Czechoslovak Mathematical Journal

Joe Gildea
 The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}} A_{4}$

Czechoslovak Mathematical Journal, Vol. 61 (2011), No. 2, 531-539

Persistent URL: http://dml.cz/dmlcz/141551

Terms of use:

© Institute of Mathematics AS CR, 2011

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

THE STRUCTURE OF THE UNIT GROUP OF THE GROUP ALGEBRA $\mathbb{F}_{2^{k}} A_{4}$

Joe Gildea, Sligo

(Received March 23, 2010)

Abstract

The structure of the unit group of the group algebra of the group A_{4} over any finite field of characteristic 2 is established in terms of split extensions of cyclic groups.

Keywords: group ring, group algebra, dihedral group, cyclic group
MSC 2010: 16U60, 16S34, 20C05, 15A33

1. INTRODUCTION

Let $\mathscr{U}(K G)$ be the unit group of the group algebra $K G$ of the field K over the group G. The homomorphism $\varepsilon: K G \longrightarrow K$ given by $\varepsilon\left(\sum_{g \in G} a_{g} g\right)=\sum_{g \in G} a_{g}$ is called the augmentation mapping of $K G$. The normalized unit group of $K G$ denoted by $V(K G)$ consists of all the invertible elements of $R G$ of augmentation 1 . For further details on group algebras see [9].

It is well known that if G is a finite p-group and K is a field of characteristic p, then $V(K G)$ is a finite p-group of order $|K|^{|G|-1}$. Sandling in [10] provides a basis for $V\left(\mathbb{F}_{p} G\right)$ where G is an abelian p-group and \mathbb{F}_{p} is the Galois field of p-elements. Let D_{8} be the dihedral group of order 8 . The structures of $\mathscr{U}\left(\mathbb{F}_{2} D_{8}\right)$ and $\mathscr{U}\left(\mathbb{F}_{2^{k}} D_{8}\right)$ are established in [11] and [5], respectively.

The map $*: K G \longrightarrow K G$ defined by $\left(\sum_{g \in G} a_{g} g\right)^{*}=\sum_{g \in G} a_{g} g^{-1}$ is an antiautomorphism of $K G$ of order 2. An element v of $V(K G)$ satisfying $v^{-1}=v^{*}$ is called unitary. We denote by $V_{*}(K G)$ the subgroup of $V(K G)$ formed by the unitary elements of $K G$. In [2] a basis for $V_{*}(K G)$ is constructed for any field of characteristic $p>2$ and any finite abelian p-group.

The structure of $V_{*}\left(\mathbb{F}_{2} G\right)$ is established in [1] for all groups of order 8 and 16 and the structure of $V_{*}\left(\mathbb{F}_{2} Q_{8}\right)$ is established in [6] where Q_{8} is the quaternion group of order 8. Additionally, the order of $V_{*}\left(\mathbb{F}_{2^{k}} G\right)$ is determined for special cases of G in [4]. In [3], Bovdi and Kovács give conditions for $V_{*}(K G)$ to be normal in $V(K G)$.

Let $M_{n}(R)$ be the ring of $n \times n$ matrices over a ring R. Using an isomorphism between $R G$ and a subring of $M_{n}(R)$ and other techniques, we establish the structure of $\mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right)$ where A_{4} is the group of even permutations on 4 elements. Our main result is
$\mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right) \cong \begin{cases}{\left[\left(\left(C_{2} \times C_{4}{ }^{2}\right) \rtimes C_{4}\right) \rtimes C_{4}\right] \rtimes C_{3}} & \text { when } k=1, \\ {\left[\left(\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right] \rtimes C_{2^{k}-1}{ }^{2}\right] \times C_{2^{k}-1}} & \text { when } 3 \mid\left(2^{k}-1\right), \\ {\left[\left[\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right] \rtimes C_{2^{2 k}-1}\right] \times C_{2^{k}-1}} & \text { otherwise. }\end{cases}$
In [12] it is shown that $V_{1}=1+J\left(F A_{4}\right)$ is a nilpotent group of class 2 where J is the Jacobson Radical of $F A_{4}$ and F is any field of characteristic 2 .

