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Uncountably many solutions of a system

of third order nonlinear differential equations

Min Liu

Abstract. In this paper, we aim to study the global solvability of the following system

of third order nonlinear neutral delay differential equations

d

dt

{

ri(t)
d

dt

[

λi(t)
d

dt

(

xi(t) − fi(t, x1(t − σi1), x2(t− σi2), x3(t − σi3))
)]}

+
d

dt

[

ri(t)
d

dt
gi(t, x1(pi1(t)), x2(pi2(t)), x3(pi3(t)))

]

+
d

dt
hi(t, x1(qi1(t)), x2(qi2(t)), x3(qi3(t)))

= li(t, x1(ηi1(t)), x2(ηi2(t)), x3(ηi3(t))), t ≥ t0, i ∈ {1, 2, 3}

in the following bounded closed and convex set

Ω(a, b) =
{

x(t) =
(

x1(t), x2(t), x3(t)
)

∈ C([t0,+∞),R3) : a(t) ≤ xi(t) ≤ b(t),

∀ t ≥ t0, i ∈ {1, 2, 3}
}

,

where σij > 0, ri, λi, a, b ∈ C([t0,+∞),R+), fi, gi, hi, li ∈ C([t0,+∞)× R
3,R),

pij , qij , ηij ∈ C([t0,+∞),R) for i, j ∈ {1, 2, 3}. By applying the Krasnoselskii fixed
point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and
the Banach contraction principle, four existence results of uncountably many bounded
positive solutions of the system are established.

Keywords: system of third order nonlinear neutral delay differential equations, contrac-
tion mapping, completely continuous mapping, condensing mapping, uncountably many
bounded positive solutions

Classification: 34K15, 34C10

1. Introduction

Recently, it is well known that the theory of neutral delay differential equa-
tions and systems undergoes a rapid development, especially for the existence of
nonoscillatory solutions of second-order and higher order neutral delay differen-
tial equations and systems, refer to [1], [3]–[5], [7]–[9], [11]–[14] and the references
therein.
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In 2007, Zhou [12] used the Krasnoselskii fixed point theorem to study the ex-
istence of nonoscillatory solutions of the following second-order nonlinear neutral
differential equation

(1.1)
d

dt

[

r(t)
d

dt
(x(t) + p(t)x(t− τ))

]

+

m
∑

i=1

Qi(t)fi(x(t − σi)) = 0, t ≥ t0,

where m ≥ 1 is an integer, τ > 0, σi ≥ 0, r, p,Qi ∈ C([t0,+∞),R) and fi ∈
C(R,R) for i ∈ {1, 2, . . . ,m}.

In 2002, Zhou and Zhang [14] applied the Banach contraction principle to study
the following higher order neutral functional differential equation with positive
and negative coefficients

(1.2)
dn

dtn

[

x(t)+ cx(t− τ)
]

+(−1)n+1[P (t)x(t−σ)−Q(t)x(t− δ)
]

= 0, t ≥ t0,

where n ≥ 1 is a integer, c ∈ R, τ, σ, δ ∈ R
+ and P,Q ∈ C([t0,+∞),R+).

In 2005, Lin [8] got some sufficient conditions for oscillation and nonoscillation
for the second-order nonlinear neutral differential equation

(1.3)
d2

dt2

[

x(t)− p(t)x(t − τ)
]

+ q(t)f(x(t − σ)) = 0, t ≥ 0,

where τ, σ > 0, p, q ∈ C([0,+∞),R), f ∈ C(R,R) with q(t) ≥ 0 and xf(x) > 0
for t ∈ R, x ∈ R/{0}.

In 2008, a system of higher order nonlinear neutral differential equations

(1.4)

dn

dtn

[

yi(t)− ai(t)yi(t− τi)
]

= pi(t)gi(y3−i(t− σ3−i)) + fi(t),

t ≥ t0, i ∈ {1, 2}

was investigated by Hanuštiaková and Olach [4], where n ≥ 1 is an integer, τi, σi >
0, ai, pi, fi ∈ C([t0,+∞),R) and gi ∈ C(R,R) for i ∈ {1, 2}. Some sufficient
conditions for the existence of nonoscillatory bounded solutions of equations (1.4)
were obtained by using the Krasnoselskii fixed point theorem and the Schauder
fixed point theorem.

In this paper, we are concerned with the following system of third order non-
linear neutral delay differential equations:

(1.5)

d

dt

{

ri(t)
d

dt

[

λi(t)
d

dt

(

xi(t)− fi(t, x1(t− σi1), x2(t− σi2), x3(t− σi3))
)]}

+
d

dt

[

ri(t)
d

dt
gi(t, x1(pi1(t)), x2(pi2(t)), x3(pi3(t)))

]

+
d

dt
hi(t, x1(qi1(t)), x2(qi2(t)), x3(qi3(t)))

= li(t, x1(ηi1(t)), x2(ηi2(t)), x3(ηi3(t))), t ≥ t0, i ∈ {1, 2, 3},
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where σij > 0, ri, λi ∈ C([t0,+∞),R+), fi, gi, hi, li ∈ C([t0,+∞) × R
3,R),

pij , qij , ηij ∈ C([t0,+∞),R) with

lim
t→+∞

pij(t) = lim
t→+∞

qij(t) = lim
t→+∞

ηij(t) = +∞

for i, j ∈ {1, 2, 3}.
By using the Krasnoselskii fixed point theorem, the Schauder fixed point the-

orem, the Sadovskii fixed point theorem and the Banach contraction principle
respectively, we demonstrate four existence theorems of uncountably many boun-
ded positive solutions of equations (1.5).

2. Preliminaries

Throughout this paper, put I = [t0,+∞) and let C(I,R3) denote the Banach
space of all continuous and bounded vector functions x(t) = (x1(t), x2(t), x3(t))
on I with norm ‖x‖ = max1≤i≤3 supt∈I |xi(t)|. For any a, b ∈ C(I,R+), set

a = supt∈I a(t), a = inft∈I a(t), b = supt∈I b(t), b = inft∈I b(t) and

Ω(a, b) =
{

x(t) = (x1(t), x2(t), x3(t)) ∈ C(I,R3) : a(t) ≤ xi(t) ≤ b(t),

∀ t ∈ I, i ∈ {1, 2, 3}
}

.

