ⊆ A. Assume that there exists x ∈ A such that px = a. Then x = (xi) and

there exists n0 such that xi ∈ Zp for i > n0. Then pxi = 1, a contradiction.

Recall that a subgroupB of a topological groupA is called fully invariant provided

αB ⊆ B for every continuous endomorphism α of A.

Lemma 3.10. If the locally compact Abelian group A is a direct sum A = A1⊕A2

of fully invariant subgroups A1 and A2 then Endc(A) ∼=top Endc(A1) × Endc(A2).

P r o o f. Define f : Endc(A) → Endc(A1) × Endc(A2), α 7→ (α ↾A1
, α ↾A2

).

f is a morphism:

f(α + β) = ((α + β) ↾A1
, (α + β) ↾A2

)

= (α ↾A1
+β ↾A1

, α ↾A2
+β ↾A2

)

= (α ↾A1
, α ↾A2

) + (β ↾A1
, β ↾A2

)

= fα + fβ;

f(αβ) = ((αβ) ↾A1
, (αβ) ↾A2

)

= (α ↾A1
β ↾A1

, α ↾A2
β ↾A2

)

= (α ↾A1
, α ↾A2

)(β ↾A1
, β ↾A2

)

= fαfβ.

f is injective: Let fα = 0. Then (α ↾A1
, α ↾A2

) = 0 which implies that α = 0.

f is surjective: Obviously.

f is continuous: Let T (K1, V1) × T (K2, V2) be a canonical neighborhood of 0 of

Endc(A1)×Endc(A2), where Ki is a compact subset of Ai and Vi is a neighborhood

of 0 of Ai, i ∈ [1, 2]. We can consider without loss of generality that 0 ∈ K1 ∩ K2.

If k1 ∈ K1, then α ↾A1
(k1) ∈ α(K) ⊆ V1, hence α ↾A1

(k1) ∈ T (K1, V1). We have

proved that fT (K, V ) ⊆ T (K1, V1) × T (K2, V2).

f is open on its image: Let T (K, V ) be a canonical neighborhood of 0 of Endc(A).

We can assume that 0 ∈ K. Let U be a neighborhood of 0 such that U + U ⊆ V .

Then fT (K, V ) ⊇ T (K1, U ∩ A1) × T (K2, U ∩ A2), where Ki = πi(K) and πi is the
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projection of A to Ai, i ∈ [1, 2]. Indeed, let (α1, α2) ∈ T (K1, U∩A1)×T (K2, U∩A2).

We have fα = (α1, α2), where α(a1, a2) = (α1(a1), α2(a2)). We claim that α ∈

T (K, V ). Indeed, let k = (k1, k2) ∈ K. Then

α(k) = (α1(k1), α2(k2))

= (α1(k1), 0) + (0, α2(k2)) ∈ U + U ⊆ V, hence α ∈ T (K, V ).

�

Rangaswamy [8] has proved that the ring End(A) where A = R ×
∏

p∈P

Z(p) is

not regular. We claim that if A is viewed as a topological group with the product

topology where R is furnished with the usual topology and each Z(p) with the discrete

topology, then Endc(A) is regular. Indeed, the subgroups R and
∏

p∈P

Z(p) are fully

invariant. According to Lemma 3.10 Endc(A) ∼=top Endc(R) × Endc

(

∏

p∈P

Z(p)
)

.

The topological rings Endc

(

∏

p∈P

Z(p)
)

and End
((

∏

p∈P

Z(p)
)∗)

are anti-isomorphic

[9]. It follows from the duality theory that
(

∏

p∈P

Z(p)
)∗

∼=
⊕

p∈P

Z(p)∗ ∼=
⊕

p∈P

Z(p).

Each subgroup Z(p) of
⊕

p∈P

Z(p) is fully invariant. According to ([1], Proposition 1)

Endc

(

⊕

p∈P

Z(p)
)

is topologically isomorphic to
∏

p∈P

End(Z(p)) ∼=top

∏

p∈P

Fp. It is well-

known that Endc(R) ∼=top R, therefore the ring Endc(A) is regular.

We will give now an example of a group whose ring of all endomorphisms is regular,

but the ring of all continuous endomorphisms is not regular.

