Commentationes Mathematicae Universitatis Caroline

Min Diu

Uncountable many solutions of a system of third order nonlinear differential equations

Commentationes Mathematicae Universitatis Carolinae, Vol. 52 (2011), No. 3, 369--389

Persistent URL: http://dml.cz/dmlcz/141609

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2011

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Uncountably many solutions of a system of third order nonlinear differential equations

Min Liu

Abstract. In this paper, we aim to study the global solvability of the following system of third order nonlinear neutral delay differential equations

$$
\begin{aligned}
& \frac{d}{d t}\left\{r_{i}(t) \frac{d}{d t}\left[\lambda_{i}(t) \frac{d}{d t}\left(x_{i}(t)-f_{i}\left(t, x_{1}\left(t-\sigma_{i 1}\right), x_{2}\left(t-\sigma_{i 2}\right), x_{3}\left(t-\sigma_{i 3}\right)\right)\right)\right]\right\} \\
& \quad+\frac{d}{d t}\left[r_{i}(t) \frac{d}{d t} g_{i}\left(t, x_{1}\left(p_{i 1}(t)\right), x_{2}\left(p_{i 2}(t)\right), x_{3}\left(p_{i 3}(t)\right)\right)\right] \\
& \quad+\frac{d}{d t} h_{i}\left(t, x_{1}\left(q_{i 1}(t)\right), x_{2}\left(q_{i 2}(t)\right), x_{3}\left(q_{i 3}(t)\right)\right) \\
& =l_{i}\left(t, x_{1}\left(\eta_{i 1}(t)\right), x_{2}\left(\eta_{i 2}(t)\right), x_{3}\left(\eta_{i 3}(t)\right)\right), \quad t \geq t_{0}, \quad i \in\{1,2,3\}
\end{aligned}
$$

in the following bounded closed and convex set

$$
\begin{array}{r}
\Omega(a, b)=\left\{x(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right) \in C\left(\left[t_{0},+\infty\right), \mathbb{R}^{3}\right): a(t) \leq x_{i}(t) \leq b(t)\right. \\
\left.\forall t \geq t_{0}, i \in\{1,2,3\}\right\}
\end{array}
$$

where $\sigma_{i j}>0, r_{i}, \lambda_{i}, a, b \in C\left(\left[t_{0},+\infty\right), \mathbb{R}^{+}\right), f_{i}, g_{i}, h_{i}, l_{i} \in C\left(\left[t_{0},+\infty\right) \times \mathbb{R}^{3}, \mathbb{R}\right)$, $p_{i j}, q_{i j}, \eta_{i j} \in C\left(\left[t_{0},+\infty\right), \mathbb{R}\right)$ for $i, j \in\{1,2,3\}$. By applying the Krasnoselskii fixed point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and the Banach contraction principle, four existence results of uncountably many bounded positive solutions of the system are established.

Keywords: system of third order nonlinear neutral delay differential equations, contraction mapping, completely continuous mapping, condensing mapping, uncountably many bounded positive solutions

Classification: $34 \mathrm{~K} 15,34 \mathrm{C} 10$

1. Introduction

Recently, it is well known that the theory of neutral delay differential equations and systems undergoes a rapid development, especially for the existence of nonoscillatory solutions of second-order and higher order neutral delay differential equations and systems, refer to [1], [3]-[5], [7]-[9], [11]-[14] and the references therein.

In 2007, Zhou [12] used the Krasnoselskii fixed point theorem to study the existence of nonoscillatory solutions of the following second-order nonlinear neutral differential equation

$$
\begin{equation*}
\frac{d}{d t}\left[r(t) \frac{d}{d t}(x(t)+p(t) x(t-\tau))\right]+\sum_{i=1}^{m} Q_{i}(t) f_{i}\left(x\left(t-\sigma_{i}\right)\right)=0, \quad t \geq t_{0} \tag{1.1}
\end{equation*}
$$

where $m \geq 1$ is an integer, $\tau>0, \sigma_{i} \geq 0, r, p, Q_{i} \in C\left(\left[t_{0},+\infty\right), \mathbb{R}\right)$ and $f_{i} \in$ $C(\mathbb{R}, \mathbb{R})$ for $i \in\{1,2, \ldots, m\}$.

In 2002, Zhou and Zhang [14] applied the Banach contraction principle to study the following higher order neutral functional differential equation with positive and negative coefficients

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}[x(t)+c x(t-\tau)]+(-1)^{n+1}[P(t) x(t-\sigma)-Q(t) x(t-\delta)]=0, \quad t \geq t_{0} \tag{1.2}
\end{equation*}
$$

where $n \geq 1$ is a integer, $c \in \mathbb{R}, \tau, \sigma, \delta \in \mathbb{R}^{+}$and $P, Q \in C\left(\left[t_{0},+\infty\right), \mathbb{R}^{+}\right)$.
In 2005, Lin [8] got some sufficient conditions for oscillation and nonoscillation for the second-order nonlinear neutral differential equation

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}[x(t)-p(t) x(t-\tau)]+q(t) f(x(t-\sigma))=0, \quad t \geq 0 \tag{1.3}
\end{equation*}
$$

where $\tau, \sigma>0, p, q \in C([0,+\infty), \mathbb{R}), f \in C(\mathbb{R}, \mathbb{R})$ with $q(t) \geq 0$ and $x f(x)>0$ for $t \in \mathbb{R}, x \in \mathbb{R} /\{0\}$.

In 2008, a system of higher order nonlinear neutral differential equations

$$
\begin{array}{r}
\frac{d^{n}}{d t^{n}}\left[y_{i}(t)-a_{i}(t) y_{i}\left(t-\tau_{i}\right)\right]=p_{i}(t) g_{i}\left(y_{3-i}\left(t-\sigma_{3-i}\right)\right)+f_{i}(t), \tag{1.4}\\
t \geq t_{0}, i \in\{1,2\}
\end{array}
$$

was investigated by Hanuštiaková and Olach [4], where $n \geq 1$ is an integer, $\tau_{i}, \sigma_{i}>$ $0, a_{i}, p_{i}, f_{i} \in C\left(\left[t_{0},+\infty\right), \mathbb{R}\right)$ and $g_{i} \in C(\mathbb{R}, \mathbb{R})$ for $i \in\{1,2\}$. Some sufficient conditions for the existence of nonoscillatory bounded solutions of equations (1.4) were obtained by using the Krasnoselskii fixed point theorem and the Schauder fixed point theorem.

In this paper, we are concerned with the following system of third order nonlinear neutral delay differential equations:

$$
\begin{align*}
\frac{d}{d t} & \left\{r_{i}(t) \frac{d}{d t}\left[\lambda_{i}(t) \frac{d}{d t}\left(x_{i}(t)-f_{i}\left(t, x_{1}\left(t-\sigma_{i 1}\right), x_{2}\left(t-\sigma_{i 2}\right), x_{3}\left(t-\sigma_{i 3}\right)\right)\right)\right]\right\} \\
& +\frac{d}{d t}\left[r_{i}(t) \frac{d}{d t} g_{i}\left(t, x_{1}\left(p_{i 1}(t)\right), x_{2}\left(p_{i 2}(t)\right), x_{3}\left(p_{i 3}(t)\right)\right)\right] \tag{1.5}\\
& +\frac{d}{d t} h_{i}\left(t, x_{1}\left(q_{i 1}(t)\right), x_{2}\left(q_{i 2}(t)\right), x_{3}\left(q_{i 3}(t)\right)\right) \\
= & l_{i}\left(t, x_{1}\left(\eta_{i 1}(t)\right), x_{2}\left(\eta_{i 2}(t)\right), x_{3}\left(\eta_{i 3}(t)\right)\right), \quad t \geq t_{0}, i \in\{1,2,3\},
\end{align*}
$$