Obviously, Ω(a, b) is a bounded closed and convex subset of C(I,R3). For any
D ⊆ Ω(a, b) and t ∈ I, let

D(t) = sup
{

max
1≤i≤3

|xi(t)− yi(t)| : x(t) = (x1(t), x2(t), x3(t)),

y(t) = (y1(t), y2(t), y3(t)) ∈ D
}

;

diamD = sup{‖x− y‖ : x, y ∈ D}.

It is assumed in the sequel that there exist functions a, b, ci, di, αi, βi, γi, µi, τi,
ζi ∈ C(I,R+) for i ∈ {1, 2, 3} with a(t) < b(t) for t ∈ I and ϕ : R+ → R

+

satisfying

(i)
∫ +∞
t0

max
{

αi(s)
λi(s)

,
βi(s)
ri(s)

, γi(s),
1

ri(s)
, 1
λi(s)

}

ds < +∞, i ∈ {1, 2, 3};

(ii) |fi(t, u1, u2, u3)| ≤ ci(t), ∀ t ∈ I, ui ∈ [a, b], i ∈ {1, 2, 3};
(iii) |fi(t, u1, u2, u3) − fi(t, v1, v2, v3)| ≤ di(t)max1≤j≤3 |uj − vj |, ∀ t ∈ I,

uj , vj ∈ [a, b], i, j ∈ {1, 2, 3};
(iv) |gi(t, u1, u2, u3)| ≤ αi(t), |hi(t, u1, u2, u3)| ≤ βi(t), |li(t, u1, u2, u3)| ≤

γi(t), ∀ t ∈ I, ui ∈ [a, b], i ∈ {1, 2, 3};

(v)
∫ +∞
t0

max
{

sαi(s)
λi(s)

,
βi(s)
ri(s)

, γi(s),
1

ri(s)
, s
λi(s)

}

ds < +∞, i ∈ {1, 2, 3};
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(vi)

∣

∣fi(t, x1(t− σi1), x2(t− σi2), x3(t− σi3))

− fi(t, y1(t− σi1), y2(t− σi2), y3(t− σi3))
∣

∣

+

∫ +∞

t

1

λi(s)
|gi(s, x1(pi1(s)), x2(pi2(s)), x3(pi3(s)))

− gi(s, y1(pi1(s)), y2(pi2(s)), y3(pi3(s)))| ds

+

∫ +∞

t

∫ +∞

s

1

λi(s)ri(u)
|hi(u, x1(qi1(u)), x2(qi2(u)), x3(qi3(u)))

− hi(u, y1(qi1(u)), y2(qi2(u)), y3(qi3(u)))| du ds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

1

λi(s)ri(u)
|li(v, x1(ηi1(v)), x2(ηi2(v)), x3(ηi3(v)))

− li(v, y1(ηi1(v)), y2(ηi2(v)), y3(ηi3(v)))| dv du ds

≤ ϕ(D(t)), ∀D ⊆ Ω(a, b), x, y ∈ D, t ∈ I, i ∈ {1, 2, 3};

(vii) |gi(t, u1, u2, u3)− gi(t, v1, v2, v3)| ≤ µi(t)max1≤j≤3 |uj − vj |,
|hi(t, u1, u2, u3)− hi(t, v1, v2, v3)| ≤ τi(t)max1≤j≤3 |uj − vj |,
|li(t, u1, u2, u3)− li(t, v1, v2, v3)| ≤ ζi(t)max1≤j≤3 |uj − vj |,

∀ t ∈ I, uj , vj ∈ [a, b], i, j ∈ {1, 2, 3};

(viii)
∫ +∞
t0

max
{

µi(s)
λi(s)

,
τi(s)
ri(s)

, ζi(s),
1

ri(s)
, 1
λi(s)

}

ds < +∞, i ∈ {1, 2, 3}.

Let σ = max{σij : i, j ∈ {1, 2, 3}}. By a solution of equations (1.5), we mean a
vector function x = (x1, x2, x3) such that for some t1 ≥ t0 and i ∈ {1, 2, 3}, xi ∈
C([t1−σ,+∞),R), xi(t)−fi(t, x1(t−σi1), x2(t−σi2), x3(t−σi3)) is 3 times contin-
uously differentiable on [t1,+∞), gi(t, x1(pi1(t)), x2(pi2(t)), x3(pi3(t))) is 2 times
continuously differentiable on [t1,+∞), hi(t, x1(qi1(t)), x2(qi2(t)), x3(qi3(t))) is
continuously differentiable on [t1,+∞) and equations (1.5) hold for t ≥ t1.

The following four lemmas play significant roles in this paper.

Lemma 2.1 (Krasnoselskii Fixed Point Theorem [2]). Let D be a nonempty

bounded closed convex subset of a Banach space X and S,Q : D → X satisfy

Sx + Qy ∈ D for each x, y ∈ D. If Q is a contraction mapping and S is a

completely continuous mapping, then the equation Sx+Qx = x has at least one

solution in D.

Lemma 2.2 (Schauder Fixed Point Theorem [2]). Let D be a nonempty closed

convex subset of a Banach space X . Let S : D → D be a continuous mapping

such that SD is a relatively compact subset of X . Then S has at least one fixed

point in D.
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Lemma 2.3 (Sadovskii Fixed Point Theorem [10]). Let D be a nonempty boun-

ded closed convex subset of a Banach space X and S : D → D be a continuous

condensing mapping. Then S has at least one fixed point in D.

Lemma 2.4 (Banach contraction principle). Let D be a closed subset of a com-

pletely metric space X and S : D → D be a contraction on D. Then S has at

least one fixed point in D.

