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Uncountably many solutions of a system
of third order nonlinear differential equations

MiN Liu

Abstract. In this paper, we aim to study the global solvability of the following system
of third order nonlinear neutral delay differential equations

% ri(t)i [Ai(t)d% (:m(t) = filt,z1(t — 041), w2(t — 042), z3(t - Uz'a)))] }
+ % [T’i(t)%gi(ta z1(pi1 (1)), z2(piz(t)), x3(pi3(t)))]

+ %hi(t,ml(qﬂu)), w2(qi2(1)), w3 (i3 ()

=1i(t, z1 (i1 (1)), m2(mi2(t)), x3(miz (t))), t>to, i€ {1,2,3}

in the following bounded closed and convex set

Q(a,b) = {:r(t) = (11(25),12(25),13(25)) € C([to, +o0), R?) : a(t) < z;(t) < b(2),

VtZto,ie{l,Q,B}},

where a;; > 0, 75, Ai, a,b € C([to, +o0), RY), fi, g, hiyli € C([to, +00) x R3,R),
Dij,qij,Mij € C([to,+00),R) for 4,5 € {1,2,3}. By applying the Krasnoselskii fixed
point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and
the Banach contraction principle, four existence results of uncountably many bounded
positive solutions of the system are established.

Keywords: system of third order nonlinear neutral delay differential equations, contrac-
tion mapping, completely continuous mapping, condensing mapping, uncountably many
bounded positive solutions

Classification: 34K15, 34C10

1. Introduction

Recently, it is well known that the theory of neutral delay differential equa-
tions and systems undergoes a rapid development, especially for the existence of
nonoscillatory solutions of second-order and higher order neutral delay differen-
tial equations and systems, refer to [1], [3]-[5], [7]-[9], [11]-[14] and the references
therein.
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In 2007, Zhou [12] used the Krasnoselskii fixed point theorem to study the ex-
istence of nonoscillatory solutions of the following second-order nonlinear neutral
differential equation

m

(2(t) + p(B)at = )] + D QiB)filalt — i) =0, t>1to,

i=1

d d
(1.1) o r(t)dt
where m > 1 is an integer, 7 > 0, 0; > 0, r,p,Q; € C([tg,+0),R) and f; €
C(R,R) fori e {1,2,...,m}.
In 2002, Zhou and Zhang [14] applied the Banach contraction principle to study
the following higher order neutral functional differential equation with positive
and negative coeflicients

mn

(1.2) C‘;—n z(t)+cz(t77)} + ()" [Pzt —0) - Qt)x(t—5)] =0, > 1o,

where n > 1 is a integer, c € R, 7,0,6 € RT and P,Q € C([tg, +00),RT).
In 2005, Lin [8] got some sufficient conditions for oscillation and nonoscillation
for the second-order nonlinear neutral differential equation

d2
2 [ac(t) —p(t)x(t — 7')} +q@)f(z(t—0))=0, t>0,

where 7,0 > 0, p,q € C([0,+00),R), f € C(R,R) with ¢(¢) > 0 and zf(z) > 0
fort e R, x € R/{0}.
In 2008, a system of higher order nonlinear neutral differential equations

(1.4) N {yz‘(t) — a;(t)y;(t — Ti)} = pi()gi(y3—i(t — o3—3)) + fi(1),

dtn
t>to, i €{1,2}

(1.3)

was investigated by Hanustiakovd and Olach [4], where n > 1 is an integer, 7;, 0; >
0, a;,pi, fi € C([tg, +0),R) and g; € C(R,R) for ¢ € {1,2}. Some sufficient
conditions for the existence of nonoscillatory bounded solutions of equations (1.4)
were obtained by using the Krasnoselskii fixed point theorem and the Schauder
fixed point theorem.

In this paper, we are concerned with the following system of third order non-
linear neutral delay differential equations:

%{H(ﬂ% [Az‘(t)% (%‘(t) — filt,x1(t — 0i1), w2 (t — 042), 23(t — Uz‘B)))} }
2 [rl0) 1021 (i (), 2 i), 3 i 1)

+ %hi(t 21(qi1(t)), 2(qi2(t)), 23(qi3(t)))

=1;(t,m1(ni1 (1)), w2(mi2 (1)), 23 (i3 (t))), t > to, i € {1,2,3},
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where o;; > 0, 73, A € C([to, +00),RY), fi,gi,hisli € C([to, +00) x R3,R),
Pijs 9ijs i € C([to, +00), R) with
li i(t) = 1 ii(t) = 1 ii(t) =
i piy(f) =, 1 _a(®) = lmmig(f) = oo
for i,j € {1,2,3}.
By using the Krasnoselskii fixed point theorem, the Schauder fixed point the-
orem, the Sadovskii fixed point theorem and the Banach contraction principle

respectively, we demonstrate four existence theorems of uncountably many boun-
ded positive solutions of equations (1.5).