where $\sigma_{i j}>0, r_{i}, \lambda_{i} \in C\left(\left[t_{0},+\infty\right), \mathbb{R}^{+}\right), f_{i}, g_{i}, h_{i}, l_{i} \in C\left(\left[t_{0},+\infty\right) \times \mathbb{R}^{3}, \mathbb{R}\right)$, $p_{i j}, q_{i j}, \eta_{i j} \in C\left(\left[t_{0},+\infty\right), \mathbb{R}\right)$ with

$$
\lim _{t \rightarrow+\infty} p_{i j}(t)=\lim _{t \rightarrow+\infty} q_{i j}(t)=\lim _{t \rightarrow+\infty} \eta_{i j}(t)=+\infty
$$

for $i, j \in\{1,2,3\}$.
By using the Krasnoselskii fixed point theorem, the Schauder fixed point theorem, the Sadovskii fixed point theorem and the Banach contraction principle respectively, we demonstrate four existence theorems of uncountably many bounded positive solutions of equations (1.5).

2. Preliminaries

Throughout this paper, put $I=\left[t_{0},+\infty\right)$ and let $C\left(I, \mathbb{R}^{3}\right)$ denote the Banach space of all continuous and bounded vector functions $x(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ on I with norm $\|x\|=\max _{1 \leq i \leq 3} \sup _{t \in I}\left|x_{i}(t)\right|$. For any $a, b \in C\left(I, \mathbb{R}^{+}\right)$, set $\bar{a}=\sup _{t \in I} a(t), \underline{a}=\inf _{t \in I} a(t), \bar{b}=\sup _{t \in I} b(t), \underline{b}=\inf _{t \in I} b(t)$ and

$$
\begin{array}{r}
\Omega(a, b)=\left\{x(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right) \in C\left(I, \mathbb{R}^{3}\right): a(t) \leq x_{i}(t) \leq b(t),\right. \\
\forall t \in I, i \in\{1,2,3\}\}
\end{array}
$$

Obviously, $\Omega(a, b)$ is a bounded closed and convex subset of $C\left(I, \mathbb{R}^{3}\right)$. For any $D \subseteq \Omega(a, b)$ and $t \in I$, let

$$
\begin{aligned}
D(t)=\sup \left\{\max _{1 \leq i \leq 3}\left|x_{i}(t)-y_{i}(t)\right|: x(t)\right. & =\left(x_{1}(t), x_{2}(t), x_{3}(t)\right) \\
y(t) & \left.=\left(y_{1}(t), y_{2}(t), y_{3}(t)\right) \in D\right\} ;
\end{aligned}
$$

$$
\operatorname{diam} D=\sup \{\|x-y\|: x, y \in D\}
$$

It is assumed in the sequel that there exist functions $a, b, c_{i}, d_{i}, \alpha_{i}, \beta_{i}, \gamma_{i}, \mu_{i}, \tau_{i}$, $\zeta_{i} \in C\left(I, \mathbb{R}^{+}\right)$for $i \in\{1,2,3\}$ with $a(t)<b(t)$ for $t \in I$ and $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ satisfying
(i) $\int_{t_{0}}^{+\infty} \max \left\{\frac{\alpha_{i}(s)}{\lambda_{i}(s)}, \frac{\beta_{i}(s)}{r_{i}(s)}, \gamma_{i}(s), \frac{1}{r_{i}(s)}, \frac{1}{\lambda_{i}(s)}\right\} d s<+\infty, i \in\{1,2,3\}$;
(ii) $\left|f_{i}\left(t, u_{1}, u_{2}, u_{3}\right)\right| \leq c_{i}(t), \quad \forall t \in I, \quad u_{i} \in[\underline{a}, \bar{b}], i \in\{1,2,3\}$;
(iii) $\left|f_{i}\left(t, u_{1}, u_{2}, u_{3}\right)-f_{i}\left(t, v_{1}, v_{2}, v_{3}\right)\right| \leq d_{i}(t) \max _{1 \leq j \leq 3}\left|u_{j}-v_{j}\right|, \quad \forall t \in I$, $u_{j}, v_{j} \in[\underline{a}, \bar{b}], \quad i, j \in\{1,2,3\} ;$
(iv) $\left|g_{i}\left(t, u_{1}, u_{2}, u_{3}\right)\right| \leq \alpha_{i}(t),\left|h_{i}\left(t, u_{1}, u_{2}, u_{3}\right)\right| \leq \beta_{i}(t),\left|l_{i}\left(t, u_{1}, u_{2}, u_{3}\right)\right| \leq$ $\gamma_{i}(t), \forall t \in I, u_{i} \in[\underline{a}, \bar{b}], \quad i \in\{1,2,3\} ;$
(v) $\int_{t_{0}}^{+\infty} \max \left\{\frac{s \alpha_{i}(s)}{\lambda_{i}(s)}, \frac{\beta_{i}(s)}{r_{i}(s)}, \gamma_{i}(s), \frac{1}{r_{i}(s)}, \frac{s}{\lambda_{i}(s)}\right\} d s<+\infty, \quad i \in\{1,2,3\}$;
(vi)

$$
\begin{aligned}
& \mid f_{i}\left(t, x_{1}\left(t-\sigma_{i 1}\right), x_{2}\left(t-\sigma_{i 2}\right), x_{3}\left(t-\sigma_{i 3}\right)\right) \\
& -f_{i}\left(t, y_{1}\left(t-\sigma_{i 1}\right), y_{2}\left(t-\sigma_{i 2}\right), y_{3}\left(t-\sigma_{i 3}\right)\right) \mid \\
& \left.+\int_{t}^{+\infty} \frac{1}{\lambda_{i}(s)} \right\rvert\, g_{i}\left(s, x_{1}\left(p_{i 1}(s)\right), x_{2}\left(p_{i 2}(s)\right), x_{3}\left(p_{i 3}(s)\right)\right) \\
& \quad-g_{i}\left(s, y_{1}\left(p_{i 1}(s)\right), y_{2}\left(p_{i 2}(s)\right), y_{3}\left(p_{i 3}(s)\right)\right) \mid d s \\
& \left.+\int_{t}^{+\infty} \int_{s}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, h_{i}\left(u, x_{1}\left(q_{i 1}(u)\right), x_{2}\left(q_{i 2}(u)\right), x_{3}\left(q_{i 3}(u)\right)\right) \\
& \quad-h_{i}\left(u, y_{1}\left(q_{i 1}(u)\right), y_{2}\left(q_{i 2}(u)\right), y_{3}\left(q_{i 3}(u)\right)\right) \mid d u d s \\
& \left.+\int_{t}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, l_{i}\left(v, x_{1}\left(\eta_{i 1}(v)\right), x_{2}\left(\eta_{i 2}(v)\right), x_{3}\left(\eta_{i 3}(v)\right)\right) \\
& \quad-l_{i}\left(v, y_{1}\left(\eta_{i 1}(v)\right), y_{2}\left(\eta_{i 2}(v)\right), y_{3}\left(\eta_{i 3}(v)\right)\right) \mid d v d u d s
\end{aligned} \quad \begin{aligned}
& \quad \varphi(D(t)), \quad \forall D \subseteq \Omega(a, b), x, y \in D, t \in I, i \in\{1,2,3\}
\end{aligned}
$$