3. Existence of uncountably many bounded positive solutions

In this section, we demonstrate the existence of uncountably many bounded
positive solutions of equations (1.5). Let

c = max
1≤i≤3

sup
t∈I

ci(t) and d = max
1≤i≤3

sup
t∈I

di(t).

Theorem 3.1. Let a, b ∈ C(I,R+) with a < b and let (i)-(iv) hold. If d ∈ (0, 1)

and c < b−a
2 , then equations (1.5) possess uncountably many bounded positive

solutions in Ω(a, b).

Proof: Set L ∈ (a + c, b − c). According to (i), we deduce that there exists
T ≥ t0 + σ large enough satisfying

(3.1)

3
∑

i=1

[

∫ +∞

T

αi(s)

λi(s)
ds+

∫ +∞

T

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

< min
{

b− c− L,L− c− a
}

.

Define two mappings QL, SL : Ω(a, b) → C(I,R3) by

(QLx)(t) = ((QL1x)(t), (QL2x)(t), (QL3x)(t)),

(SLx)(t) = ((SL1x)(t), (SL2x)(t), (SL3x)(t))

for x = (x1, x2, x3) ∈ Ω(a, b) and t ∈ I, where
(3.2)

(QLix)(t) =

{

L+ fi(t, x1(t− σi1), x2(t− σi2), x3(t− σi3)), t ≥ T,

(QLix)(T ), t0 ≤ t < T,

(SLix)(t) =







































∫ +∞
t

gi(s,x1(pi1(s)),x2(pi2(s)),x3(pi3(s)))
λi(s)

ds

−
∫+∞
t

∫ +∞
s

hi(u,x1(qi1(u)),x2(qi2(u)),x3(qi3(u)))
λi(s)ri(u)

du ds

−
∫+∞
t

∫ +∞
s

∫+∞
u

li(v,x1(ηi1(v)),x2(ηi2(v)),x3(ηi3(v)))
λi(s)ri(u)

dv du ds,

t ≥ T,

(SLix)(T ), t0 ≤ t < T
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for i ∈ {1, 2, 3}.
Firstly, we prove QLx + SLy ∈ Ω(a, b) for all x, y ∈ Ω(a, b). Due to (ii), (iv),

(3.1) and (3.2), we get that for each x, y ∈ Ω(a, b), t ≥ T , i ∈ {1, 2, 3},

(3.3)

(QLix+ SLiy)(t)

≤ L+ ci(t) +

∫ +∞

T

αi(s)

λi(s)
ds+

∫ +∞

T

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

≤ L+ c+ (b − c− L)

≤ b(t)

and

(3.4)

(QLix+ SLiy)(t)

≥ L− ci(t)−

[
∫ +∞

T

αi(s)

λi(s)
ds+

∫ +∞

T

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

≥ L− c− (L− c− a)

≥ a(t).

It follows from (3.3) and (3.4) that QLΩ(a, b) + SLΩ(a, b) ⊆ Ω(a, b).
Secondly, we demonstrate that QL is a contraction mapping. According to

(3.2) and (iii), we derive that

|(QLix)(t) − (QLiy)(t)|

= |fi(t, x1(t− σi1), x2(t− σi2), x3(t− σi3))

− fi(t, y1(t− σi1), y2(t− σi2), y3(t− σi3))|

≤ di(t) max
1≤j≤3

|xj(t− σij)− yj(t− σij)|

≤ d‖x− y‖, ∀x, y ∈ Ω(a, b), t ≥ T, i ∈ {1, 2, 3},

which implies that

‖QLx−QLy‖ ≤ d‖x− y‖, ∀x, y ∈ Ω(a, b).

That is, QL is a contraction mapping by d ∈ (0, 1).
Thirdly, we show that SL is completely continuous. Now we demonstrate

SL is continuous in Ω(a, b). Let x0 = (x01, x02, x03) ∈ Ω(a, b) and {xk}k≥0 =
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({xk1}k≥0, {xk2}k≥0, {xk3}k≥0) ⊂ Ω(a, b) with xk → x0 as k → +∞. (3.2) yields
that
(3.5)

‖SLxk − SLx0‖ = max
1≤i≤3

sup
t∈I

|(SLixk)(t)− (SLix0)(t)|

≤ max
1≤i≤3

sup
t≥T

{
∫ +∞

t

1

λi(s)
|gi(s, xk1(pi1(s)), xk2(pi2(s)), xk3(pi3(s)))

− gi(s, x01(pi1(s)), x02(pi2(s)), x03(pi3(s)))| ds

+

∫ +∞

t

∫ +∞

s

1

λi(s)ri(u)
|hi(u, xk1(qi1(u)), xk2(qi2(u)), xk3(qi3(u)))

− hi(u, x01(qi1(u)), x02(qi2(u)), x03(qi3(u)))| du ds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

1

λi(s)ri(u)
|li(v, xk1(ηi1(v)), xk2(ηi2(v)), xk3(ηi3(v)))

− li(v, x01(ηi1(v)), x02(ηi2(v)), x03(ηi3(v)))| dv du ds

}

≤ max
1≤i≤3

[

∫ +∞

T

1

λi(s)
|gi(s, xk1(pi1(s)), xk2(pi2(s)), xk3(pi3(s)))

− gi(s, x01(pi1(s)), x02(pi2(s)), x03(pi3(s)))| ds

+

∫ +∞

T

∫ +∞

s

1

λi(s)ri(u)
|hi(u, xk1(qi1(u)), xk2(qi2(u)), xk3(qi3(u)))

− hi(u, x01(qi1(u)), x02(qi2(u)), x03(qi3(u)))| du ds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

1

λi(s)ri(u)
|li(v, xk1(ηi1(v)), xk2(ηi2(v)), xk3(ηi3(v)))

− li(v, x01(ηi1(v)), x02(ηi2(v)), x03(ηi3(v)))| dv du ds

]

.