2. Preliminaries

Throughout this paper, put I = [tg, +00) and let C(I,R3) denote the Banach
space of all continuous and bounded vector functions z(t) = (x1(¢), z2(t), z3(t))
on I with norm ||z| = maxj<;<3supscs |zi(t)]. For any a,b € C(I,RT), set
@ = supyeg a(t), a = infye a(t), b = supey b(t), b = infye b(t) and

Qa,b) = {x(t) = (w1(t), 22(t), 23(t)) € C(I,R?) : a(t) < ;(t) < b(t),
Viel,ie {1,2,3}}.

Obviously, Q(a,b) is a bounded closed and convex subset of C(I,R3). For any
D C Q(a,b) and t € 1, let
D(t) = (1) —yi(t)] - x(t) = t t t
(8) = sup { mmax oi(t) —yi(0)] : 2(t) = (#1(2), 22(t), 23(1),
y(t) = (y1(t), y2(t), y3(t)) € D}
diam D = sup{|lz — y|| : z,y € D}.

It is assumed in the sequel that there exist functions a, b, ¢;, d;, ay, Bi, Vi, lis Tis
G € C(I,RT) for i € {1,2,3} with a(t) < b(t) for t € I and ¢ : Rt — RT
satisfying

2 3i(5), ko woksy } s < 00, i € {1,231

i(t), Ytel, u; €[a,b],i€{1,2,3};
(i) [fi(t,u1,u2,u3) — fi(t,v1,v2,v3)] < d;(t) maxi<j<slu; —v;|, VYVt € I,
uj,vj € [a,b], i,j€{1,2,3}
(iv) |g;(t,ur,u2,uz)] < a;(t), [ (t, ut,ug,us)] < Bi(t), Lt ur,ue,ug)] <
vi(t), Yt eI, u; €[a,b], i €{1,2,3};
)

(v) [+ max{s;z((ss))7 ff((i)’%( )ik )\js)}ds < +oo, i€ {1,2,3);

(i) ;roo max{ gz;
(ii) |fi(t, w1, u2,u3)|

<

to
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(vi)

| filt, x1(t = 031), 22 (t — 032), w3(t — 0y3))
— filt,y1(t — oq1), y2(t — 042), y3(t — 033))]|

+oo 1
+/t T(S)mi(saxl(pil(s))vx2(pi2(3))a$3(pi3(5)))
gi(s ,yl(pzl( ), y2(pi2(s)), y3(piz(s)))| ds

+oo  p+oo
/ / STt i i (). (i), i ()
u, y1(q@1( ), y2(qi2(w)), y3(gi3(u)))| du ds
+oo 400 +oo
/ / / ST 1 (i (), 22 g (0), 33 ()

(v yl(ml( )) y2(ni2(v)), y3(mi3(v)))| dv du ds
< @(D(1)), vp C Qa,b), myeD, tel, ie{l,2,3}

(vii) [gi(t,u1,u2,u3) — gi(t,v1,v2,v3)| < pi(t) maxi<j<s|uj — v,
|hi(t, w1, ug, uz) — hi(t,v1,v2,v3)| < 74(t) maxy<j<3 [u; — vjl,
|13, ur, ug, ug) — Ui(t, v1,v2, v3)| < G() maxy<j<s |uj — vyl
Vte I uj,v; € la,b],i,j€{1,2,3};

(viii) ftjc’omax{ilgj) 29 G(s) s 5 (s)}ds < 4oo, i€ {1,2,3).

Let 0 = max{o;; : i,j € {1,2,3}}. By a solution of equations (1.5), we mean a
vector function & = (x1, x2, x3) such that for some t; > tg and i € {1,2,3}, z; €
C([t1—0,+00),R), z;(t)— fi(t, z1(t—041), x2(t—042), x3(t—053)) is 3 times contin-
uously differentiable on [t1,+00), g;(t, 21 (pi1(t)), x2(pia(t)), x3(pi3(t))) is 2 times
continuously differentiable on [t1,+00), h;(t, z1(qi1(t)), z2(qi2(t)), z3(qi3(t))) is
continuously differentiable on [t1,4+00) and equations (1.5) hold for ¢ > ¢;.

The following four lemmas play significant roles in this paper.

Lemma 2.1 (Krasnoselskii Fixed Point Theorem [2]). Let D be a nonempty
bounded closed convex subset of a Banach space X and S,Q : D — X satisfy
Sz + Qy € D for each x,y € D. If Q is a contraction mapping and S is a
completely continuous mapping, then the equation Sx + Qx = x has at least one
solution in D.

Lemma 2.2 (Schauder Fixed Point Theorem [2]). Let D be a nonempty closed
convex subset of a Banach space X. Let S : D — D be a continuous mapping
such that SD is a relatively compact subset of X. Then S has at least one fixed
point in D.
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Lemma 2.3 (Sadovskii Fixed Point Theorem [10]). Let D be a nonempty boun-
ded closed convex subset of a Banach space X and S : D — D be a continuous
condensing mapping. Then S has at least one fixed point in D.

Lemma 2.4 (Banach contraction principle). Let D be a closed subset of a com-
pletely metric space X and S : D — D be a contraction on D. Then S has at
least one fixed point in D.