2. Background

Definition. A circulant matrix over a ring R is a square $n \times n$ matrix of the form

$$
\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
a_{n} & a_{1} & a_{2} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{1} & \ldots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{2} & a_{3} & a_{4} & \ldots & a_{1}
\end{array}\right)
$$

where $a_{i} \in R$.
Definition. Define the 2×2 circulant block matrix over a ring R to be

$$
\mathrm{CB}_{2,2}(a, b, c, d)=\left(\begin{array}{cccc}
a & b & c & d \\
b & a & d & c \\
c & d & a & b \\
d & c & b & a
\end{array}\right)
$$

where $a, b, c, d \in R$.
For further details on circulant matrices see Davis [7].
If $G=\left\{g_{1}, \ldots, g_{n}\right\}$, then denote the matrix $M(G)=\left(g_{i}^{-1} g_{j}\right)$ where $i, j=1, \ldots, n$.
Similarly, if $w=\sum_{i=1}^{n} \alpha_{g_{i}} g_{i} \in R G$, then denote the matrix $M(R G, w)=\left(\alpha_{g_{i}-1 g_{j}}\right)$, which is called the $R G$-matrix of w.

Lemma 2.1 (see [8]). Let G be a finite group of order n. There is a ring isomorphism between $R G$ and the $n \times n G$-matrices over R, which is given by $\sigma: w \mapsto M(R G, w)$.

Definition. Define the alternating group A_{4} to be the group of even permutations on 4 elements.

Example. Let $a=(12)(34), b=(13)(24), c=(123)$ and let

$$
\kappa=\sum_{i=1}^{3}\left(\alpha_{4 i-3}+\alpha_{4 i-2} a+\alpha_{4 i-1} b+\alpha_{4 i} a b\right) c^{i-1} \in \mathbb{F}_{2^{k}} A_{4},
$$

where $\alpha_{i} \in \mathbb{F}_{2^{k}}$. Then

$$
\sigma(\kappa)=\left(\begin{array}{lll}
A & B & C \\
D & E & F \\
G & H & I
\end{array}\right)
$$

where

$$
\begin{aligned}
A & =\mathrm{CB}_{2,2}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right), & B=\mathrm{CB}_{2,2}\left(\alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}\right) \\
C & =\mathrm{CB}_{2,2}\left(\alpha_{9}, \alpha_{10}, \alpha_{11}, \alpha_{12}\right), & D=\mathrm{CB}_{2,2}\left(\alpha_{9}, \alpha_{12}, \alpha_{10}, \alpha_{11}\right), \\
E & =\mathrm{CB}_{2,2}\left(\alpha_{1}, \alpha_{4}, \alpha_{2}, \alpha_{3}\right), & F=\mathrm{CB}_{2,2}\left(\alpha_{5}, \alpha_{8}, \alpha_{6}, \alpha_{7}\right) \\
G & =\mathrm{CB}_{2,2}\left(\alpha_{5}, \alpha_{7}, \alpha_{8}, \alpha_{6}\right), & H=\mathrm{CB}_{2,2}\left(\alpha_{9}, \alpha_{11}, \alpha_{12}, \alpha_{10}\right), \\
I & =\mathrm{CB}_{2,2}\left(\alpha_{1}, \alpha_{3}, \alpha_{4}, \alpha_{2}\right) &
\end{aligned}
$$

where $\alpha_{i} \in \mathbb{F}_{2^{k}}$.
Let R_{1} and R_{2} be rings. Then $R_{1} \oplus R_{2}$ is the direct sum of R_{1} and R_{2}. It is well known that $\mathbb{F}_{p^{k}} C_{3} \cong \mathbb{F}_{p^{k}} \oplus \mathbb{F}_{p^{k}} \oplus \mathbb{F}_{p^{k}}$ if $3 \mid\left(p^{k}-1\right)$ and $\mathbb{F}_{p^{k}} C_{3} \cong \mathbb{F}_{p^{k}} \oplus \mathbb{F}_{p^{2 k}}$ if $3 \nmid\left(p^{k}-1\right)$.