Note that

(3.6)

|gi(s, xk1(pi1(s)), xk2(pi2(s)), xk3(pi3(s)))

− gi(s, x01(pi1(s)), x02(pi2(s)), x03(pi3(s)))| ≤ 2αi(s),

|hi(u, xk1(qi1(u)), xk2(qi2(u)), xk3(qi3(u)))

− hi(u, x01(qi1(u)), x02(qi2(u)), x03(qi3(u)))| ≤ 2βi(u),

|li(v, xk1(ηi1(v)), xk2(ηi2(v)), xk3(ηi3(v)))

− li(v, x01(ηi1(v)), x02(ηi2(v)), x03(ηi3(v)))| ≤ 2γi(v),
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(3.7)

|gi(s, xk1(pi1(s)), xk2(pi2(s)), xk3(pi3(s)))

− gi(s, x01(pi1(s)), x02(pi2(s)), x03(pi3(s)))| → 0,

|hi(u, xk1(qi1(u)), xk2(qi2(u)), xk3(qi3(u)))

− hi(u, x01(qi1(u)), x02(qi2(u)), x03(qi3(u)))| → 0,

|li(v, xk1(ηi1(v)), xk2(ηi2(v)), xk3(ηi3(v)))

− li(v, x01(ηi1(v)), x02(ηi2(v)), x03(ηi3(v)))| → 0

as k → +∞ for s, u, v ∈ [T,+∞) and i ∈ {1, 2, 3}. It follows from (3.5), (3.6),
(3.7) and Lebesgue dominated convergence theorem that ‖SLxk − SLx0‖ → 0 as
k → +∞. Hence SL is continuous in Ω(a, b). Now we prove that SLΩ(a, b) is
relatively compact. In view of (i), (iv) and (3.2), we deduce that

‖SLx‖ = max
1≤i≤3

sup
t∈I

|(SLix)(t)|

≤

3
∑

i=1

[

∫ +∞

T

αi(s)

λi(s)
ds+

∫ +∞

T

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

, ∀x ∈ Ω(a, b).

That is, SLΩ(a, b) is uniformly bounded. For the equicontinuity of SLΩ(a, b) on I,
according to Levitans result [6], it suffices to prove that for any given ǫ > 0, I can
be decomposed into finite subintervals in such a way that on each subinterval all
functions of the family have change of amplitude less than ǫ. Let ǫ > 0. By (i),
there exists T∗ > T such that

(3.8)

3
∑

i=1

[

∫ +∞

T∗

αi(s)

λi(s)
ds+

∫ +∞

T∗

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T∗

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

<
ǫ

2
.

It follows from (iv), (3.2) and (3.8) that for all x ∈ Ω(a, b), t2 ≥ t1 ≥ T∗ and
i ∈ {1, 2, 3},

|(SLix)(t1)− (SLix)(t2)|

≤

∫ +∞

t1

αi(s)

λi(s)
ds+

∫ +∞

t1

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

t1

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds
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+

∫ +∞

t2

αi(s)

λi(s)
ds+

∫ +∞

t2

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

t2

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

≤ 2

[
∫ +∞

T∗

αi(s)

λi(s)
ds+

∫ +∞

T∗

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T∗

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

< ǫ.

For each x ∈ Ω(a, b), T ≤ t1 ≤ t2 ≤ T∗ and i ∈ {1, 2, 3}, by (iv) and (3.2), we
infer that

(3.9)

|(SLix)(t1)− (SLix)(t2)|

≤

∫ t2

t1

αi(s)

λi(s)
ds+

∫ t2

t1

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ t2

t1

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

≤ Mi|t1 − t2|,

where

Mi = max
T≤s≤T∗

{

αi(s)

λi(s)
+

∫ +∞

s

βi(u)

λi(s)ri(u)
du+

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du

}

.

(3.9) implies that there exists δ = ǫ
1+Mi

> 0 such that |(SLix)(t1)−(SLix)(t2)| <

ǫ for any t1, t2 ∈ [T, T∗] with |t1 − t2| < δ and x ∈ Ω(a, b).
For x ∈ Ω(a, b), t0 ≤ t1 ≤ t2 ≤ T and i ∈ {1, 2, 3}, due to (3.2), we infer that

|(SLix)(t1)− (SLix)(t2)| = 0.

Hence Lemma 2.1 ensures that there exists x ∈ Ω(a, b) with QLx + SLx = x. It
is easy to verify that x is a bounded positive solution of equations (1.5).

Finally, we investigate that equations (1.5) possess uncountably many bounded
positive solutions. Let L1, L2 ∈ (a + c, b− c) with L1 6= L2. For each j ∈ {1, 2},
we choose a constant Tj > t0+σ and two mappings QLj

and SLj
satisfying (3.1)

and (3.2), where L and T are replaced by Lj and Tj , respectively, and

(3.10)

3
∑

i=1

[

∫ +∞

T3

αi(s)

λi(s)
ds+

∫ +∞

T3

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T3

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

<
|L1 − L2|

2
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for some T3 > max{T1, T2}. Obviously, the mappings QL1
+ SL1

and QL2
+

SL2
have the fixed points x, y ∈ Ω(a, b), respectively. That is, x and y are

bounded positive solutions of equations (1.5) in Ω(a, b). In order to show that
equations (1.5) possess uncountably many bounded positive solutions in Ω(a, b),
we need only to prove that x 6= y. Indeed, by (3.2) we gain that for t ≥ T3,
i ∈ {1, 2, 3},

xi(t) = L1 + fi(t, x1(t− σi1), x2(t− σi2), x3(t− σi3))

+

∫ +∞

t

gi(s, x1(pi1(s)), x2(pi2(s)), x3(pi3(s)))

λi(s)
ds

−

∫ +∞

t

∫ +∞

s

hi(u, x1(qi1(u)), x2(qi2(u)), x3(qi3(u)))

λi(s)ri(u)
du ds

−

∫ +∞

t

∫ +∞

s

∫ +∞

u

li(v, x1(ηi1(v)), x2(ηi2(v)), x3(ηi3(v)))

λi(s)ri(u)
dv du ds

and

yi(t) = L2 + fi(t, y1(t− σi1), y2(t− σi2), y3(t− σi3))