(vii) $\left|g_{i}\left(t, u_{1}, u_{2}, u_{3}\right)-g_{i}\left(t, v_{1}, v_{2}, v_{3}\right)\right| \leq \mu_{i}(t) \max _{1 \leq j \leq 3}\left|u_{j}-v_{j}\right|$,
$\left|h_{i}\left(t, u_{1}, u_{2}, u_{3}\right)-h_{i}\left(t, v_{1}, v_{2}, v_{3}\right)\right| \leq \tau_{i}(t) \max _{1 \leq j \leq 3}\left|u_{j}-v_{j}\right|$, $\left|l_{i}\left(t, u_{1}, u_{2}, u_{3}\right)-l_{i}\left(t, v_{1}, v_{2}, v_{3}\right)\right| \leq \zeta_{i}(t) \max _{1 \leq j \leq 3}\left|u_{j}-v_{j}\right|$, $\forall t \in I, u_{j}, v_{j} \in[\underline{a}, \bar{b}], i, j \in\{1,2,3\} ;$
(viii) $\int_{t_{0}}^{+\infty} \max \left\{\frac{\mu_{i}(s)}{\lambda_{i}(s)}, \frac{\tau_{i}(s)}{r_{i}(s)}, \zeta_{i}(s), \frac{1}{r_{i}(s)}, \frac{1}{\lambda_{i}(s)}\right\} d s<+\infty, \quad i \in\{1,2,3\}$.

Let $\sigma=\max \left\{\sigma_{i j}: i, j \in\{1,2,3\}\right\}$. By a solution of equations (1.5), we mean a vector function $x=\left(x_{1}, x_{2}, x_{3}\right)$ such that for some $t_{1} \geq t_{0}$ and $i \in\{1,2,3\}, x_{i} \in$ $C\left(\left[t_{1}-\sigma,+\infty\right), \mathbb{R}\right), x_{i}(t)-f_{i}\left(t, x_{1}\left(t-\sigma_{i 1}\right), x_{2}\left(t-\sigma_{i 2}\right), x_{3}\left(t-\sigma_{i 3}\right)\right)$ is 3 times continuously differentiable on $\left[t_{1},+\infty\right), g_{i}\left(t, x_{1}\left(p_{i 1}(t)\right), x_{2}\left(p_{i 2}(t)\right), x_{3}\left(p_{i 3}(t)\right)\right)$ is 2 times continuously differentiable on $\left[t_{1},+\infty\right)$, $h_{i}\left(t, x_{1}\left(q_{i 1}(t)\right), x_{2}\left(q_{i 2}(t)\right), x_{3}\left(q_{i 3}(t)\right)\right)$ is continuously differentiable on $\left[t_{1},+\infty\right)$ and equations (1.5) hold for $t \geq t_{1}$.

The following four lemmas play significant roles in this paper.
Lemma 2.1 (Krasnoselskii Fixed Point Theorem [2]). Let D be a nonempty bounded closed convex subset of a Banach space X and $S, Q: D \rightarrow X$ satisfy $S x+Q y \in D$ for each $x, y \in D$. If Q is a contraction mapping and S is a completely continuous mapping, then the equation $S x+Q x=x$ has at least one solution in D.

Lemma 2.2 (Schauder Fixed Point Theorem [2]). Let D be a nonempty closed convex subset of a Banach space X. Let $S: D \rightarrow D$ be a continuous mapping such that $S D$ is a relatively compact subset of X. Then S has at least one fixed point in D.

Lemma 2.3 (Sadovskii Fixed Point Theorem [10]). Let D be a nonempty bounded closed convex subset of a Banach space X and $S: D \rightarrow D$ be a continuous condensing mapping. Then S has at least one fixed point in D.
Lemma 2.4 (Banach contraction principle). Let D be a closed subset of a completely metric space X and $S: D \rightarrow D$ be a contraction on D. Then S has at least one fixed point in D.

3. Existence of uncountably many bounded positive solutions

In this section, we demonstrate the existence of uncountably many bounded positive solutions of equations (1.5). Let

$$
c=\max _{1 \leq i \leq 3} \sup _{t \in I} c_{i}(t) \text { and } d=\max _{1 \leq i \leq 3} \sup _{t \in I} d_{i}(t) .
$$

Theorem 3.1. Let $a, b \in C\left(I, \mathbb{R}^{+}\right)$with $\bar{a}<\underline{b}$ and let (i)-(iv) hold. If $d \in(0,1)$ and $c<\frac{b-\bar{a}}{2}$, then equations (1.5) possess uncountably many bounded positive solutions in $\Omega(a, b)$.

Proof: Set $L \in(\bar{a}+c, \underline{b}-c)$. According to (i), we deduce that there exists $T \geq t_{0}+\sigma$ large enough satisfying

$$
\begin{align*}
\sum_{i=1}^{3}\left[\int_{T}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s\right. & +\int_{T}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& \left.+\int_{T}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \tag{3.1}\\
& <\min \{\underline{b}-c-L, L-c-\bar{a}\}
\end{align*}
$$

Define two mappings $Q_{L}, S_{L}: \Omega(a, b) \rightarrow C\left(I, \mathbb{R}^{3}\right)$ by

$$
\begin{aligned}
\left(Q_{L} x\right)(t) & =\left(\left(Q_{L 1} x\right)(t),\left(Q_{L 2} x\right)(t),\left(Q_{L 3} x\right)(t)\right), \\
\left(S_{L} x\right)(t) & =\left(\left(S_{L 1} x\right)(t),\left(S_{L 2} x\right)(t),\left(S_{L 3} x\right)(t)\right)
\end{aligned}
$$

for $x=\left(x_{1}, x_{2}, x_{3}\right) \in \Omega(a, b)$ and $t \in I$, where

$$
\begin{align*}
& \left(Q_{L i} x\right)(t)= \begin{cases}L+f_{i}\left(t, x_{1}\left(t-\sigma_{i 1}\right), x_{2}\left(t-\sigma_{i 2}\right), x_{3}\left(t-\sigma_{i 3}\right)\right), & t \geq T \\
\left(Q_{L i} x\right)(T), & t_{0} \leq t<T\end{cases} \tag{3.2}\\
& \left(S_{L i} x\right)(t)= \begin{cases}\int_{t}^{+\infty} \frac{g_{i}\left(s, x_{1}\left(p_{i 1}(s)\right), x_{2}\left(p_{i 2}(s)\right), x_{3}\left(p_{i 3}(s)\right)\right)}{\lambda_{i}(s)} d s \\
-\int_{t}^{+\infty} \int_{s}^{+\infty} \frac{h_{i}\left(u, x_{1}\left(q_{i 1}(u)\right), x_{2}\left(q_{i 2}(u)\right), x_{3}\left(q_{i 3}(u)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
-\int_{t}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{l_{i}\left(v, x_{1}\left(\eta_{i 1}(v)\right), x_{2}\left(\eta_{i 2}(v)\right), x_{3}\left(\eta_{i 3}(v)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d v d u d s, \\
\left(S_{L i} x\right)(T), & t \geq T\end{cases} \\
& t_{0} \leq t<T
\end{align*}, ~
$$

for $i \in\{1,2,3\}$.
Firstly, we prove $Q_{L} x+S_{L} y \in \Omega(a, b)$ for all $x, y \in \Omega(a, b)$. Due to (ii), (iv), (3.1) and (3.2), we get that for each $x, y \in \Omega(a, b), t \geq T, i \in\{1,2,3\}$,

$$
\begin{align*}
& \left(Q_{L i} x+S_{L i} y\right)(t) \\
& \leq L+c_{i}(t)+\int_{T}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& \quad+\int_{T}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s \tag{3.3}\\
& \leq L+c+(\underline{b}-c-L) \\
& \leq b(t)
\end{align*}
$$

and

$$
\begin{align*}
& \left(Q_{L i} x+S_{L i} y\right)(t) \\
& \geq L-c_{i}(t)-\left[\int_{T}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.\quad+\int_{T}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \tag{3.4}\\
& \geq L-c-(L-c-\bar{a}) \\
& \geq a(t)
\end{align*}
$$