3. The Structure of $\mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right)$

Define the group epimorphism $\theta: \mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right) \longrightarrow \mathscr{U}\left(\mathbb{F}_{2^{k}} C_{3}\right)$ by

$$
\sum_{i=1}^{3}\left(\alpha_{4 i-3}+\alpha_{4 i-2} a+\alpha_{4 i-1} b+\alpha_{4 i} a b\right) c^{i-1} \mapsto \sum_{i=1}^{4} \alpha_{i}+\sum_{j=1}^{4} \alpha_{j+4} x+\sum_{k=1}^{4} \alpha_{k+8} x^{2}
$$

where $C_{3}=\left\langle x \mid x^{3}=1\right\rangle$ and $\alpha_{i} \in \mathbb{F}_{2^{k}}$.

Define the group homomorphism $\psi: \mathscr{U}\left(\mathbb{F}_{2^{k}} C_{3}\right) \longrightarrow \mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right)$ by $\gamma+\beta x+\delta x^{2} \mapsto$ $\gamma+\beta c+\delta c^{2}$ where $\gamma, \beta, \delta \in \mathbb{F}_{2^{k}}$. Then

$$
\theta \circ \psi\left(\gamma+\beta x+\delta x^{2}\right)=\theta\left(\gamma+\beta c+\delta c^{2}\right)=\gamma+\beta x+\delta x^{2}
$$

where $\gamma, \beta, \delta \in \mathbb{F}_{2^{k}}$. Therefore, $\mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right)$ is a split extension of $\mathscr{U}\left(\mathbb{F}_{2^{k}} C_{3}\right)$ by $\operatorname{ker}(\theta)$.
Therefore, $\mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right) \cong H \rtimes \mathscr{U}\left(\mathbb{F}_{2^{k}} C_{3}\right)$ where $H \cong \operatorname{ker}(\theta)$. Let

$$
\kappa=\sum_{i=1}^{3}\left(\alpha_{4 i-3}+\alpha_{4 i-2} a+\alpha_{4 i-1} b+\alpha_{4 i} a b\right) c^{i-1} \in \mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right),
$$

then $\kappa \in H$ if and only if $\sum_{i=1}^{4} \alpha_{i}=1, \sum_{j=1}^{4} \alpha_{j+4}=0, \sum_{l=1}^{4} \alpha_{l+8}=0$ where $\alpha_{i} \in \mathbb{F}_{2^{k}}$. Therefore, $|H|=\left(2^{3 k}\right)^{3}=2^{9 k}$.

Lemma 3.1. H has exponent 4.
Proof. Let

$$
h=1+\sum_{i=1}^{3}\left[\alpha_{i}+\alpha_{i+3} c+\alpha_{i+6} c^{2}+\left(\alpha_{3 i-2} a+\alpha_{3 i-1} b+\alpha_{3 i} a b\right) c^{i-1}\right] \in H,
$$

where $\alpha_{i} \in \mathbb{F}_{2^{k}}$. Then

$$
\sigma\left(h^{4}\right)=\left(\begin{array}{ccc}
A^{4} & 0 & 0 \\
0 & E^{4} & 0 \\
0 & 0 & I^{4}
\end{array}\right)
$$

where $A=\mathrm{CB}_{2,2}\left(\left(1+\alpha_{1}+\alpha_{2}+\alpha_{3}\right), \alpha_{1}, \alpha_{2}, \alpha_{3}\right), E=\mathrm{CB}_{2,2}\left(\left(1+\alpha_{1}+\alpha_{2}+\right.\right.$ $\left.\left.\alpha_{3}\right), \alpha_{3}, \alpha_{1}, \alpha_{2}\right), I=\operatorname{CB}_{2,2}\left(\left(1+\alpha_{1}+\alpha_{2}+\alpha_{3}\right), \alpha_{2}, \alpha_{3}, \alpha_{1}\right)$ where $\alpha_{i} \in \mathbb{F}_{2^{k}}$.
It can be shown easily that if $M=\mathrm{CB}_{2,2}\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)$, then $M^{4}=\left(\sum_{i=1}^{4} \tau_{i}{ }^{4}\right) I_{4}$ where $\tau_{i} \in \mathbb{F}_{2^{k}}$. Therefore

$$
A^{4}=\left(1+\alpha_{1}^{3}+\alpha_{2}^{3}+\alpha_{3}^{3}+\alpha_{1}^{3}+\alpha_{2}^{3}+\alpha_{2}^{3}\right) I_{4}=I_{4}=E^{4}=I^{4} .
$$

Additionally, it can be shown easily that $h^{2} \neq 1$. Therefore H has exponent 4 .