+

∫ +∞

t

gi(s, y1(pi1(s)), y2(pi2(s)), y3(pi3(s)))

λi(s)
ds

−

∫ +∞

t

∫ +∞

s

hi(u, y1(qi1(u)), y2(qi2(u)), y3(qi3(u)))

λi(s)ri(u)
du ds

−

∫ +∞

t

∫ +∞

s

∫ +∞

u

li(v, y1(ηi1(v)), y2(ηi2(v)), y3(ηi3(v)))

λi(s)ri(u)
dv du ds,

which together with (iv) and (3.10) yield that

∣

∣xi(t)− yi(t)− (fi(t, x1(t− σi1), x2(t− σi2), x3(t− σi3))

− fi(t, y1(t− σi1), y2(t− σi2), y3(t− σi3)))
∣

∣

≥ |L1 − L2| − 2

[
∫ +∞

T3

αi(s)

λi(s)
ds+

∫ +∞

T3

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T3

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

> 0, ∀ t ≥ T3, i ∈ {1, 2, 3},

that is, x 6= y. This completes the proof. �

Theorem 3.2. Let a, b ∈ C(I,R+) with a < b and let (iv) and (v) hold. Then

equations (1.5) with fi(t, u1, u2, u3) = ui for i ∈ {1, 2, 3} possess uncountably

many bounded positive solutions in Ω(a, b).



System of third order nonlinear differential equations 379

Proof: Let L ∈ (a, b). According to (v), we deduce that there exists sufficiently
large T ≥ t0 + σ satisfying

(3.11)

3
∑

i=1

+∞
∑

j=1

[
∫ +∞

T+jσ

αi(s)

λi(s)
ds+

∫ +∞

T+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

< min{b− L,L− a}.

Define a mapping QL : Ω(a, b) → C(I,R3) by

(3.12) (QLx)(t) = ((QL1x)(t), (QL2x)(t), (QL3x)(t)),

where
(3.13)

(QLix)(t) =















































L−
∑+∞

j=1

[

∫ +∞
t+jσ

gi(s,x1(pi1(s)),x2(pi2(s)),x3(pi3(s)))
λi(s)

ds

−
∫+∞
t+jσ

∫ +∞
s

hi(u,x1(qi1(u)),x2(qi2(u)),x3(qi3(u)))
λi(s)ri(u)

du ds

−
∫+∞
t+jσ

∫ +∞
s

∫ +∞
u

li(v,x1(ηi1(v)),x2(ηi2(v)),x3(ηi3(v)))
λi(s)ri(u)

dv du ds

]

,

t ≥ T,

(QLix)(T ), t0 ≤ t < T

for i ∈ {1, 2, 3}.
First of all, we prove QLx ∈ Ω(a, b) for all x ∈ Ω(a, b). Due to (iv) and (3.13),

we derive that for each x ∈ Ω(a, b) and i ∈ {1, 2, 3},

(QLix)(t)

≤ L+

+∞
∑

j=1

[

∫ +∞

T+jσ

αi(s)

λi(s)
ds+

∫ +∞

T+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

≤ L+ (b− L)

≤ b(t), t ≥ T,

(QLix)(t)

≥ L−

+∞
∑

j=1

[

∫ +∞

T+jσ

αi(s)

λi(s)
ds+

∫ +∞

T+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds
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+

∫ +∞

T+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

≥ L− (L− a)

≥ a(t), t ≥ T.

Therefore, QLΩ(a, b) ⊆ Ω(a, b).
Next, we demonstrate that QL is completely continuous. It is claimed that

QL is continuous. Indeed, let x0 = (x01, x02, x03) ∈ Ω(a, b) and {xk}k≥0 =
({xk1}k≥0, {xk2}k≥0, {xk3}k≥0) ⊂ Ω(a, b) with xk → x0 as k → +∞. (3.13)
yields that
(3.14)

‖QLxk −QLx0‖

= max
1≤i≤3

sup
t∈I

|(QLixk)(t)− (QLix0)(t)|

≤ max
1≤i≤3

sup
t∈I

{+∞
∑

j=1

[
∫ +∞

t+jσ

1

λi(s)
|gi(s, xk1(pi1(s)), xk2(pi2(s)), xk3(pi3(s)))

− gi(s, x01(pi1(s)), x02(pi2(s)), x03(pi3(s)))| ds

+

∫ +∞

t+jσ

∫ +∞

s

1

λi(s)ri(u)
|hi(u, xk1(qi1(u)), xk2(qi2(u)), xk3(qi3(u)))

− hi(u, x01(qi1(u)), x02(qi2(u)), x03(qi3(u)))| du ds

+

∫ +∞

t+jσ

∫ +∞

s

∫ +∞

u

1

λi(s)ri(u)
|li(v, xk1(ηi1(v)), xk2(ηi2(v)), xk3(ηi3(v)))

− li(v, x01(ηi1(v)), x02(ηi2(v)), x03(ηi3(v)))| dv du ds

]}

≤ max
1≤i≤3

+∞
∑

j=1

[
∫ +∞

T+jσ

1

λi(s)
|gi(s, xk1(pi1(s)), xk2(pi2(s)), xk3(pi3(s)))

− gi(s, x01(pi1(s)), x02(pi2(s)), x03(pi3(s)))| ds

+

∫ +∞

T+jσ

∫ +∞

s

1

λi(s)ri(u)
|hi(u, xk1(qi1(u)), xk2(qi2(u)), xk3(qi3(u)))

− hi(u, x01(qi1(u)), x02(qi2(u)), x03(qi3(u)))| du ds

+

∫ +∞

T+jσ

∫ +∞

s

∫ +∞

u

1

λi(s)ri(u)
|li(v, xk1(ηi1(v)), xk2(ηi2(v)), xk3(ηi3(v)))

− li(v, x01(ηi1(v)), x02(ηi2(v)), x03(ηi3(v)))| dv du ds

]

.