3. Existence of uncountably many bounded positive solutions

In this section, we demonstrate the existence of uncountably many bounded
positive solutions of equations (1.5). Let

c = max supc;(t) and d= max supd;
1<i<3 tEII) it) 1<i<3 tEII) ®)-

Theorem 3 1. Let a,b € C(I,R") with@ < b and let (i)-(iv) hold. If d € (0,1)

and ¢ < = 2 , then equations (1.5) possess uncountably many bounded positive
solutions in Q(a, b).

PROOF: Set L € (@ + ¢,b — ¢). According to (i), we deduce that there exists
T > tg 4+ o large enough satisfying

3 +00 (. 400 p+oo
z:/ S@f/ / ﬂz 7 duds
T S

i=1

(3.1) . /T+°° /:“ [“’%MW

<min{bfch,Lfcfa}.

Define two mappings Qr,, S, : Q(a,b) — C(I,R3) by

(Qra)(t) = (Qr12)(t), (QL2z)(t), (QL3z)(t)),
(Spx)(t) = ((Spaz)(t), (SL2)(t), (SL3z)(t))
for x = (z1,29,23) € Q(a,b) and t € I, where
(3.2)
Quae) = {

L+ fi(t,z1(t — oi1), x2(t — 042), x3(t — 043)), t>T,

(Qriz)(T), to<t<T,

f+oo gi(s,21(pi1(s)), wf((l!;z)z(S)) 23(Pis(5))) g

_ ]?_OO f8+oo hi(w,1 (g (W)),w2(gi2 (W), x3(9i3(W)) g,

Ai(s)ri(u)

(Spiz)(t) = t+oo fs+oo fjoo Li(wsa (i1 (v),w2 (mi2 (0),23 i3 () 7)o ds,

Ai(s)ri(u)
£>T,
(Spiw)(T), to<t<T
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for i € {1,2,3}.
Firstly, we prove Qrz + Spy € Q(a,b) for all x,y € Q(a,b). Due to (ii), (iv),
(3.1) and (3.2), we get that for each z,y € Q(a,b), t > T, i € {1,2,3},

(Qriw + Sriy)(t)

§L+ci(t)+/T+oo af(j) ds+/+w/s+w%duds

—+o0 —+o0 “+o0
(3:3) / / / % dv du ds

<L+ct+(b—c—L
< b(t)
and
(Qriz + SLiy)(t)
>L—c(t) — / ' /+OO/+OO ﬁl duds

(34) / o / o / o % dvduds]

>L—-c—(L—c—nqa)
> a(t).
It follows from (3.3) and (3.4) that Q7 Q(a,b) + S;.Q(a,b) C Q(a,d).

Secondly, we demonstrate that (), is a contraction mapping. According to
(3.2) and (iii), we derive that

(Qriz)(t) — (Qrsy)(t)]
= |fi(t,x1(t — 041), x2(t — 042), x3(t — 043))
— filt,y1(t — o41), y2(t — 042), y3(t — 043))|
< d;(1) [ax, lzj(t = 04;) — yj(t — o4j)]
which implies that

1Qrz — Qryll <dlz —yll, Vz,yeQab)

That is, Qp, is a contraction mapping by d € (0,1).
Thirdly, we show that Sy is completely continuous. Now we demonstrate
Sr, is continuous in Q(a,b). Let xg = (zo1,202,203) € Q(a,b) and {z}}r>0 =



System of third order nonlinear differential equations 375

=k} e>0, {22} k>0, {263 k>0) C Q(a,b) with z, — xg as k — +oo. (3.2) yields
that
(3.5)
|Spxy, — Spwoll = max sup |[(Sgzr)(t) — (Spiwo)(t)]
1<:<3 tel

+oo
< 112%3?;13{/ t )|gi(8,xk1(pz‘1(5)),zm(pm(s)),$k3(pi3(5)))

s)), w02(Pi2(8)), w03 (pi3(s)))| ds

+oo  p+oo 1

/ / )Tz (u, 21 (gi1 (v)), R2(gi2(w)), Tx3(gi3(u)))
(u, z01(gi1 (), 3502(%2( ))s 203(gi3(u)))| du ds

+o0o pt+oo0  p+4o00
/ / / 10, 241 (001 (0)), 22 (Mi2(0)), 23 (i3 (1))

— 1i(v, 201 (031 (v)), zo2 (Ni2(v)), T03 (N3 (v)))] dv du ds}

/\y

— 9i(s, mo1(pi1

+oo 1
< Juax, l/T T()mi(sazkl(pil(s))axk2(pi2(5))axk3(pi3(5)))

—9i(s $01(p11( ))s z02(pi2(s)), o3 (pis(s)))| ds

+oo p+oo
/ / (u, 21 (g1 (w)), Tra(giz(u)), T3 (gi3(u)))
(u, 01 (g1 (v ) 9502(%2( ), 703(¢i3(u)))| du ds
+oo p+oo 400
/ / / (0, 211 (051 (0)), 82 (762 (0), s (5 (1))

= Li(v, 201 (i1 (v)), 202 (ni2(v)), 03 (133(v)))| dv du ds | .