Proposition 3.11. Let A = (Z/pZ)m ⊕
(

⊕

n

Z/pZ
)

where p ∈ P and m, n are

infinite cardinal numbers. Then the ring Endc(A) is not regular.

P r o o f. We can assume without loss of generality that m = n = ω. Since

Z(p)m is separable, there exists an element γ ∈ Endc(A) whose image is not closed.

According to Corollary 3.3 Endc(A) is not regular. �

Remark 3.12. If A = (Z/pZ)m ⊕
(

⊕

n

Z/pZ
)

where p ∈ P and m, n are infinite

cardinal numbers, then the ring xEndc(A) is prime.

Indeed, let α, β ∈ Endc(A) be such that α Endc(A)β = 0. Assume that β 6= 0.

Let x ∈ A be such that βx 6= 0. We claim that α = 0. Assume the contrary; there

exists y ∈ A such that αy 6= 0. Let γ ∈ Endc(A) be such that γ(βx) = y. The

existence of γ follows from the properties of the group A. Then αγβ(x) = α(y) 6= 0,

a contradiction.
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Open question: For which LCA groups the rings End(A) and Endc(A) are simul-

taneously regular?

Let A be an Abelian group and p ∈ P. Then by Ap we denote the p-primary

component of A.

Theorem 3.13. Let A be a torsion in the abstract sense LCA group and A =
⊕

p∈P

Ap a decomposition in p-primary components. The following statements are

equivalent:

(i) Endc(A) is regular;

(ii) every Ap is an elementary group and there exists a finite subset P0 ⊂ P such

that A =
(

∏

p∈P0

Ap

)

⊕
(

⊕

q∈P\P0

Aq

)

(a topological decomposition), where Ap,

p ∈ P0, are infinite compact groups and
⊕

q∈P\P0

Aq a discrete subgroup.

P r o o f. (i ⇒ ii) It is well-known that A =
⊕

p∈P

Ap (an algebraic direct sum).

Since A is a torsion locally compact group, it is totally disconnected. Let V be

a compact open subgroup of A. There exists k ∈ N such that kx = 0 for all

x ∈ V . This implies that there exists n ∈ N such that V ∩
(

⊕

i>n+1

Api

)

= 0. Then

V = (V ∩Ap1
)⊕ . . .⊕ (V ∩Apn

). We can assume without loss of generality that each

Api
, i ∈ [1, n] is non-discrete. This implies that the topological group A is a direct

product of its compact open subgroup
∏

p∈P0

Ap and the discrete subgroup
⊕

q∈P\P0

Aq.

According to Corollary 3.6, every group Ap is an elementary group.

(ii ⇒ i) Let A = Ap1
⊕ . . . ⊕ Apn

⊕
(

⊕

i>n+1

Api

)

be a topological decomposition

of A where Ap1
, . . . , Apn

are non-discrete compact elementary groups. Then each of

the subgroups Ap1
, . . . , Apn

,
⊕

i>n+1

Api
is fully invariant. By Lemma 3.10 Endc(A)

is topologically isomorphic to Endc(Ap1
) × . . . × Endc(Apn

) × Endc

(

⊕

i>n+1

Api

)

.

By [9], Endc(Api
) is topologically anti-isomorphic to Endc(A

∗
pi

), i ∈ [1, n]. Since

Endc(A
∗
pi

) is regular, the ring Endc(Api
) is regular for each i ∈ [1, n]. By Lemma 3.10,

Endc

(

⊕

i>n+1

Api

)

= End
(

⊕

i>n+1

Api

)

∼=top

∏

i>n+1

End(Api
). Since each End(Api

) is

regular, the ring End
(

⊕

i>n+1

Api

)

is regular. This implies that Endc(A) is regular.

�
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4. Regular rings of quasi-injective discrete modules

over compact rings

The following concept for discrete topological modules is analogous to the concept

of a quasi-injective module in the theory of modules. A left discrete topological

R-module M is called quasi-injective provided every homomorphism f : N → M ,

where N is a submodule of M , has an extension to an endomorphism of M .