Lemma 3.2. Let R be the subset of H consisting of elements of the form

$$
1+(1+a)\left(\alpha_{1}(1+b)+\alpha_{2} c+\alpha_{3} b c\right)+\left[\alpha_{4}(1+a b)+\alpha_{5}(a+b)\right] c^{2}
$$

where $\alpha_{i} \in \mathbb{F}_{2^{k}}$. Then R is a group and $R \cong C_{2}{ }^{k} \times C_{4}{ }^{2 k}$.

Proof. Let

$$
r_{1}=1+(1+a)\left(\alpha_{1}(1+b)+\alpha_{2} c+\alpha_{3} b c\right)+\left[\alpha_{4}(1+a b)+\alpha_{5}(a+b)\right] c^{2} \in R
$$

and

$$
r_{2}=1+(1+a)\left(\beta_{1}(1+b)+\beta_{2} c+\beta_{3} b c\right)+\left[\beta_{4}(1+a b)+\beta_{5}(a+b)\right] c^{2} \in R
$$

where $\alpha_{i}, \beta_{j} \in \mathbb{F}_{2^{k}}$. Then

$$
\begin{aligned}
r_{1} r_{2}= & 1+(1+a)\left(\left(\alpha_{1}+\beta_{1}\right)(1+b)+\left(\alpha_{2}+\beta_{2}+\delta_{1}\right) c+\left(\alpha_{3}+\beta_{3}+\delta_{1}\right) b c\right) \\
& +\left[\left(\alpha_{4}+\beta_{4}+\delta_{2}\right)(1+a b)+\left(\alpha_{5}+\beta_{5}+\delta_{2}\right)(a+b)\right] c^{2}
\end{aligned}
$$

where $\delta_{1}=\left(\alpha_{4}+\alpha_{5}\right)\left(\beta_{4}+\beta_{5}\right)$ and $\delta_{2}=\left(\alpha_{2}+\alpha_{3}\right)\left(\beta_{2}+\beta_{3}\right)$. Therefore, R is closed under multiplication. Clearly $R \cong C_{2}{ }^{l} \times C_{4}{ }^{m}$ for some $l, m \in \mathbb{N}$.

Consider $C_{2}{ }^{l} \times C_{4}{ }^{m}$. The number of elements of order 2 or 1 is 2^{l+m} and the number of elements of order 4 is $2^{l+2 m}-2^{l+m}=2^{l+m}\left(2^{m}-1\right)$. Let

$$
r=1+(1+a)\left(\alpha_{1}(1+b)+\alpha_{2} c+\alpha_{3} b c\right)+\left[\alpha_{4}(1+a b)+\alpha_{5}(a+b)\right] c^{2} \in R,
$$

where $\alpha_{i} \in \mathbb{F}_{2^{k}}$. Then $r^{2}=1$ if and only if $\alpha_{2}=\alpha_{3}$ and $\alpha_{4}=\alpha_{5}$. Therefore the number of elements of order 4 in R is $2^{5 k}-2^{3 k}=2^{3 k}\left(2^{2 k}-1\right)$. Thus, $R \cong C_{2}{ }^{k} \times C_{4}{ }^{2 k}$.