In light of (3.6), (3.7), (3.14) and Lebesgue dominated convergence theorem, we
infer that ‖QLxk −QLx0‖ → 0 as k → +∞, which means that QL is continuous.
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Now we show that QLΩ(a, b) is relatively compact. On account of QLΩ(a, b) ⊆
Ω(a, b), QL is uniformly bounded. Because of (v), for any ǫ > 0, choose T∗ > T
large enough such that

(3.15)

3
∑

i=1

+∞
∑

j=1

[
∫ +∞

T∗+jσ

αi(s)

λi(s)
ds+

∫ +∞

T∗+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T∗+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

<
ǫ

2
.

By (iv), (3.13) and (3.15), for x ∈ Ω(a, b), t2 ≥ t1 ≥ T∗ and i ∈ {1, 2, 3}, we have

|(QLix)(t1)− (QLix)(t2)|

≤

+∞
∑

j=1

[
∫ +∞

t1+jσ

αi(s)

λi(s)
ds+

∫ +∞

t1+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

t1+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

+
+∞
∑

j=1

[
∫ +∞

t2+jσ

αi(s)

λi(s)
ds+

∫ +∞

t2+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

t2+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

< ǫ.

For T ≤ t1 ≤ t2 ≤ T∗, choose a sufficiently large integer w ≥ 1 satisfying T +jσ ≥
T∗ with j ≥ w. For x ∈ Ω(a, b) and i ∈ {1, 2, 3}, we get that

|(QLix)(t1)− (QLix)(t2)|

≤

+∞
∑

j=1

[
∫ t2+jσ

t1+jσ

αi(s)

λi(s)
ds+

∫ t2+jσ

t1+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ t2+jσ

t1+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

=

w
∑

j=1

[
∫ t2+jσ

t1+jσ

αi(s)

λi(s)
ds+

∫ t2+jσ

t1+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ t2+jσ

t1+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

+

+∞
∑

j=w+1

[
∫ t2+jσ

t1+jσ

αi(s)

λi(s)
ds+

∫ t2+jσ

t1+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds
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+

∫ t2+jσ

t1+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

≤

w
∑

j=1

[
∫ t2+jσ

t1+jσ

αi(s)

λi(s)
ds+

∫ t2+jσ

t1+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ t2+jσ

t1+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

+

+∞
∑

j=1

[
∫ +∞

T∗+jσ

αi(s)

λi(s)
ds+

∫ +∞

T∗+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T∗+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

< Wi|t1 − t2|+
ǫ

2
,

where

Wi = max
T+σ≤s≤T∗+wσ

{

w
∑

j=1

[

αi(s)

λi(s)
+

∫ +∞

s

βi(u)

λi(s)ri(u)
du

+

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du

]

}

,

which implies that there exists δ = ǫ
2(1+Wi)

> 0 such that

|(QLix)(t1) − (QLix)(t2)| < ǫ for any t1, t2 ∈ [T, T∗] with |t1 − t2| < δ and
x ∈ Ω(a, b).

For x ∈ Ω(a, b), t0 ≤ t1 ≤ t2 ≤ T and i ∈ {1, 2, 3}, it follows from (3.13) that

|(QLix)(t1)− (QLix)(t2)| = 0.

Thus Lemma 2.2 ensures that there exists x ∈ Ω(a, b) with QLx = x. That is,
for i ∈ {1, 2, 3},

xi(t) =















































L−
∑+∞

j=1

[

∫ +∞
t+jσ

gi(s,x1(pi1(s)),x2(pi2(s)),x3(pi3(s)))
λi(s)

ds

−
∫+∞
t+jσ

∫ +∞
s

hi(u,x1(qi1(u)),x2(qi2(u)),x3(qi3(u)))
λi(s)ri(u)

du ds

−
∫+∞
t+jσ

∫ +∞
s

∫+∞
u

li(v,x1(ηi1(v)),x2(ηi2(v)),x3(ηi3(v)))
λi(s)ri(u)

dv du ds

]

,

t ≥ T,

xi(T ), t0 ≤ t < T.
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It follows that for t ≥ T and i ∈ {1, 2, 3},

xi(t)− xi(t− σ) =

∫ +∞

t

gi(s, x1(pi1(s)), x2(pi2(s)), x3(pi3(s)))

λi(s)
ds

−

∫ +∞

t

∫ +∞

s

hi(u, x1(qi1(u)), x2(qi2(u)), x3(qi3(u)))

λi(s)ri(u)
du ds

−

∫ +∞

t

∫ +∞

s

∫ +∞

u

li(v, x1(ηi1(v)), x2(ηi2(v)), x3(ηi3(v)))

λi(s)ri(u)
dv du ds.

It is easy to verify that x is a bounded positive solution of equations (1.5).
Finally, we investigate that equations (1.5) possess uncountably many bounded

positive solutions. Let L1, L2 ∈ (a + c, b− c) with L1 6= L2. For each j ∈ {1, 2},
choose a constant Tj > t0 + σ and a mapping QLj

to satisfy (3.11), (3.12) and

(3.13), where L and T are replaced by Lj and Tj , respectively, and

(3.16)

3
∑

i=1

+∞
∑

j=1

[
∫ +∞

T3+jσ

αi(s)

λi(s)
ds+

∫ +∞

T3+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T3+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

<
|L1 − L2|

2

for some T3 > max{T1, T2}. Obviously, the mappings QL1
and QL2

have the
fixed points x, y ∈ Ω(a, b), respectively. That is, x and y are bounded positive
solutions of equations (1.5). Next we need only to prove that x 6= y. As a matter
of fact, by (3.13) we get that for t ≥ T3 and i ∈ {1, 2, 3},

xi(t) = L1 −

+∞
∑

j=1

[
∫ +∞

t+jσ

gi(s, x1(pi1(s)), x2(pi2(s)), x3(pi3(s)))

λi(s)
ds

−

∫ +∞

t+jσ

∫ +∞

s

hi(u, x1(qi1(u)), x2(qi2(u)), x3(qi3(u)))