We extend in this section the known result (see [3], [4], [6], [7], [11], [12]) about

the ring of endomorphisms of quasi-injective modules to the case of discrete quasi-

injective modules over compact rings. The proof of the next theorem is completely

analogous to the proof of Theorem 19.27 from [3] and we omit it.

Theorem 4.1. Let IR be a quasi-injective R-module, S = End(IR) and N =

{α ∈ S : α annihilates a large submodule of IR}.

Then

(i) S/N is regular in the sense of von Neumann;

(ii) N is the Jacobson radical of S;

(iii) idempotents modulo N can be lifted in S.

5. An example of a linearly compact Abelian group with

regular ring of endomorphisms

The following fact is well-known; we recall it for convenience of the reader:

If A is a linearly compact group, B and C are two closed subgroups, then the

decomposition A = B ⊕ C is topological.

Consider the mapping B × C → A, (b, c) 7→ b + c. This mapping is a continuous

isomorphism since B × C is linearly compact and open, hence it is a topological

isomorphism.

Given any cardinal number α and a prime p, A will designate the group Qα
p where

Qp is the additive group of the locally compact field of p-adic numbers.

Lemma 5.1. Every subspace Qpa, a ∈ A is a topological direct summand.

P r o o f. The group A carries a structure of a Qp topological vector space, which

will be used below. The mapping Qp → Qα
p , α 7→ αa is continuous, hence Qpa is a

linearly compact subgroup. Since every linearly compact Abelian group is complete

(see [13], p. 233, Theorem 28.5), it follows that Qpa is closed. Let V be a closed

subspace of codimension 1 such that a /∈ V . Then Qpa ∩ V = 0 and A = Qpa ⊕ V

(an algebraic direct sum). It follows from the above mentioned fact that it is a

topological direct sum. �
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Lemma 5.2. If B is a closed vector subspace of A then B is a topological direct

summand.

P r o o f. There exists at least one closed vector subspace C such that A = B+C;

we can take C = A. We can assume by linear compactness of A that C is minimal

with this property. We claim that B ∩ C = 0. Assume the contrary. Let 0 6= x ∈

B ∩C. Then Qpx is a direct summand of C. There exists a vector subspace C1 such

that Qpx ⊕ C1 = C is a topological direct summand. Then

A = B + C = B + Qpx + C1 = B + C1,

a contradiction. �

Lemma 5.3. If α ∈ Endc(A), then α is an endomorphism of a Qp-vector space.

P r o o f. Since A is a divisible group, α(ra) = rα(a) for every r ∈ Q. Since Q is

dense in Qp, this equality is true for every r ∈ Qp. �

Lemma 5.4. If α ∈ Endc(A), then imα and kerα are closed Qp-subspaces of A.

P r o o f. Follows from Lemma 5.3. �

Theorem 5.5. Endc(A) is a regular ring.

P r o o f. Follows from the above lemmas. �

Theorem 5.6. Let A be a locally linearly compact Abelian group. Then Endc(A)

with the topology given by the family {T (K, V )}, where K runs over all linearly

compact subgroups, and V runs over all open subgroups, is a topological ring.

P r o o f. T (K, V ) is a subgroup and {T (K, V )} gives a Haussdorf group topology

on Endc(A).

i) Let both T (K, V ) and f ∈ Endc(A) be arbitrary. There exists an open lin-

early compact subgroup V1, f(V1) ⊆ V . Then fT (K, V1) ⊆ T (K, V ): indeed,

f1 ∈ T (K, V1) implies that ff1(K) ⊆ f(V1) ⊆ V .

ii) T (f(K), V )f ⊆ T (K, V ).

Indeed, if f1 ∈ T (f(K), V ), then f1f(K) ⊆ V and so f1f ∈ T (K, V ).

iii) We can assume without loss of generality that K ⊇ V . Then T (K, V ) is a

subring: if f1, f2 ∈ T (K, V ), then f1f2(K) ⊆ f1(V ) ⊆ f1(K) ⊆ V . �

Open question: Classify all closed left (two-sided) ideals of Endc(A).

Acknowledgement. I am grateful to Professor Mihail Ursul for his kind interest

in my work.
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