Lemma 3.3. Let S be the subset of H consisting of elements of the form

$$
1+\alpha_{1}(1+b)+\alpha_{2}(1+a)(1+b) c+\left(\alpha_{3}+\alpha_{4} a\right)(1+b) c^{2}
$$

where $\alpha_{i} \in \mathbb{F}_{2^{k}}$. Then S is a group and $S \cong C_{2}{ }^{2 k} \times C_{4}{ }^{k}$.
Proof. Let

$$
s_{1}=1+\alpha_{1}(1+b)+\alpha_{2}(1+a)(1+b) c+\left(\alpha_{3}+\alpha_{4} a\right)(1+b) c^{2} \in S
$$

and

$$
s_{2}=1+\beta_{1}(1+b)+\beta_{2}(1+a)(1+b) c+\left(\beta_{3}+\beta_{4} a\right)(1+b) c^{2} \in S
$$

where $\alpha_{i}, \beta_{j} \in \mathbb{F}_{2^{k}}$. Then

$$
\begin{aligned}
s_{1} s_{2}= & 1+\left(\alpha_{1}+\beta_{1}\right)(1+b)+\left(\alpha_{2}+\beta_{2}+\delta_{1}\right)(1+a)(1+b) c \\
& +\left(\left(\alpha_{3}+\beta_{3}+\delta_{2}\right)+\left(\alpha_{4}+\beta_{4}+\delta_{2}\right) a\right)(1+b) c^{2}
\end{aligned}
$$

where $\delta_{1}=\left(\alpha_{3}+\alpha_{4}\right)\left(\beta_{3}+\beta_{4}\right)$ and $\delta_{2}=\left(\alpha_{3}+\alpha_{4}\right) \beta_{1}$. Therefore, S is closed under multiplication. Let

$$
s=1+\alpha_{1}(1+b)+\alpha_{2}(1+a)(1+b) c+\left(\alpha_{3}+\alpha_{4} a\right)(1+b) c^{2} \in S
$$

where $\alpha_{i} \in \mathbb{F}_{2^{k}}$. Then $s^{2}=1$ if and only if $\alpha_{3}=\alpha_{4}$. Thus the number of elements of order 4 in S is $2^{4 k}-2^{3 k}=2^{3 k}\left(2^{k}-1\right)$. Therefore $S \cong C_{2}{ }^{2 k} \times C_{4}{ }^{k}$.

Lemma 3.4. Let T be the subset of H consisting of elements of the form

$$
1+\left(\alpha_{1}+\alpha_{2} a\right)(1+b)+(1+a)\left(\alpha_{3}+\alpha_{4} b\right) c+\left(\sum_{i=1}^{3} \alpha_{i+4}+\alpha_{5} a+\alpha_{6} b+\alpha_{7} a b\right) c^{2}
$$

where $\alpha_{i} \in \mathbb{F}_{2^{k}}$. Then $T \cong\left(C_{2}{ }^{k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}$.
Proof. It can be shown easily that T is closed under multiplication. Clearly $R<T$ and $S<T$. Let

$$
r=1+(1+a)\left(\alpha_{1}(1+b)+\alpha_{2} c+\alpha_{3} b c\right)+\left[\alpha_{4}(1+a b)+\alpha_{5}(a+b)\right] c^{2} \in R
$$

and

$$
s=1+\beta_{1}(1+b)+\beta_{2}(1+a)(1+b) c+\left(\beta_{3}+\beta_{4} a\right)(1+b) c^{2} \in S
$$

where $\alpha_{i}, \beta_{j} \in \mathbb{F}_{2^{k}}$. Then

$$
\sigma\left(r^{s}\right)=\left(\begin{array}{ccc}
A & B & C \\
D & A & E \\
F & G & A
\end{array}\right)
$$

where $A=\mathrm{CB}_{2,2}\left(1+\alpha_{1}, \alpha_{1}, \alpha_{1}, \alpha_{1}\right), B=\mathrm{CB}_{2,2}\left(\alpha_{2}+\delta_{1}, \alpha_{2}+\delta_{1}, \alpha_{3}+\delta_{1}, \alpha_{3}+\delta_{1}\right), C=$ $\mathrm{CB}_{2,2}\left(\alpha_{4}, \alpha_{5}, \alpha_{5}, \alpha_{4}\right), D=\mathrm{CB}_{2,2}\left(\alpha_{4}, \alpha_{4}, \alpha_{5}, \alpha_{5}\right), E=\mathrm{CB}_{2,2}\left(\alpha_{2}+\delta_{1}, \alpha_{3}+\delta_{1}, \alpha_{2}+\right.$ $\left.\delta_{1}, \alpha_{3}+\delta_{1}\right), F=\mathrm{CB}_{2,2}\left(\alpha_{2}+\delta_{1}, \alpha_{3}+\delta_{1}, \alpha_{3}+\delta_{1}, \alpha_{2}+\delta_{1}\right), G=\mathrm{CB}_{2,2}\left(\alpha_{4}, \alpha_{5}, \alpha_{4}, \alpha_{5}\right)$ and $\delta_{1}=\left(\alpha_{4}+\alpha_{5}\right)\left(\beta_{3}+\beta_{4}\right)$.