Note that
|9: (s, 711 (Pi1(5)); T2 (Pi2(9)), Tx3(Pi3(s)))
— 9i(s, z01(pi1(8)), zo2(pi2(s)), w03 (i3 (s)))] < 2a;(s),
(3.6) [P (w, 211 (gi1 (), T2 (giz (), 213(gi3 (u)))
' — hi(u, z01(gi1(v)), mo2(qi2(w)), z03(qi3(u)))] < 28;(u),

|1 (v, 21 (01 (v)), T2 (M2 (), T3 (M3 (v)))
= Li(v, 201 (i1 (v)), To2(Mi2(v)), 203 (Mi3(v)))] < 27:(v),
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|9i (s, 21 (Pi1(8)), T2 (Piz(s)), T3 (Pis(s)))
— 9i(s,01(pi1(5)), o2 (Pi2(s)), 203 (pis(s)))| — 0,
i u, 2x1(gi1 (w)), zra(giz (), Tx3(gis(w)))
= hi(u, w01 (g1 (v)), To2(qi2(u)), v03(¢iz(u)))| — 0,
i (v, Tg1 (031 (v)), T2 (Mi2(v)), 2x3 (M3 (V)
— (v, 201(ni1(v)), w2 (Mi2(v)), w03 (i3 (v)))] — 0
as k — 400 for s,u,v € [T,4+0c0) and ¢ € {1,2,3}. It follows from (3.5), (3.6),
(3.7) and Lebesgue dominated convergence theorem that ||Spxi — Spzo|| — 0 as

k — +4o00. Hence Sy, is continuous in Q(a,b). Now we prove that S;Q(a,b) is
relatively compact. In view of (i), (iv) and (3.2), we deduce that

Szl = rgagg iup |(SLiz)(t)]

“+o0o “+oo
_Z [/ (5) J ds +/ / ﬂz 7 duds
(s) s)ri(u
+oo pt+oo pto0 ’7
/ / / : dvduds Ve Qa,b).

That is, S;,(a, b) is uniformly bounded. For the equicontinuity of S;Q(a,b) on I,
according to Levitans result [6], it suffices to prove that for any given € > 0, I can
be decomposed into finite subintervals in such a way that on each subinterval all
functions of the family have change of amplitude less than e. Let € > 0. By (i),
there exists Ty > T such that

Zl/%//%

(3.8) =1
+oo —+o00 —+o00 ’}/
/ / / ! dv du ds} < =
. u 2"

It follows from (iv), (3.2) and (3.8) that for all z € Q(a,b), to > t; > Ty and
i€{1,2,3},

|(SLiw)(t1) = (Spiw)

S/ & j; ds—l—/t /+OO ﬁz duds
/t /:OO/:m%dvduds
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+oo . +oo
+ / %i(s) S / / ﬁz du ds
t2 Ai(s) ta
+oo  ptoo0 400 .
+ / / / L dv du ds
to ] Ti
+oo . +oo +oo ﬁ
/ d + / / : du ds
* 7/ * u
400 +oo 400 ’7
/ / / L dv du ds]
* TZ

For each = € Q(a,b),T <t; <ty < Ty andi € {1,2,3}, by (iv) and (3.2), we
infer that

<2

|(Sriz)(t1) — (Spiz)

S [ e

(3.9) too rtoo 4
+ 27 dv du ds
/t1 /s /u Ai(8)r3(u)
< Mty — taf,
where

T L.y L A e U

(3.9) implies that there exists § = 757 > 0 such that |(Spx)(t1) — (SLiz)(t2)] <
e for any t1,tg € [T, Ty with [t; — t2] < § and z € Q(a, b).
For x € Q(a,b),tg <t1 <to <T and : € {1,2,3}, due to (3.2), we infer that

|(SLiz)(t1) — (Spiz)(t2)] = 0.

Hence Lemma 2.1 ensures that there exists © € Q(a,b) with Qrz + Spx = z. Tt
is easy to verify that z is a bounded positive solution of equations (1.5).

Finally, we investigate that equations (1.5) possess uncountably many bounded
positive solutions. Let L1, Lo € (@+ ¢, b — ¢) with L1 # La. For each j € {1,2},
we choose a constant T; > £g + o and two mappings @ L; and S L; satisfying (3.1)
and (3.2), where L and T are replaced by L; and T}, respectively, and

23: l/TJrOO iZ(j) / /+00 BZ ) duds
i=1 L/T3

+o0o  p4oo p+4oo . _
+/ / / 7%(1]) dvduds| < Ll La|
T3 s u )‘i(s)ri(u) 2

(3.10)
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for some T3 > max{T7,T>}. Obviously, the mappings Qr, + Sr, and Qr, +
Sp, have the fixed points x,y € Q(a,b), respectively. That is,  and y are
bounded positive solutions of equations (1.5) in Q(a,b). In order to show that
equations (1.5) possess uncountably many bounded positive solutions in (a, b),
we need only to prove that z # y. Indeed, by (3.2) we gain that for ¢t > T3,
i€{1,2,3},

x;(t) = L1 + fi(t, 21(t — 041), 22(t — 042), 23(t — 0;3))
+/+°° gi(s: 21(pin(s)), 22 (pia(s)), 23 (Pia(5))) .
Ai(s)
B /+°° /+°O hi(u, 21(gi1 (w)), 22(gi2(0)), 23(4iz (W)
Ai(s)ri(u)
2