λi(s)ri(u)
du ds

−

∫ +∞

t+jσ

∫ +∞

s

∫ +∞

u

li(v, x1(ηi1(v)), x2(ηi2(v)), x3(ηi3(v)))

λi(s)ri(u)
dv du ds

]

,

yi(t) = L2 −

+∞
∑

j=1

[
∫ +∞

t+jσ

gi(s, y1(pi1(s)), y2(pi2(s)), y3(pi3(s)))

λi(s)
ds

−

∫ +∞

t+jσ

∫ +∞

s

hi(u, y1(qi1(u)), y2(qi2(u)), y3(qi3(u)))

λi(s)ri(u)
du ds

−

∫ +∞

t+jσ

∫ +∞

s

∫ +∞

u

li(v, y1(ηi1(v)), y2(ηi2(v)), y3(ηi3(v)))

λi(s)ri(u)
dv du ds

]

,
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which together with (iv) and (3.16) yield that

∣

∣xi(t)− yi(t)
∣

∣ ≥ |L1 − L2| − 2

+∞
∑

j=1

[
∫ +∞

T3+jσ

αi(s)

λi(s)
ds

+

∫ +∞

T3+jσ

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T3+jσ

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

]

> 0, ∀ t ≥ T3, i ∈ {1, 2, 3},

that is, x 6= y. This completes the proof. �

Theorem 3.3. Let a, b ∈ C(I,R+) with a < b and let (i), (ii), (iv) and (vi)

hold. If c < b−a
2 and ϕ is nondecreasing with ϕ(t+) < t for each t > 0, then

equations (1.5) possess uncountably many bounded positive solutions in Ω(a, b).

Proof: Put L ∈ (a + c, b − c). In view of (i), there exists sufficiently large
T ≥ t0 + σ satisfying (3.1). Define a mapping QL : Ω(a, b) → C(I,R3) by (3.12),
where
(3.17)

(QLix)(t) =



















































L+ fi(t, x1(t− σi1), x2(t− σi2), x3(t− σi3))

+
∫+∞
t

gi(s,x1(pi1(s)),x2(pi2(s)),x3(pi3(s)))
λi(s)

ds

−
∫+∞
t

∫ +∞
s

hi(u,x1(qi1(u)),x2(qi2(u)),x3(qi3(u)))
λi(s)ri(u)

du ds

−
∫+∞
t

∫ +∞
s

∫+∞
u

li(v,x1(ηi1(v)),x2(ηi2(v)),x3(ηi3(v)))
λi(s)ri(u)

dv du ds,

t ≥ T,

(QLix)(T ), t0 ≤ t < T

for i ∈ {1, 2, 3}.
Firstly, we assure that QLx ∈ Ω(a, b) for all x ∈ Ω(a, b). In terms of (ii), (iv),

(3.1) and (3.17), we infer that for each x ∈ Ω(a, b) and i ∈ {1, 2, 3},

(3.18)

(QLix)(t)

≤ L+ ci(t) +

(

∫ +∞

T

αi(s)

λi(s)
ds+

∫ +∞

T

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

)

≤ L+ c+ (b− c− L)

≤ b(t), t ≥ T,
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(3.19)

(QLix)(t)

≥ L− ci(t)−

(

∫ +∞

T

αi(s)

λi(s)
ds+

∫ +∞

T

∫ +∞

s

βi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γi(v)

λi(s)ri(u)
dv du ds

)

≥ L− c− (L− c− a)

≥ a(t), t ≥ T.

Thus QLΩ(a, b) ⊆ Ω(a, b).
Secondly, we claim that

(3.20) lim
t→0+

ϕ(t) = 0 = ϕ(0).

Because ϕ : R+ → R
+ is nondecreasing and nonnegative, we deduce that

0 ≤ ϕ(0) ≤ ϕ(t) ≤ ϕ(s), ∀ s > t > 0,

which together with ϕ(t+) < t for each t > 0 ensures that

0 ≤ ϕ(0) ≤ ϕ(t) ≤ lim
s→t+

ϕ(s) = ϕ(t+) < t, ∀ t > 0.

Letting t → 0+ in the above inequalities, we get that (3.20) holds.
Thirdly, we prove that QL is continuous. Let x0 = (x01, x02, x03) ∈ Ω(a, b) and

{xk}k≥0 = ({xk1}k≥0, {xk2}k≥0, {xk3}k≥0) ⊂ Ω(a, b) with xk → x0 as k → +∞.
Let Dk = {xk, x0} for k ≥ 1. It follows from (vi), (3.17) and (3.20) that

‖QLxk −QLx0‖ = max
1≤i≤3

sup
t∈I

|(QLixk)(t)− (QLix0)(t)|

≤ max
1≤i≤3

sup
t≥T

[

|fi(t, xk1(t− σi1), xk2(t− σi2), xk3(t− σi3))

− fi(t, x01(t− σi1), x02(t− σi2), x03(t− σi3))|

+

∫ +∞

t

1

λi(s)
|gi(s, xk1(pi1(s)), xk2(pi2(s)), xk3(pi3(s)))

− gi(s, x01(pi1(s)), x02(pi2(s)), x03(pi3(s)))| ds

+

∫ +∞

t

∫ +∞

s

1

λi(s)ri(u)
|hi(u, xk1(qi1(u)), xk2(qi2(u)), xk3(qi3(u)))

− hi(u, x01(qi1(u)), x02(qi2(u)), x03(qi3(u)))| du ds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

1

λi(s)ri(u)
|li(v, xk1(ηi1(v)), xk2(ηi2(v)), xk3(ηi3(v)))
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− li(v, x01(ηi1(v)), x02(ηi2(v)), x03(ηi3(v)))| dv du ds

]

≤ sup
t≥T

ϕ(Dk(t)) = sup
t≥T

ϕ
(

max
1≤j≤3

|xkj(t)− x0j(t)|
)

≤ ϕ(‖xk − x0‖) → 0 as k → +∞.