Clearly $r^{s} \in R$ and S normalizes R. Let

$$
M=R \cap S=\left\{1+(1+a)(1+b)\left(u c+v c^{2}\right)\right\}
$$

where $u, v \in \mathbb{F}_{2^{k}}$. By the second Isomorphism Theorem, $R S / R \cong S / R \cap S$. Now $|R \cap S|=2^{2 k}$. Therefore $|R S|=2^{7 k}=T$. Clearly S is an elementary abelian 2-group and therefore S completely reduces. Let $S \cong M \times W \cong C_{2}{ }^{2 k} \times C_{4}{ }^{k}$. Clearly $W \cap R=\{1\}$ and W normalizes R. Thus, $T \cong R \rtimes W \cong\left(C_{2}{ }^{2 k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}$.

Lemma 3.5. Let L be the subset of H consisting of elements of the form

$$
1+\alpha_{1}(1+a b)+\left(\alpha_{2}+\alpha_{3} a\right)(1+b) c+\alpha_{4}(1+a)(1+b) c^{2}
$$

where $\alpha_{i} \in \mathbb{F}_{2^{k}}$. Then L is a group and $L \cong C_{2}{ }^{2 k} \times C_{4}{ }^{k}$.
Proof. Let

$$
l_{1}=1+\alpha_{1}(1+a b)+\left(\alpha_{2}+\alpha_{3} a\right)(1+b) c+\alpha_{4}(1+a)(1+b) c^{2} \in L
$$

and

$$
l_{2}=1+\beta_{1}(1+a b)+\left(\beta_{2}+\beta_{3} a\right)(1+b) c+\beta_{4}(1+a)(1+b) c^{2} \in L
$$

where $\alpha_{i}, \beta_{j} \in \mathbb{F}_{2^{k}}$. Then

$$
\begin{aligned}
l_{1} l_{2}= & 1+\left(\alpha_{1}+\beta_{1}\right)(1+a b)+\left(\left(\alpha_{2}+\beta_{2}+\delta_{1}\right)+\left(\alpha_{3}+\beta_{3}+\delta_{1}\right) a\right)(1+b) c \\
& +\left(\alpha_{4}+\delta_{4}+\delta_{2}\right)(1+a)(1+b) c^{2}
\end{aligned}
$$

where $\delta_{1}=\alpha_{1}\left(\beta_{2}+\beta_{3}\right)+\left(\alpha_{2}+\alpha_{3}\right) \beta_{1}$ and $\delta_{2}=\left(\alpha_{2}+\alpha_{3}\right)\left(\beta_{2}+\beta_{3}\right)$. Therefore L is closed under multiplication. It can be shown easily that the number of elements of order 4 in L is $2^{4 k}-2^{3 k}=2^{3 k}\left(2^{k}-1\right)$. Therefore $L \cong C_{2}{ }^{2 k} \times C_{4}{ }^{k}$.

Lemma 3.6. $H \cong\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}$.
Proof. Let

$$
\begin{aligned}
t= & 1+\left(\alpha_{1}+\alpha_{2} a\right)(1+b)+(1+a)\left(\alpha_{3}+\alpha_{4} b\right) c \\
& +\left(\sum_{i=1}^{3} \alpha_{i+4}+\alpha_{5} a+\alpha_{6} b+\alpha_{7} a b\right) c^{2} \in T
\end{aligned}
$$

and

$$
l=1+\beta_{1}(1+a b)+\left(\beta_{2}+\beta_{3} a\right)(1+b) c+\beta_{4}(1+a)(1+b) c^{2} \in L
$$