+oo  p+oo +oog (v, 21(ni1(v)), 22 (Mi2(v)), £3(Mi3(v)))
/ / / (o) dvduds

and

yi(t) = Lo+ fi(t,y1(t — 041),y2(t — 042), y3(t — 033))
+/+°° 9i(,y1(pi1 (), 92(Pia(5)), Y3 (Pia(s)))

Ai(s)
/+oo /+00 hi(u, y1(gi1(w)), y2(gio(w)), y3(gi3(w))) du ds
z( Z(u
T [T i,y (i (v)s w2 (2 () w3 (i3 (v)
(A N(s)ri(w) e

which together with (iv) and (3.10) yield that

|3 () — yi(t) — (fz‘(ﬁaxl(ﬁ_Uil)a$2(t_‘7i2)vx3(t_Uz‘B))
= filt,y1(t — 0i1), y2(t — 042), y3(t — 0i3)))

/;OO O‘j(s) ds+/ /+Oo ﬁl j duds
+/ /+Oo/+oo ‘ dvduds}

>07 VtZT,?”ZE{L ) }a

>|Ly — Lo| — 2

that is,  # y. This completes the proof. (Il
Theorem 3.2. Let a,b € C(I,R") with @ < b and let (iv) and (v) hold. Then
equations (1.5) with f;(t,u1,u2,u3) = u; for i € {1,2,3} possess uncountably
many bounded positive solutions in Q(a,b).
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PROOF: Let L € (@,b). According to (v), we deduce that there exists sufficiently
large T' > tg + o satisfying

. “+oo
/ ai(s ds+/ / ﬂl 7 duds
i=1j—1 T+jo i T+jo Js

+oo p+oo ’7
/ / / L dv du ds}
T+jo Tz

<min{b— L,L —a}.

3 +oo

(3.11)

Define a mapping Qy, : Q(a,b) — C(I,R3) by

(3.12) (Qrr)(t) = (Qr17)(t), (Qr2)(t), (Qr3®)(t)),
where
(3.13)
ftjrroo g:(s,1(pi1 (5)), x;(fif(S)),xs(pm(S))) ds
Jo ilS
tﬂo f+<>0 hi(u, Il(t]u(ﬂ)})\ fi)(gﬁé;t))ws(qz's(w)) du ds
Qriz)(t) =
(Qriz)(t) HN 2 [0 [+oo l L (v,21 (mi1 (v ))Axégzﬁg;)) 23 (s @) g, g ds |
t>T,
(Qriz)(T), to<t<T

for i € {1,2,3}.
First of all, we prove Qpz € Q(a,b) for all x € Q(a,b). Due to (iv) and (3.13),
we derive that for each z € Q(a,b) and i € {1,2, 3},

(QLiz )()

+oo  p+oo ’7
/ / / ! dv duds
T+jo

<L+ ((b-1L)
<o), t>T,
(Qriz)(t)

oo +o0 . +00
Z / (5) Jds + / / ﬂz 7 duds
) T+]U i 5 T+jo Js
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+o0 +o0 ’7
/ / / L dv duds
T+]O'

z a(t), t 2 T.

Therefore, Q1,Q(a,b) C Q(a,b).

Next, we demonstrate that @, is completely continuous. It is claimed that
Qr is continuous. Indeed, let xg = (xg1,z02,203) € Qa,b) and {zp}r>0 =
({zr1 >0, {zk2tk>0: {zr3}h>0) € Q(a,b) with z — 20 as k — +oo. (3.13)
yields that
(3.14)

Qrzr — Qroll

= [max sup (Qrizk) () — (QLizo)(t)]

—+o00
< max su
< mmer{ 2

—9i(s 3601(2%1( ))s zo2(piz(s)), zo3(pi3(s)))| ds

/+Oo %(sﬂgi(svxm(pil(s))aka(Pi2(S))7$k3(pi3(S)))

t+jo

—+o0
/ﬂo/ |hi(u,zkl(‘]il(u))axk2(%2(u)),sz(‘]iS(u)))
(u, xo1 (g1 (u )) 9602(%2( ))s 203(qi3(u)))| du ds
+oo  p4oo
/+ / / |l (v, 21 (151 (0)), T2 (Mi2(v)), T3 (M33(v)))
jo

— (v, 201 (i1 (v)), To2(Ni2(v)), 03 (133(v)))| dv du ds] }

400 400
< max [/THJ )\is)|gz‘(5,zm(pu(S)%xkz(piz(s))vﬂfks(pis(S)))

— 9i(s, zo1(pi1 (s )) z02(pi2(s)), T3 (piz(s)))| ds
+o0o
/ / S i a0 i (10). i)
T+ja s Z l
(u, zo1 (g1 (u )) 5502(6112( ))s 203 (gi3(u)))| du ds

+oo p+oo
/ / 5 S e o a0 i (0). s i 1)
T+jo Js

—1i(v, 201 (i1 (v)), w02 (Mi2(v)), 203 (Mi3(v)))| dv du ds | .