It follows from (3.3) and (3.4) that $Q_{L} \Omega(a, b)+S_{L} \Omega(a, b) \subseteq \Omega(a, b)$.
Secondly, we demonstrate that Q_{L} is a contraction mapping. According to (3.2) and (iii), we derive that

$$
\begin{aligned}
& \left|\left(Q_{L i} x\right)(t)-\left(Q_{L i} y\right)(t)\right| \\
& =\mid f_{i}\left(t, x_{1}\left(t-\sigma_{i 1}\right), x_{2}\left(t-\sigma_{i 2}\right), x_{3}\left(t-\sigma_{i 3}\right)\right) \\
& \quad-f_{i}\left(t, y_{1}\left(t-\sigma_{i 1}\right), y_{2}\left(t-\sigma_{i 2}\right), y_{3}\left(t-\sigma_{i 3}\right)\right) \mid \\
& \leq \\
& d_{i}(t) \max _{1 \leq j \leq 3}\left|x_{j}\left(t-\sigma_{i j}\right)-y_{j}\left(t-\sigma_{i j}\right)\right| \\
& \leq d\|x-y\|, \quad \forall x, y \in \Omega(a, b), t \geq T, i \in\{1,2,3\},
\end{aligned}
$$

which implies that

$$
\left\|Q_{L} x-Q_{L} y\right\| \leq d\|x-y\|, \quad \forall x, y \in \Omega(a, b)
$$

That is, Q_{L} is a contraction mapping by $d \in(0,1)$.
Thirdly, we show that S_{L} is completely continuous. Now we demonstrate S_{L} is continuous in $\Omega(a, b)$. Let $x_{0}=\left(x_{01}, x_{02}, x_{03}\right) \in \Omega(a, b)$ and $\left\{x_{k}\right\}_{k \geq 0}=$
$\left(\left\{x_{k 1}\right\}_{k \geq 0},\left\{x_{k 2}\right\}_{k \geq 0},\left\{x_{k 3}\right\}_{k \geq 0}\right) \subset \Omega(a, b)$ with $x_{k} \rightarrow x_{0}$ as $k \rightarrow+\infty$. (3.2) yields that

$$
\begin{align*}
& \left\|S_{L} x_{k}-S_{L} x_{0}\right\|=\max _{1 \leq i \leq 3} \sup _{t \in I}\left|\left(S_{L i} x_{k}\right)(t)-\left(S_{L i} x_{0}\right)(t)\right| \tag{3.5}\\
& \leq \max _{1 \leq i \leq 3} \sup _{t \geq T}\left\{\left.\int_{t}^{+\infty} \frac{1}{\lambda_{i}(s)} \right\rvert\, g_{i}\left(s, x_{k 1}\left(p_{i 1}(s)\right), x_{k 2}\left(p_{i 2}(s)\right), x_{k 3}\left(p_{i 3}(s)\right)\right)\right. \\
& \quad-g_{i}\left(s, x_{01}\left(p_{i 1}(s)\right), x_{02}\left(p_{i 2}(s)\right), x_{03}\left(p_{i 3}(s)\right)\right) \mid d s \\
& \left.\quad+\int_{t}^{+\infty} \int_{s}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, h_{i}\left(u, x_{k 1}\left(q_{i 1}(u)\right), x_{k 2}\left(q_{i 2}(u)\right), x_{k 3}\left(q_{i 3}(u)\right)\right) \\
& \quad-h_{i}\left(u, x_{01}\left(q_{i 1}(u)\right), x_{02}\left(q_{i 2}(u)\right), x_{03}\left(q_{i 3}(u)\right)\right) \mid d u d s \\
& \left.\quad+\int_{t}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, l_{i}\left(v, x_{k 1}\left(\eta_{i 1}(v)\right), x_{k 2}\left(\eta_{i 2}(v)\right), x_{k 3}\left(\eta_{i 3}(v)\right)\right) \\
& \left.\quad-l_{i}\left(v, x_{01}\left(\eta_{i 1}(v)\right), x_{02}\left(\eta_{i 2}(v)\right), x_{03}\left(\eta_{i 3}(v)\right)\right) \mid d v d u d s\right\} \\
& \leq \max _{1 \leq i \leq 3}\left[\left.\int_{T}^{+\infty} \frac{1}{\lambda_{i}(s)} \right\rvert\, g_{i}\left(s, x_{k 1}\left(p_{i 1}(s)\right), x_{k 2}\left(p_{i 2}(s)\right), x_{k 3}\left(p_{i 3}(s)\right)\right)\right. \\
& \quad-g_{i}\left(s, x_{01}\left(p_{i 1}(s)\right), x_{02}\left(p_{i 2}(s)\right), x_{03}\left(p_{i 3}(s)\right)\right) \mid d s \\
& \left.\quad+\int_{T}^{+\infty} \int_{s}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, h_{i}\left(u, x_{k 1}\left(q_{i 1}(u)\right), x_{k 2}\left(q_{i 2}(u)\right), x_{k 3}\left(q_{i 3}(u)\right)\right) \\
& \quad-h_{i}\left(u, x_{01}\left(q_{i 1}(u)\right), x_{02}\left(q_{i 2}(u)\right), x_{03}\left(q_{i 3}(u)\right)\right) \mid d u d s \\
& \left.\quad+\int_{T}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, l_{i}\left(v, x_{k 1}\left(\eta_{i 1}(v)\right), x_{k 2}\left(\eta_{i 2}(v)\right), x_{k 3}\left(\eta_{i 3}(v)\right)\right) \\
& \left.\quad-l_{i}\left(v, x_{01}\left(\eta_{i 1}(v)\right), x_{02}\left(\eta_{i 2}(v)\right), x_{03}\left(\eta_{i 3}(v)\right)\right) \mid d v d u d s\right]
\end{align*}
$$

Note that

$$
\begin{align*}
& \mid g_{i}\left(s, x_{k 1}\left(p_{i 1}(s)\right), x_{k 2}\left(p_{i 2}(s)\right), x_{k 3}\left(p_{i 3}(s)\right)\right) \\
& \quad-g_{i}\left(s, x_{01}\left(p_{i 1}(s)\right), x_{02}\left(p_{i 2}(s)\right), x_{03}\left(p_{i 3}(s)\right)\right) \mid \leq 2 \alpha_{i}(s) \\
& \mid h_{i}\left(u, x_{k 1}\left(q_{i 1}(u)\right), x_{k 2}\left(q_{i 2}(u)\right), x_{k 3}\left(q_{i 3}(u)\right)\right) \\
& \quad-h_{i}\left(u, x_{01}\left(q_{i 1}(u)\right), x_{02}\left(q_{i 2}(u)\right), x_{03}\left(q_{i 3}(u)\right)\right) \mid \leq 2 \beta_{i}(u) \tag{3.6}\\
& \mid l_{i}\left(v, x_{k 1}\left(\eta_{i 1}(v)\right), x_{k 2}\left(\eta_{i 2}(v)\right), x_{k 3}\left(\eta_{i 3}(v)\right)\right) \\
& \quad-l_{i}\left(v, x_{01}\left(\eta_{i 1}(v)\right), x_{02}\left(\eta_{i 2}(v)\right), x_{03}\left(\eta_{i 3}(v)\right)\right) \mid \leq 2 \gamma_{i}(v)
\end{align*}
$$