where $\alpha_{i}, \beta_{j} \in \mathbb{F}_{2^{k}}$. Then

$$
\sigma\left(t^{l}\right)=\left(\begin{array}{ccc}
A & B & C \\
D & E & F \\
G & H & I
\end{array}\right)
$$

where

$$
\begin{aligned}
A & =\mathrm{CB}_{2,2}\left(1+\alpha_{1}, \alpha_{2}, \alpha_{1}, \alpha_{2}\right), \\
B & =\mathrm{CB}_{2,2}\left(\alpha_{3}+\delta_{1}, \alpha_{3}+\delta_{1}, \alpha_{4}+\delta_{1}, \alpha_{4}+\delta_{1}\right), \\
C & =\mathrm{CB}_{2,2}\left(\alpha_{5}+\alpha_{6}+\alpha_{7}+\delta_{2}, \alpha_{5}+\delta_{2}, \alpha_{6}+\delta_{2}, \alpha_{7}+\delta_{2}\right), \\
D & =\mathrm{CB}_{2,2}\left(\alpha_{5}+\alpha_{6}+\alpha_{7}+\delta_{2}, \alpha_{7}+\delta_{2}, \alpha_{5}+\delta_{2}, \alpha_{6}+\delta_{2}\right), \\
E & =\mathrm{CB}_{2,2}\left(1+\alpha_{1}, \alpha_{2}, \alpha_{2}, \alpha_{1}\right), \\
F & =\mathrm{CB}_{2,2}\left(\alpha_{3}+\delta_{1}, \alpha_{4}+\delta_{1}, \alpha_{4}+\delta_{1}, \alpha_{3}+\delta_{1}\right), \\
G & =\mathrm{CB}_{2,2}\left(\alpha_{3}+\delta_{1}, \alpha_{4}+\delta_{1}, \alpha_{4}+\delta_{1}, \alpha_{3}+\delta_{1}\right), \\
H & =\mathrm{CB}_{2,2}\left(\alpha_{5}+\alpha_{6}+\alpha_{7}+\delta_{2}, \alpha_{6}+\delta_{2}, \alpha_{7}+\delta_{2}, \alpha_{5}+\delta_{2}\right), \\
I & =\mathrm{CB}_{2,2}\left(1+\alpha_{1}, \alpha_{1}, \alpha_{2}, \alpha_{2}\right), \\
\delta_{1}=\left(\alpha_{3}+\alpha_{4}\right) \beta_{1} & +\left(\alpha_{1}+\alpha_{2}\right)\left(\beta_{2}+\beta_{3}\right) \text { and } \delta_{2}=\left(\alpha_{6}+\alpha_{7}\right) \beta_{1}+\left(\alpha_{3}+\alpha_{4}\right)\left(\beta_{2}+\beta_{3}\right) .
\end{aligned}
$$

Clearly $t^{l} \in T$ and L normalizes T. By the second Isomorphism Theorem, $T L=H$ and $L \cong M \times Q \cong C_{2}{ }^{2 k} \times C_{4}{ }^{k}$. Clearly $T \cap Q=\{1\}$ and Q normalizes T. Therefore $H \cong T \rtimes Q \cong\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}$.

Theorem 3.1.

$\mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right) \cong \begin{cases}{\left[\left(\left(C_{2} \times C_{4}{ }^{2}\right) \rtimes C_{4}\right) \rtimes C_{4}\right] \rtimes C_{3}} & \text { when } k=1, \\ \left.\left[\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right] \rtimes C_{2^{k}-1}{ }^{2}\right] \times C_{2^{k}-1} & \text { when } 3 \mid\left(2^{k}-1\right), \\ {\left[\left[\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right] \rtimes C_{2^{2 k}-1}\right] \times C_{2^{k}-1}} & \text { otherwise. }\end{cases}$
Proof. Recall that $\mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right) \cong H \rtimes \mathscr{U}\left(\mathbb{F}_{2^{k}} C_{3}\right)$. Now consider $\mathbb{F}_{2^{k}} C_{3}$.