In light of (3.6), (3.7), (3.14) and Lebesgue dominated convergence theorem, we
infer that ||Qpzr — Qpzol| — 0 as k — 400, which means that @y, is continuous.
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Now we show that Q7 (a,b) is relatively compact. On account of QrQ(a,b) C
Q(a,b), Qr is uniformly bounded. Because of (v), for any € > 0, choose Ty > T

large enough such that
. +o0
/ (s ds —|—/ / BZ du ds
(3 15) i=1j—=1 Ti+jo i «+jo Js

/*+]J/+Oo/u+00%dvduds} < %

By (iv), (3.13) and (3.15), for € Q(a,b),t2 > t; > Ty and i € {1,2,3}, we have
|(QL¢$)(t ) — (Qriz)(t2)]

+oo +o0
<Z / i )der/ / 62 duds
t1+jo i ti+jo
—+00 “+00 ’)’
/ / / ! dv du ds]
t1 +]U rz
+o0 . +00
/ ds + / / ﬂz du ds
tatjo i totjo Js
—+00 “+00 ’7
/ / / L dv du ds]
tot+jo Tz

For T < t1 < to < Tk, choose a sufficiently large integer w > 1 satisfying T+ jo >
T, with j > w. For x € Q(a,b) and i € {1,2,3}, we get that

(Qriz)(t1) — (Qriz)(t2)]

3 +oo

+

oo ta+jo . ) to+jo  ptoo ﬁz
< / ds + / du ds
j=1 ti1+jo i t1+jo
to+jo “+o0 “+o0 ’7
/ / / ! dv du ds]
ti+jo Tz

I
INgE

tz—l—]a . s to+jo 400 ﬂ
{/ ds+/ / ! duds
t1+jo l' ti+jo

t2+]0/+00/+oo 'Yz dod d]
vauas
t1+]o s)r; U)

/t2+]0 Ozl(S) ds 4+ totjo /+oo ﬂz d .
S uas
t

_l’_
1+jo )‘Z(S) t1+jo

Jj=w+1
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tot+jo 400 400 ’)’
/ / / L dv duds]
t1+jo s)ri(u
w to+jo . t2+JJ +00 .
Z / i(s) ds + / Mduds
= Untjo Ai(s) t1+jo Ai(8)ri(u)

to+jo “+o0 “+o0 ’7
/ / ! dv du ds]
t1+ja u Tz
. +oo
+ Z [ / O"( / / 5 B s duds
Ti+jo i xt+jo

—+o00 —+o00 ’)’
/ / / ! dv du ds]
wtjo s)ri(u

< Wity *t2|+§,

where

_ max 3 () I 7BZ(U) u
Wi= T4o<s<T.+wo { ; [M(S) +/s Ai(8)r(u) I

/+oo /+oo )\Z(%(v dv du] }

2(1+W) > 0 such that
(Qriw)(t1) — (QLiw)(t2)| < e for any t1,t2 € [T,T4] with [t; —t2] < 0 and
x € Qa,b).

For z € Q(a,b), tg <t1 <te <T and i € {1,2,3}, it follows from (3.13) that

<

Cm

which implies that there exists § =

[(Qriz)(t1) — (Qriw)(t2)| = 0.

Thus Lemma 2.2 ensures that there exists © € Q(a,b) with Qrax = x. That is,
for i € {1,2,3},

ftiiff gi(&m(pu(8))@;((1';32(3))713(172'3(8))) d

S

+oo hi(u,z1(q; 22(qi2(u)),x3(qi3(u
o0 [ro0 sl Dzl rseat) g, g,

00 oo li(v,x1(nin (v
t+_]0'f+ f+ (w1 (i1 (v)

t+]a

)72 (152 (v)), 3 (i3 (v))) dv du ds ,

Ai(s)ri(u)
t>T,
zi(T), to<t<T.
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It follows that for t > T and i € {1, 2,3},

- /+°° 9ils, 21(pin(s)), 22(pia(s)), 23(pis (5)))

zi(t) —zi(t—o Ai(s) |
/+°° /+OO hi(u, z1(gi1 (v)), 2(gi2 (), w3(qiz ()
Ai(s)ri(u)
/+°° /+OO /+Ool v, 21 (11 (v )) 22(1i2(v)), 23 (1i3(v))) dv du ds
( Tz(u) |

It is easy to verify that x is a bounded positive solution of equations (1.5).