$$
\begin{aligned}
& \mid g_{i}\left(s, x_{k 1}\left(p_{i 1}(s)\right), x_{k 2}\left(p_{i 2}(s)\right), x_{k 3}\left(p_{i 3}(s)\right)\right) \\
& \quad-g_{i}\left(s, x_{01}\left(p_{i 1}(s)\right), x_{02}\left(p_{i 2}(s)\right), x_{03}\left(p_{i 3}(s)\right)\right) \mid \rightarrow 0, \\
& \mid h_{i}\left(u, x_{k 1}\left(q_{i 1}(u)\right), x_{k 2}\left(q_{i 2}(u)\right), x_{k 3}\left(q_{i 3}(u)\right)\right) \\
& \quad-h_{i}\left(u, x_{01}\left(q_{i 1}(u)\right), x_{02}\left(q_{i 2}(u)\right), x_{03}\left(q_{i 3}(u)\right)\right) \mid \rightarrow 0, \\
& \mid l_{i}\left(v, x_{k 1}\left(\eta_{i 1}(v)\right), x_{k 2}\left(\eta_{i 2}(v)\right), x_{k 3}\left(\eta_{i 3}(v)\right)\right) \\
& \quad-l_{i}\left(v, x_{01}\left(\eta_{i 1}(v)\right), x_{02}\left(\eta_{i 2}(v)\right), x_{03}\left(\eta_{i 3}(v)\right)\right) \mid \rightarrow 0
\end{aligned}
$$

as $k \rightarrow+\infty$ for $s, u, v \in[T,+\infty)$ and $i \in\{1,2,3\}$. It follows from (3.5), (3.6), (3.7) and Lebesgue dominated convergence theorem that $\left\|S_{L} x_{k}-S_{L} x_{0}\right\| \rightarrow 0$ as $k \rightarrow+\infty$. Hence S_{L} is continuous in $\Omega(a, b)$. Now we prove that $S_{L} \Omega(a, b)$ is relatively compact. In view of (i), (iv) and (3.2), we deduce that

$$
\begin{aligned}
\left\|S_{L} x\right\|= & \max _{1 \leq i \leq 3} \sup _{t \in I}\left|\left(S_{L i} x\right)(t)\right| \\
\leq & \sum_{i=1}^{3}\left[\int_{T}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.+\int_{T}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right], \quad \forall x \in \Omega(a, b)
\end{aligned}
$$

That is, $S_{L} \Omega(a, b)$ is uniformly bounded. For the equicontinuity of $S_{L} \Omega(a, b)$ on I, according to Levitans result [6], it suffices to prove that for any given $\epsilon>0, I$ can be decomposed into finite subintervals in such a way that on each subinterval all functions of the family have change of amplitude less than ϵ. Let $\epsilon>0$. By (i), there exists $T_{*}>T$ such that

$$
\begin{align*}
\sum_{i=1}^{3} & {\left[\int_{T_{*}}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T_{*}}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right.} \tag{3.8}\\
& \left.+\int_{T_{*}}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right]<\frac{\epsilon}{2}
\end{align*}
$$

It follows from (iv), (3.2) and (3.8) that for all $x \in \Omega(a, b), t_{2} \geq t_{1} \geq T_{*}$ and $i \in\{1,2,3\}$,

$$
\begin{aligned}
& \mid\left(S_{L i} x\right)\left(t_{1}\right)-\left(S_{L i} x\right)\left(t_{2}\right) \mid \\
& \leq \int_{t_{1}}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{t_{1}}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& \quad+\int_{t_{1}}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{t_{2}}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{t_{2}}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& +\int_{t_{2}}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s \\
\leq & 2\left[\int_{T_{*}}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T_{*}}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.+\int_{T_{*}}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
< & \epsilon .
\end{aligned}
$$

For each $x \in \Omega(a, b), T \leq t_{1} \leq t_{2} \leq T_{*}$ and $i \in\{1,2,3\}$, by (iv) and (3.2), we infer that

$$
\begin{align*}
\mid & \left(S_{L i} x\right)\left(t_{1}\right)-\left(S_{L i} x\right)\left(t_{2}\right) \mid \\
\leq & \int_{t_{1}}^{t_{2}} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{t_{1}}^{t_{2}} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& +\int_{t_{1}}^{t_{2}} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s \tag{3.9}\\
\leq & M_{i}\left|t_{1}-t_{2}\right|
\end{align*}
$$

where

$$
M_{i}=\max _{T \leq s \leq T_{*}}\left\{\frac{\alpha_{i}(s)}{\lambda_{i}(s)}+\int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u+\int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u\right\}
$$

(3.9) implies that there exists $\delta=\frac{\epsilon}{1+M_{i}}>0$ such that $\left|\left(S_{L i} x\right)\left(t_{1}\right)-\left(S_{L i} x\right)\left(t_{2}\right)\right|<$ ϵ for any $t_{1}, t_{2} \in\left[T, T_{*}\right]$ with $\left|t_{1}-t_{2}\right|<\delta$ and $x \in \Omega(a, b)$.

For $x \in \Omega(a, b), t_{0} \leq t_{1} \leq t_{2} \leq T$ and $i \in\{1,2,3\}$, due to (3.2), we infer that

$$
\left|\left(S_{L i} x\right)\left(t_{1}\right)-\left(S_{L i} x\right)\left(t_{2}\right)\right|=0
$$

Hence Lemma 2.1 ensures that there exists $x \in \Omega(a, b)$ with $Q_{L} x+S_{L} x=x$. It is easy to verify that x is a bounded positive solution of equations (1.5).

Finally, we investigate that equations (1.5) possess uncountably many bounded positive solutions. Let $L_{1}, L_{2} \in(\bar{a}+c, \underline{b}-c)$ with $L_{1} \neq L_{2}$. For each $j \in\{1,2\}$, we choose a constant $T_{j}>t_{0}+\sigma$ and two mappings $Q_{L_{j}}$ and $S_{L_{j}}$ satisfying (3.1) and (3.2), where L and T are replaced by L_{j} and T_{j}, respectively, and

$$
\begin{align*}
& \sum_{i=1}^{3}\left[\int_{T_{3}}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T_{3}}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \tag{3.10}\\
& \left.\quad+\int_{T_{3}}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right]<\frac{\left|L_{1}-L_{2}\right|}{2}
\end{align*}
$$

for some $T_{3}>\max \left\{T_{1}, T_{2}\right\}$. Obviously, the mappings $Q_{L_{1}}+S_{L_{1}}$ and $Q_{L_{2}}+$ $S_{L_{2}}$ have the fixed points $x, y \in \Omega(a, b)$, respectively. That is, x and y are bounded positive solutions of equations (1.5) in $\Omega(a, b)$. In order to show that equations (1.5) possess uncountably many bounded positive solutions in $\Omega(a, b)$, we need only to prove that $x \neq y$. Indeed, by (3.2) we gain that for $t \geq T_{3}$, $i \in\{1,2,3\}$,