1. Let $k=1$. Using The LAGUNA package (V. Bovdi, A. Konovalov, C. Schneider: LAGUNA, Lie AlGebras and UNits of group Algebras (2003), http://www.gapsystem.org/Packages/laguna.html) for the GAP system (GAP Groups, Algorithms, and Programming, Version 4.4.10. (2003), http://www.gap-system.org), it can be shown easily that $\mathscr{U}\left(\mathbb{F}_{2} C_{3}\right) \cong C_{3}$. Therefore

$$
\mathscr{U}\left(\mathbb{F}_{2} A_{4}\right) \cong\left[\left(\left(C_{2} \times C_{4}{ }^{2}\right) \rtimes C_{4}\right) \rtimes C_{4}\right] \rtimes C_{3} .
$$

2. $\mathbb{F}_{2^{k}} C_{3} \cong \mathbb{F}_{2^{k}} \oplus \mathbb{F}_{2^{k}} \oplus \mathbb{F}_{2^{k}}$ when $3 \mid\left(2^{k}-1\right)$. Therefore

$$
\begin{aligned}
\mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right) & \cong\left[\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right] \rtimes C_{2^{k}-1}{ }^{3} \\
& \cong\left[\left[\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right] \rtimes C_{2^{k}-1}{ }^{2}\right] \rtimes C_{2^{k}-1}
\end{aligned}
$$

since $C_{2^{k}-1}$ corresponds to $\mathscr{U}\left(\mathbb{F}_{2^{k}}\right)$.
3. $\mathbb{F}_{2^{k}} C_{3} \cong \mathbb{F}_{2^{k}} \oplus \mathbb{F}_{2^{2 k}}$ when $3 \nmid\left(2^{k}-1\right)$. Therefore

$$
\begin{aligned}
\mathscr{U}\left(\mathbb{F}_{2^{k}} A_{4}\right) & \cong\left[\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right] \rtimes\left(C_{2^{k}-1} \times C_{2^{2 k}-1}\right) \\
& \left.\cong\left[\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{2 k}\right) \rtimes C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right] \rtimes C_{2^{2 k}-1}\right] \rtimes C_{2^{k}-1}
\end{aligned}
$$

since $C_{2^{k}-1}$ corresponds to $\mathscr{U}\left(\mathbb{F}_{2^{k}}\right)$.

References

[1] A. A. Bovdi, L. Erdei: Unitary units in the modular group algebra of groups of order 16. Technical Reports Debrecen 96/4. 1996, pp. 57-72.
[2] A. A. Bovdi, A. Szakács: Unitary subgroup of the group of units of a modular group algebra of a finite abelian p-group. Math. Zametki 45 (1989), 23-29.
[3] V. A. Bovdi, L. G. Kovács: Unitary units in modular group algebras. Manuscr. Math. 84 (1994), 57-72.
[4] V. Bovdi, A. L. Rosa: On the order of the unitary subgroup of a modular group algebra. Commun. Algebra 28 (2000), 1897-1905.
[5] L. Creedon, J. Gildea: The structure of the unit group of the group algebra $\mathbb{F}_{2^{k}} D_{8}$. Can. Math. Bull 54 (2011), 237-243. doi:10.4153/CMB-2010-098-5.
[6] L. Creedon, J. Gildea: Unitary units of the group algebra $\mathbb{F}_{2^{k}} Q_{8}$. Internat. J. Algebra Comput. 19 (2009), 283-286.
[7] P. J. Davis: Circulant Matrices. Chelsea Publishing, New York, 1979.
[8] T. Hurley: Group rings and rings of matrices. Int. J. Pure Appl. Math. 31 (2006), 319-335.
[9] C. Polcino Milies, S. K. Sehgal: An Introduction to Group Rings. Kluwer Academic Publishers, Dordrecht, 2002.
[10] R. Sandling: Units in the modular group algebra of a finite abelian p-group. J. Pure Appl. Algebra 33 (1984), 337-346.
[11] R. Sandling: Presentations for units groups of modular group algebras of groups of order 16. Math. Comp. 59 (1992), 689-701.
[12] R. K. Sharma, J. B. Srivastava, M. Khan: The unit group of $F A_{4}$. Publ. Math. Debrecen 71 (2007), 21-26.

Author's address: J. Gildea, School of Engineering, Institute of Technology Sligo, Ireland, e-mail: gildea.joe@itsligo.ie.