Finally, we investigate that equations (1.5) possess uncountably many bounded
positive solutions. Let L1, Lo € (@+ ¢, b — ¢) with L1 # La. For each j € {1,2},
choose a constant T; > {p + o and a mapping Qp,; to satisfy (3.11), (3.12) and
(3.13), where L and T are replaced by L; and T}, respectively, and

+o00 . 400 ﬁ
/ ds +/ / 7 du ds
Ts+jo l' Ts+jo
+oo  pt+oo . _
T3+jo u )‘i(s)ri (u) 2

for some T3 > max{T7,T>}. Obviously, the mappings Qr, and Qr, have the
fixed points z,y € Q(a,b), respectively. That is, = and y are bounded positive
solutions of equations (1.5). Next we need only to prove that = # y. As a matter
of fact, by (3.13) we get that for t > T3 and ¢ € {1, 2,3},

3 +oo

2.0

(3.16) =15=1

400
zi(t) = L1 —

S

/+°° 9i(s, 1(pir (), 22 (pia(s)), 3 (Pis ()

t+jo )‘i(s)

/ /*OO hi(u, 21 (g (u )) 12(qi2(u)), 3(q:3(u))) duds
t+jo Ai(s)ri(u)

/ /+°° /+Ool v, 21 (i1 (v )) z2(ni2(v)), 23 (ni3(v))) dvduds
t+JU ( |
)

( )Tz u)
yl(t) =19 — Z /+OO gi(S, yl(pil (3)), ( (3)
/ /+oo hi(u, y1(gi1 (u ))ay2(q12(u)),y3(qi3(u))) uds
t+jo

,y3(piz(s))) d

S

t+jo

Ai(s)
Ai(s)ri(u

O[T 1w, y1 (i (v)), Y2 (M2 (v)), Y3 (ni3 (v)))
/tﬂg/ / i (s)rs () dvduds|,
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which together with (iv) and (3.16) yield that

’IZ( ( ’>|L1 L2|—22

T ()
d
/T3+ja Xi(s)
/ / - ﬂl B
Ts+jo Js Tz( )

—+00 “+00 ’}/
/ / / ! dv duds
T3+jo Js

>07 VﬁZT,‘}Je{L ’ }a

that is, x # y. This completes the proof. O

Theorem 3.3. Let a,b € C(I,R") with @ < b and let (i), (i), (iv) and (vi)
hold. If ¢ < QfTa and ¢ is nondecreasing with o(t+) < t for each t > 0, then

equations (1.5) possess uncountably many bounded positive solutions in Q(a,b).

ProOOF: Put L € (@ + ¢,b — ¢). In view of (i), there exists sufficiently large
T > tg + o satisfying (3.1). Define a mapping Qy, : Q(a,b) — C(I,R3) by (3.12),

where

(3.17)
L+ fi(t,z1(t — o41), x2(t — 042), 23(t — 043))
n ftJrOO gi(&m(pu(S))yrfi(éif(S)),xs(ms(S))) ds
_ oo p+oo hi(w,zi(gin(w)),z2(gi2(u)),x3(qi3(w)))

Quaty={ Ik N .
_ f;roo f;roo fquOO lz’(vm(ml(v)z\vifr(zsgzzig;)),xs(W¢3(U))) dv du ds,
t>T,

(Qriz)(T), to<t<T

for i € {1,2,3}.
Firstly, we assure that Qrx € Q(a,b) for all x € Q(a,b). In terms of (i), (iv),
(3.1) and (3.17), we infer that for each z € (a,b) and ¢ € {1,2,3},

(Qriz)(t)

< L+ci(t) + (/;OO (;:((3 ds+/T+w/8+w%duds
(3.18) /+oo /+oo /+oo yi(v dv " ds)

<L+c+ b—rc
<b), t=>T,
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(Qriw)(t)

(3.19) /+oo/+00/+oo ~vi(v dvduds)

>L—c—(L—c—7)
>a(t), t>T.

Thus Q1 (a,b) C Q(a,b).
Secondly, we claim that

(3.20) lim ¢(t) = 0 = ¢(0).
t—0+

Because ¢ : RT — RT is nondecreasing and nonnegative, we deduce that
0<p(0) <pt) <p(s), Vs>t>0,
which together with o(t+) < ¢ for each ¢ > 0 ensures that

0<p(0) <e(t) < lim ¢(s) =p(t+) <t, Vi>0.

s—tt

Letting ¢t — 07 in the above inequalities, we get that (3.20) holds.

Thirdly, we prove that Qp, is continuous. Let 29 = (zg1, g2, z03) € Q(a,b) and
{zk >0 = (@k1 k>0, {Zk2t k>0, {zk3}k>0) C Qa,b) with z, — 0 as k — +oo.

Let Dy = {xy,zo} for k > 1. Tt follows from (vi), (3.17) and (3.20) that

Qrzr — Qraol = e sup (Qrizk)(t) — (Qrizo)(t)]

< mmax, sup [|fz(t T (t = 0i1), T2t — 04i2), Tk3(t — 043))
— fit,xo1(t — 041), zo2(t — 042), 203 (t — 043))]
[ Sl (9D mapia(s). s i)
—9i(s 9301(1%1( ))s 202(pi2(s)), o3 (pi3(s)))| ds
400 400
/ / |hi(ua i1 (g (w)), Tpa(gio(u)), T3 (qi3(w)))

(u, 201 (g1 (u )) 9602((1@2( ))s 203(qi3(w)))| du ds

+o0o p4oo  ptoo
/ / / |l (v, 21 (i1 (0)); T2 (Mi2(v)), T3 (M3 (V)

385
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—1i(v, 201 (131 (v)), o2 (Mi2(v)), 203 (ni3(v)))| dv du ds

< S @(D(t)) = Sup o( B |2k (t) — wo; (t)])

< (e —20])) = 0 as k — +o0.