$$
\begin{aligned}
x_{i}(t)= & L_{1}+f_{i}\left(t, x_{1}\left(t-\sigma_{i 1}\right), x_{2}\left(t-\sigma_{i 2}\right), x_{3}\left(t-\sigma_{i 3}\right)\right) \\
& +\int_{t}^{+\infty} \frac{g_{i}\left(s, x_{1}\left(p_{i 1}(s)\right), x_{2}\left(p_{i 2}(s)\right), x_{3}\left(p_{i 3}(s)\right)\right)}{\lambda_{i}(s)} d s \\
& -\int_{t}^{+\infty} \int_{s}^{+\infty} \frac{h_{i}\left(u, x_{1}\left(q_{i 1}(u)\right), x_{2}\left(q_{i 2}(u)\right), x_{3}\left(q_{i 3}(u)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& -\int_{t}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{l_{i}\left(v, x_{1}\left(\eta_{i 1}(v)\right), x_{2}\left(\eta_{i 2}(v)\right), x_{3}\left(\eta_{i 3}(v)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d v d u d s
\end{aligned}
$$

and

$$
\begin{aligned}
y_{i}(t)= & L_{2}+f_{i}\left(t, y_{1}\left(t-\sigma_{i 1}\right), y_{2}\left(t-\sigma_{i 2}\right), y_{3}\left(t-\sigma_{i 3}\right)\right) \\
& +\int_{t}^{+\infty} \frac{g_{i}\left(s, y_{1}\left(p_{i 1}(s)\right), y_{2}\left(p_{i 2}(s)\right), y_{3}\left(p_{i 3}(s)\right)\right)}{\lambda_{i}(s)} d s \\
& -\int_{t}^{+\infty} \int_{s}^{+\infty} \frac{h_{i}\left(u, y_{1}\left(q_{i 1}(u)\right), y_{2}\left(q_{i 2}(u)\right), y_{3}\left(q_{i 3}(u)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& -\int_{t}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{l_{i}\left(v, y_{1}\left(\eta_{i 1}(v)\right), y_{2}\left(\eta_{i 2}(v)\right), y_{3}\left(\eta_{i 3}(v)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d v d u d s
\end{aligned}
$$

which together with (iv) and (3.10) yield that

$$
\begin{aligned}
& \mid x_{i}(t)-y_{i}(t)-\left(f_{i}\left(t, x_{1}\left(t-\sigma_{i 1}\right), x_{2}\left(t-\sigma_{i 2}\right), x_{3}\left(t-\sigma_{i 3}\right)\right)\right. \\
& \left.\quad-f_{i}\left(t, y_{1}\left(t-\sigma_{i 1}\right), y_{2}\left(t-\sigma_{i 2}\right), y_{3}\left(t-\sigma_{i 3}\right)\right)\right) \mid \\
& \geq\left|L_{1}-L_{2}\right|-2\left[\int_{T_{3}}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T_{3}}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.\quad+\int_{T_{3}}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
& >0, \quad \forall t \geq T_{3}, i \in\{1,2,3\},
\end{aligned}
$$

that is, $x \neq y$. This completes the proof.
Theorem 3.2. Let $a, b \in C\left(I, \mathbb{R}^{+}\right)$with $\bar{a}<\underline{b}$ and let (iv) and (v) hold. Then equations (1.5) with $f_{i}\left(t, u_{1}, u_{2}, u_{3}\right)=u_{i}$ for $i \in\{1,2,3\}$ possess uncountably many bounded positive solutions in $\Omega(a, b)$.

Proof: Let $L \in(\bar{a}, \underline{b})$. According to (v), we deduce that there exists sufficiently large $T \geq t_{0}+\sigma$ satisfying

$$
\begin{align*}
& \sum_{i=1}^{3} \sum_{j=1}^{+\infty}\left[\int_{T+j \sigma}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.\quad+\int_{T+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \tag{3.11}\\
& <\min \{\underline{b}-L, L-\bar{a}\} .
\end{align*}
$$

Define a mapping $Q_{L}: \Omega(a, b) \rightarrow C\left(I, \mathbb{R}^{3}\right)$ by

$$
\begin{equation*}
\left(Q_{L} x\right)(t)=\left(\left(Q_{L 1} x\right)(t),\left(Q_{L 2} x\right)(t),\left(Q_{L 3} x\right)(t)\right) \tag{3.12}
\end{equation*}
$$

where

$$
\left(Q_{L i} x\right)(t)=\left\{\begin{array}{l}
L-\sum_{j=1}^{+\infty}\left[\int_{t+j \sigma}^{+\infty} \frac{g_{i}\left(s, x_{1}\left(p_{i 1}(s)\right), x_{2}\left(p_{i 2}(s)\right), x_{3}\left(p_{i 3}(s)\right)\right)}{\lambda_{i}(s)} d s\right. \tag{3.13}\\
-\int_{t+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{h_{i}\left(u, x_{1}\left(q_{i 1}(u)\right), x_{2}\left(q_{i 2}(u)\right), x_{3}\left(q_{i 3}(u)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
\left.-\int_{t+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{l_{i}\left(v, x_{1}\left(\eta_{i 1}(v)\right), x_{2}\left(\eta_{i 2}(v)\right), x_{3}\left(\eta_{i 3}(v)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right], \\
\left(Q_{L i} x\right)(T), \\
t \geq T, \\
\\
\\
t_{0} \leq t<T
\end{array}\right.
$$

for $i \in\{1,2,3\}$.
First of all, we prove $Q_{L} x \in \Omega(a, b)$ for all $x \in \Omega(a, b)$. Due to (iv) and (3.13), we derive that for each $x \in \Omega(a, b)$ and $i \in\{1,2,3\}$,

$$
\begin{aligned}
& \left(Q_{L i} x\right)(t) \\
& \leq L+\sum_{j=1}^{+\infty}\left[\int_{T+j \sigma}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.\quad+\int_{T+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
& \leq L+(\underline{b}-L) \\
& \leq b(t), \quad t \geq T, \\
& \left(Q_{L i} x\right)(t) \\
& \geq L-\sum_{j=1}^{+\infty}\left[\int_{T+j \sigma}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\int_{T+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
\geq & L-(L-\bar{a}) \\
\geq & a(t), \quad t \geq T
\end{aligned}
$$

Therefore, $Q_{L} \Omega(a, b) \subseteq \Omega(a, b)$.
Next, we demonstrate that Q_{L} is completely continuous. It is claimed that Q_{L} is continuous. Indeed, let $x_{0}=\left(x_{01}, x_{02}, x_{03}\right) \in \Omega(a, b)$ and $\left\{x_{k}\right\}_{k \geq 0}=$ $\left(\left\{x_{k 1}\right\}_{k \geq 0},\left\{x_{k 2}\right\}_{k \geq 0},\left\{x_{k 3}\right\}_{k \geq 0}\right) \subset \Omega(a, b)$ with $x_{k} \rightarrow x_{0}$ as $k \rightarrow+\infty$. (3.13) yields that