Thereupon, QL is continuous in Ω(a, b).
Lastly, we demonstrate that QL is a condensing mapping. Let ǫ > 0. For any

nonempty subset D of Ω(a, b) with α(D) > 0, where α denotes the Kuratowski
measure of noncompactness, there exist finitely many subsets D1, D2, . . . , Dn of
Ω(a, b) such that

(3.21) D ⊆

n
⋃

m=1

Dm, diamDm ≤ α(D) + ǫ, ∀m ∈ {1, 2, . . . , n}.

It follows from (vi) and (3.17) that for any x, y ∈ Dm, m ∈ {1, 2, . . . , n},

‖QLx−QLy‖ = max
1≤i≤3

sup
t∈I

|(QLix)(t) − (QLiy)(t)|

≤ max
1≤i≤3

sup
t≥T

[

|fi(t, x1(t− σi1), x2(t− σi2), x3(t− σi3))

− fi(t, y1(t− σi1), y2(t− σi2), y3(t− σi3))|

+

∫ +∞

t

1

λi(s)
|gi(s, x1(pi1(s)), x2(pi2(s)), x3(pi3(s)))

− gi(s, y1(pi1(s)), y2(pi2(s)), y3(pi3(s)))| ds

+

∫ +∞

t

∫ +∞

s

1

λi(s)ri(u)
|hi(u, x1(qi1(u)), x2(qi2(u)), x3(qi3(u)))

− hi(u, y1(qi1(u)), y2(qi2(u)), y3(qi3(u)))| du ds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

1

λi(s)ri(u)
|li(v, x1(ηi1(v)), x2(ηi2(v)), x3(ηi3(v)))

− li(v, y1(ηi1(v)), y2(ηi2(v)), y3(ηi3(v)))| dv du ds

]

≤ sup
t≥T

ϕ(Dm(t))

≤ ϕ(diamDm),

which means that

(3.22) diam(QLDm) ≤ ϕ(diamDm), ∀m ∈ {1, 2, . . . , n}.
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According to (3.21) and (3.22), we derive that

α(QLD) ≤ α(

n
⋃

m=1

QLDm) = max
1≤m≤n

{α(QLDm)} ≤ max
1≤m≤n

diam(QLDm)

≤ max
1≤m≤n

ϕ(diamDm) ≤ ϕ(α(D) + ǫ).

Setting ǫ → 0 in the above inequality, we gain that

α(QLD) ≤ ϕ(α(D) + 0) < α(D),

which implies that QL is condensing. Lemma 2.3 ensures that there exists x ∈
Ω(a, b) with QLx = x, which is a solution of equations (1.5). The rest of the proof
is similar to that of Theorem 3.1. This completes the proof. �

Theorem 3.4. Let a, b ∈ C(I,R+) with a < b and let (i)–(iv), (vii) and (viii)

hold. If c < b−a
2 and d ∈ (0, 1), then equations (1.5) possess uncountably many

bounded positive solutions in Ω(a, b).

Proof: Put L ∈ (a + c, b − c). Due to (i) and (viii), we derive that there exists
T ≥ t0 + σ large enough satisfying (3.1) and

(3.23)

3
∑

i=1

[

∫ +∞

T

µi(s)

λi(s)
ds+

∫ +∞

T

∫ +∞

s

τi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

ζi(v)

λi(s)ri(u)
dv du ds

]

<
1− d

2
.

Define a mapping QL : Ω(a, b) → C(I,R3) by (3.12) and (3.17). Just as (3.18)
and (3.19), we can demonstrate that QL is a self-mapping on Ω(a, b) by (ii), (iv)
and (3.1).

We now investigate that QL is a contraction mapping. According to (iii), (vii)
and (3.23), we get that

|(QLix)(t) − (QLiy)(t)|

≤ |fi(t, x1(t− σi1), x2(t− σi2), x3(t− σi3))

− fi(t, y1(t− σi1), y2(t− σi2), y3(t− σi3))|

+

∫ +∞

t

1

λi(s)
|gi(s, x1(pi1(s)), x2(pi2(s)), x3(pi3(s)))

− gi(s, y1(pi1(s)), y2(pi2(s)), y3(pi3(s)))| ds

+

∫ +∞

t

∫ +∞

s

1

λi(s)ri(u)
|hi(u, x1(qi1(u)), x2(qi2(u)), x3(qi3(u)))



388 M. Liu

− hi(u, y1(qi1(u)), y2(qi2(u)), y3(qi3(u)))| du ds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

1

λi(s)ri(u)
|li(v, x1(ηi1(v)), x2(ηi2(v)), x3(ηi3(v)))

− li(v, y1(ηi1(v)), y2(ηi2(v)), y3(ηi3(v)))| dv du ds

]

≤ di(t) max
1≤j≤3

|xj(t− σij)− yj(t− σij)|

+

∫ +∞

t

µi(s)max1≤j≤3 |xj(pij(s))− yj(pij(s))|

λi(s)
ds

+

∫ +∞

t

∫ +∞

s

τi(u)max1≤j≤3 |xj(qij(u))− yj(qij(u))|

λi(s)ri(u)
du ds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

ζi(v)max1≤j≤3 |xj(ηij(v)) − yj(ηij(v))|

λi(s)ri(u)
dv du ds

≤

(

d+

∫ +∞

T

µi(s)

λi(s)
ds+

∫ +∞

T

∫ +∞

s

τi(u)

λi(s)ri(u)
du ds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

ζi(v)

λi(s)ri(u)
dv du ds

)

‖x− y‖

<
1 + d

2
‖x− y‖, t ≥ T, i ∈ {1, 2, 3},

which implies that ‖QLx − QLy‖ < 1+d
2 ‖x − y‖ for any x, y ∈ Ω(a, b). Clearly,

QL is a contraction mapping by d ∈ (0, 1). Consequently, QL has a unique fixed
point x ∈ Ω(a, b), which is a bounded positive solution of equations (1.5). The
rest of the proof is similar to that of Theorem 3.1 and is omitted. This completes
the proof. �
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