Thereupon, @, is continuous in Q(a, b).

Lastly, we demonstrate that @, is a condensing mapping. Let € > 0. For any
nonempty subset D of Q(a,b) with a(D) > 0, where o denotes the Kuratowski
measure of noncompactness, there exist finitely many subsets D1, Do, ..., D, of
Q(a,b) such that

n
(3.21) DC |J Dm, diam Dy, < (D) +¢, Vme{1,2,... ,n}.
m=1

It follows from (vi) and (3.17) that for any x,y € Dy, m € {1,2,... ,n},

1Qre = Qryll = max sup [(Qriz)(t) — (Qriy)(?)|

<i<3 geg
< 11213?3?;1; [lfz(t 21 (t — 041), w2(t — 042), 23(t — 043))
— filt,y1(t — 0i1), y2(t — 042), y3(t — 043))|
+ mm(s,m(pﬂ(s)),m(pw(s)),z3<p23<s>>>
= 9i(5,y1(Pi1(s)), y2(pia(s)), y3(piz(s)))| ds
+oo  ptoo 1
/ / S a1 (1 00), 2 i) i)

u, y1(gi1 (w)), yz(qzz( ))sy3(qi3(w)))| duds
‘oo ptoo  ptoo
/ / / |l (v, 21 (i1 (v)), 22 (Mi2(v)), £3(i3(v)))

— (v, y1(mi1(v)), y2(mi2(v)), y3(Mi3(v)))| dv du ds
< sup ¢(Dim(t))
t>T
< p(diam Dyy,),

which means that

(3.22) diam(QrDm) < p(diam Dy,), Vm € {1,2,... ,n}.
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According to (3.21) and (3.22), we derive that

a(QrD) < a(|J Quhm) = max {a(QLDm)} < max diam(QrDm)

m=1

< max @(diam Dp,) < p(a(D) + ¢).
1<m<n

Setting € — 0 in the above inequality, we gain that

a(QLD) < p(a(D) +0) < a(D),

which implies that @, is condensing. Lemma 2.3 ensures that there exists x €
Q(a, b) with Qpx = x, which is a solution of equations (1.5). The rest of the proof
is similar to that of Theorem 3.1. This completes the proof. O

Theorem 3.4. Let a,b € C(I,R") with @ < b and let (i)—(iv), (vii) and (viii)
hold. If ¢ < QfTa and d € (0,1), then equations (1.5) possess uncountably many
bounded positive solutions in (a, b).

PROOF: Put L € (@+¢,b— ¢). Due to (i) and (viii), we derive that there exists
T > to + o large enough satisfying (3.1) and

z[ J AR TR (g C B
+/T+OO/S+OO/U+OO%dvdudS] <1%d.

Define a mapping Qy, : Q(a,b) — C(I,R3) by (3.12) and (3.17). Just as (3.18)
and (3.19), we can demonstrate that @, is a self-mapping on Q(a,b) by (ii), (iv)
and (3.1).

We now investigate that @, is a contraction mapping. According to (iii), (vii)
and (3.23), we get that

[(QrLiw)(t) — (QLiy)(t)]
<|fi(t,z1(t — 041), 22(t — 042), 23(t — 043))
— filt,y1(t — oi1), y2(t — 042), y3(t — 043))|

+ /t+°° %(Hgi(s,x1(pz1(5))7$2(p¢2(8))a$3(Pi3(s)))

—gi(s,y1 pzl(s))va(sz( ) y3(pis(s)))| ds

‘oo p4oo
/ / 5 |h (u, 1(gi1(w)), 2(gi2 (), 23(qi3(u)))

(3.23)
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(u, y1 (gin (u y2(q12( ))sy3(qi3(w)))| duds

+o00 —+00 —+00
/ / / S e (i (), 222 (0)). 233 ()

= Li(v,y1(i1(v), y2(Mi2 (v)), y3 (i3 (v)))| dv du ds

< d;(t) max, |z (t — 0i5) — yj(t — 045)]

+/+°O pi(s )maX1<j<3|$j(pij( s)) — yj(pi;j(s))]

2\ (5) ds

/+oo /+OO 7i(u max1<]<3 |2(gij(w) — y;(gi; (w))| du ds
Ai(s)ri(u)
+oo 400 400 ((y max1<]<3 |7 (05 (V) — yj(mij(v))]
/ / / o) dv du ds

+oo +oo  p+oo
,uz Tz(u
d+/ d —|—/ / duds
( )‘1(5)7"1 u)
+o0 +oo +oo C
/ / / ! dvduds lz — yll

14+d .
< T”ziynv tZTaZE {15273}5

which implies that ||Qrz — Qry| < 1%lﬂac —y|| for any z,y € Q(a,b). Clearly,
Q1 is a contraction mapping by d € (0,1). Consequently, @1, has a unique fixed
point z € Q(a,b), which is a bounded positive solution of equations (1.5). The
rest of the proof is similar to that of Theorem 3.1 and is omitted. This completes
the proof. (I
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