$$
\begin{align*}
& \left\|Q_{L} x_{k}-Q_{L} x_{0}\right\| \tag{3.14}\\
& =\max _{1 \leq i \leq 3} \sup _{t \in I}\left|\left(Q_{L i} x_{k}\right)(t)-\left(Q_{L i} x_{0}\right)(t)\right| \\
& \leq \max _{1 \leq i \leq 3} \sup _{t \in I}\left\{\sum _ { j = 1 } ^ { + \infty } \left[\left.\int_{t+j \sigma}^{+\infty} \frac{1}{\lambda_{i}(s)} \right\rvert\, g_{i}\left(s, x_{k 1}\left(p_{i 1}(s)\right), x_{k 2}\left(p_{i 2}(s)\right), x_{k 3}\left(p_{i 3}(s)\right)\right)\right.\right. \\
& \quad-g_{i}\left(s, x_{01}\left(p_{i 1}(s)\right), x_{02}\left(p_{i 2}(s)\right), x_{03}\left(p_{i 3}(s)\right)\right) \mid d s \\
& \left.\quad+\int_{t+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, h_{i}\left(u, x_{k 1}\left(q_{i 1}(u)\right), x_{k 2}\left(q_{i 2}(u)\right), x_{k 3}\left(q_{i 3}(u)\right)\right) \\
& \quad-h_{i}\left(u, x_{01}\left(q_{i 1}(u)\right), x_{02}\left(q_{i 2}(u)\right), x_{03}\left(q_{i 3}(u)\right)\right) \mid d u d s \\
& \left.\quad+\int_{t+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, l_{i}\left(v, x_{k 1}\left(\eta_{i 1}(v)\right), x_{k 2}\left(\eta_{i 2}(v)\right), x_{k 3}\left(\eta_{i 3}(v)\right)\right) \\
& \left.\left.\quad-l_{i}\left(v, x_{01}\left(\eta_{i 1}(v)\right), x_{02}\left(\eta_{i 2}(v)\right), x_{03}\left(\eta_{i 3}(v)\right)\right) \mid d v d u d s\right]\right\} \\
& \leq \max _{1 \leq i \leq 3}^{+\infty} \sum_{j=1}^{+\infty}\left[\left.\int_{T+j \sigma}^{+\infty} \frac{1}{\lambda_{i}(s)} \right\rvert\, g_{i}\left(s, x_{k 1}\left(p_{i 1}(s)\right), x_{k 2}\left(p_{i 2}(s)\right), x_{k 3}\left(p_{i 3}(s)\right)\right)\right. \\
& \quad-g_{i}\left(s, x_{01}\left(p_{i 1}(s)\right), x_{02}\left(p_{i 2}(s)\right), x_{03}\left(p_{i 3}(s)\right)\right) \mid d s \\
& \left.\quad+\int_{T+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, h_{i}\left(u, x_{k 1}\left(q_{i 1}(u)\right), x_{k 2}\left(q_{i 2}(u)\right), x_{k 3}\left(q_{i 3}(u)\right)\right) \\
& \quad-h_{i}\left(u, x_{01}\left(q_{i 1}(u)\right), x_{02}\left(q_{i 2}(u)\right), x_{03}\left(q_{i 3}(u)\right)\right) \mid d u d s \\
& \left.\quad+\int_{T+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, l_{i}\left(v, x_{k 1}\left(\eta_{i 1}(v)\right), x_{k 2}\left(\eta_{i 2}(v)\right), x_{k 3}\left(\eta_{i 3}(v)\right)\right) \\
& \left.\quad-l_{i}\left(v, x_{01}\left(\eta_{i 1}(v)\right), x_{02}\left(\eta_{i 2}(v)\right), x_{03}\left(\eta_{i 3}(v)\right)\right) \mid d v d u d s\right]
\end{align*}
$$

In light of (3.6), (3.7), (3.14) and Lebesgue dominated convergence theorem, we infer that $\left\|Q_{L} x_{k}-Q_{L} x_{0}\right\| \rightarrow 0$ as $k \rightarrow+\infty$, which means that Q_{L} is continuous.

Now we show that $Q_{L} \Omega(a, b)$ is relatively compact. On account of $Q_{L} \Omega(a, b) \subseteq$ $\Omega(a, b), Q_{L}$ is uniformly bounded. Because of (v), for any $\epsilon>0$, choose $T_{*}>T$ large enough such that

$$
\begin{align*}
& \sum_{i=1}^{3} \sum_{j=1}^{+\infty}\left[\int_{T_{*}+j \sigma}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T_{*}+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \tag{3.15}\\
& \left.\quad+\int_{T_{*}+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right]<\frac{\epsilon}{2}
\end{align*}
$$

By (iv), (3.13) and (3.15), for $x \in \Omega(a, b), t_{2} \geq t_{1} \geq T_{*}$ and $i \in\{1,2,3\}$, we have

$$
\begin{aligned}
& \left|\left(Q_{L i} x\right)\left(t_{1}\right)-\left(Q_{L i} x\right)\left(t_{2}\right)\right| \\
& \leq \\
& \quad \sum_{j=1}^{+\infty}\left[\int_{t_{1}+j \sigma}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{t_{1}+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.\quad+\int_{t_{1}+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
& \quad+\sum_{j=1}^{+\infty}\left[\int_{t_{2}+j \sigma}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{t_{2}+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.\quad+\int_{t_{2}+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right]
\end{aligned}
$$

$$
<\epsilon
$$

For $T \leq t_{1} \leq t_{2} \leq T_{*}$, choose a sufficiently large integer $w \geq 1$ satisfying $T+j \sigma \geq$ T_{*} with $j \geq w$. For $x \in \Omega(a, b)$ and $i \in\{1,2,3\}$, we get that

$$
\begin{aligned}
\mid & \left(Q_{L i} x\right)\left(t_{1}\right)-\left(Q_{L i} x\right)\left(t_{2}\right) \mid \\
\leq & \sum_{j=1}^{+\infty}\left[\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.+\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
= & \sum_{j=1}^{w}\left[\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.+\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
& +\sum_{j=w+1}^{+\infty}\left[\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
\leq & \sum_{j=1}^{w}\left[\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.+\int_{t_{1}+j \sigma}^{t_{2}+j \sigma} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
& +\sum_{j=1}^{+\infty}\left[\int_{T_{*}+j \sigma}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T_{*}+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.+\int_{T_{*}+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
< & W_{i}\left|t_{1}-t_{2}\right|+\frac{\epsilon}{2}
\end{aligned}
$$

where

$$
\begin{aligned}
W_{i}= & \max _{T+\sigma \leq s \leq T_{*}+w \sigma}\left\{\sum _ { j = 1 } ^ { w } \left[\frac{\alpha_{i}(s)}{\lambda_{i}(s)}+\int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u\right.\right. \\
& \left.\left.+\int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u\right]\right\}
\end{aligned}
$$

which implies that there exists $\delta=\frac{\epsilon}{2\left(1+W_{i}\right)}>0$ such that
$\left|\left(Q_{L i} x\right)\left(t_{1}\right)-\left(Q_{L i} x\right)\left(t_{2}\right)\right|<\epsilon$ for any $t_{1}, t_{2} \in\left[T, T_{*}\right]$ with $\left|t_{1}-t_{2}\right|<\delta$ and $x \in \Omega(a, b)$.

For $x \in \Omega(a, b), t_{0} \leq t_{1} \leq t_{2} \leq T$ and $i \in\{1,2,3\}$, it follows from (3.13) that

$$
\left|\left(Q_{L i} x\right)\left(t_{1}\right)-\left(Q_{L i} x\right)\left(t_{2}\right)\right|=0
$$

Thus Lemma 2.2 ensures that there exists $x \in \Omega(a, b)$ with $Q_{L} x=x$. That is, for $i \in\{1,2,3\}$,

$$
x_{i}(t)=\left\{\begin{array}{l}
L-\sum_{j=1}^{+\infty}\left[\int_{t+j \sigma}^{+\infty} \frac{g_{i}\left(s, x_{1}\left(p_{i 1}(s)\right), x_{2}\left(p_{i 2}(s)\right), x_{3}\left(p_{i 3}(s)\right)\right)}{\lambda_{i}(s)} d s\right. \\
-\int_{t+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{h_{i}\left(u, x_{1}\left(q_{i 1}(u)\right), x_{2}\left(q_{i 2}(u)\right), x_{3}\left(q_{i 3}(u)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
\left.-\int_{t+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{l_{i}\left(v, x_{1}\left(\eta_{i 1}(v)\right), x_{2}\left(\eta_{i 2}(v)\right), x_{3}\left(\eta_{i 3}(v)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
\\
\begin{array}{rr}
\\
x_{i}(T), & t \geq T
\end{array} \\
\quad t_{0} \leq t<T
\end{array}\right.
$$

It follows that for $t \geq T$ and $i \in\{1,2,3\}$,

$$
\begin{aligned}
& x_{i}(t)-x_{i}(t-\sigma)=\int_{t}^{+\infty} \frac{g_{i}\left(s, x_{1}\left(p_{i 1}(s)\right), x_{2}\left(p_{i 2}(s)\right), x_{3}\left(p_{i 3}(s)\right)\right)}{\lambda_{i}(s)} d s \\
& \quad-\int_{t}^{+\infty} \int_{s}^{+\infty} \frac{h_{i}\left(u, x_{1}\left(q_{i 1}(u)\right), x_{2}\left(q_{i 2}(u)\right), x_{3}\left(q_{i 3}(u)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& \quad-\int_{t}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{l_{i}\left(v, x_{1}\left(\eta_{i 1}(v)\right), x_{2}\left(\eta_{i 2}(v)\right), x_{3}\left(\eta_{i 3}(v)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d v d u d s
\end{aligned}
$$

It is easy to verify that x is a bounded positive solution of equations (1.5).
Finally, we investigate that equations (1.5) possess uncountably many bounded positive solutions. Let $L_{1}, L_{2} \in(\bar{a}+c, \underline{b}-c)$ with $L_{1} \neq L_{2}$. For each $j \in\{1,2\}$, choose a constant $T_{j}>t_{0}+\sigma$ and a mapping $Q_{L_{j}}$ to satisfy (3.11), (3.12) and (3.13), where L and T are replaced by L_{j} and T_{j}, respectively, and

$$
\begin{align*}
\sum_{i=1}^{3} \sum_{j=1}^{+\infty}[& \int_{T_{3}+j \sigma}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T_{3}+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s \tag{3.16}\\
& \left.+\int_{T_{3}+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right]<\frac{\left|L_{1}-L_{2}\right|}{2}
\end{align*}
$$

for some $T_{3}>\max \left\{T_{1}, T_{2}\right\}$. Obviously, the mappings $Q_{L_{1}}$ and $Q_{L_{2}}$ have the fixed points $x, y \in \Omega(a, b)$, respectively. That is, x and y are bounded positive solutions of equations (1.5). Next we need only to prove that $x \neq y$. As a matter of fact, by (3.13) we get that for $t \geq T_{3}$ and $i \in\{1,2,3\}$,

$$
\begin{aligned}
x_{i}(t)= & L_{1}-\sum_{j=1}^{+\infty}\left[\int_{t+j \sigma}^{+\infty} \frac{g_{i}\left(s, x_{1}\left(p_{i 1}(s)\right), x_{2}\left(p_{i 2}(s)\right), x_{3}\left(p_{i 3}(s)\right)\right)}{\lambda_{i}(s)} d s\right. \\
& -\int_{t+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{h_{i}\left(u, x_{1}\left(q_{i 1}(u)\right), x_{2}\left(q_{i 2}(u)\right), x_{3}\left(q_{i 3}(u)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& \left.-\int_{t+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{l_{i}\left(v, x_{1}\left(\eta_{i 1}(v)\right), x_{2}\left(\eta_{i 2}(v)\right), x_{3}\left(\eta_{i 3}(v)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right], \\
y_{i}(t)= & L_{2}-\sum_{j=1}^{+\infty}\left[\int_{t+j \sigma}^{+\infty} \frac{g_{i}\left(s, y_{1}\left(p_{i 1}(s)\right), y_{2}\left(p_{i 2}(s)\right), y_{3}\left(p_{i 3}(s)\right)\right)}{\lambda_{i}(s)} d s\right. \\
& -\int_{t+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{h_{i}\left(u, y_{1}\left(q_{i 1}(u)\right), y_{2}\left(q_{i 2}(u)\right), y_{3}\left(q_{i 3}(u)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& \left.-\int_{t+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{l_{i}\left(v, y_{1}\left(\eta_{i 1}(v)\right), y_{2}\left(\eta_{i 2}(v)\right), y_{3}\left(\eta_{i 3}(v)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right],
\end{aligned}
$$

which together with (iv) and (3.16) yield that

$$
\begin{aligned}
\left|x_{i}(t)-y_{i}(t)\right| \geq & \left|L_{1}-L_{2}\right|-2 \sum_{j=1}^{+\infty}\left[\int_{T_{3}+j \sigma}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s\right. \\
& +\int_{T_{3}+j \sigma}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& \left.+\int_{T_{3}+j \sigma}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right] \\
> & 0, \quad \forall t \geq T_{3}, i \in\{1,2,3\}
\end{aligned}
$$

that is, $x \neq y$. This completes the proof.
Theorem 3.3. Let $a, b \in C\left(I, \mathbb{R}^{+}\right)$with $\bar{a}<\underline{b}$ and let (i), (ii), (iv) and (vi) hold. If $c<\frac{b-\bar{a}}{2}$ and φ is nondecreasing with $\varphi(t+)<t$ for each $t>0$, then equations (1.5) possess uncountably many bounded positive solutions in $\Omega(a, b)$.

Proof: Put $L \in(\bar{a}+c, \underline{b}-c)$. In view of (i), there exists sufficiently large $T \geq t_{0}+\sigma$ satisfying (3.1). Define a mapping $Q_{L}: \Omega(a, b) \rightarrow C\left(I, \mathbb{R}^{3}\right)$ by (3.12), where

$$
\left(Q_{L i} x\right)(t)=\left\{\begin{array}{l}
L+f_{i}\left(t, x_{1}\left(t-\sigma_{i 1}\right), x_{2}\left(t-\sigma_{i 2}\right), x_{3}\left(t-\sigma_{i 3}\right)\right) \tag{3.17}\\
+\int_{t}^{+\infty} \frac{g_{i}\left(s, x_{1}\left(p_{i 1}(s)\right), x_{2}\left(p_{i 2}(s)\right), x_{3}\left(p_{i 3}(s)\right)\right)}{\lambda_{i}(s)} d s \\
-\int_{t}^{+\infty} \int_{s}^{+\infty} \frac{h_{i}\left(u, x_{1}\left(q_{i 1}(u)\right), x_{2}\left(q_{i 2}(u)\right), x_{3}\left(q_{i 3}(u)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d u d s \\
-\int_{t}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{l_{i}\left(v, x_{1}\left(\eta_{i 1}(v)\right), x_{2}\left(\eta_{i 2}(v)\right), x_{3}\left(\eta_{i 3}(v)\right)\right)}{\lambda_{i}(s) r_{i}(u)} d v d u d s \\
\\
\left(Q_{L i} x\right)(T), \\
t \geq T \\
\\
t_{0} \leq t<T
\end{array}\right.
$$

for $i \in\{1,2,3\}$.
Firstly, we assure that $Q_{L} x \in \Omega(a, b)$ for all $x \in \Omega(a, b)$. In terms of (ii), (iv), (3.1) and (3.17), we infer that for each $x \in \Omega(a, b)$ and $i \in\{1,2,3\}$,

$$
\begin{aligned}
& \left(Q_{L i} x\right)(t) \\
& \leq L+c_{i}(t)+\left(\int_{T}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.\quad+\int_{T}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right) \\
& \leq L+c+(\underline{b}-c-L) \\
& \leq b(t), \quad t \geq T
\end{aligned}
$$

$$
\begin{aligned}
& \left(Q_{L i} x\right)(t) \\
& \geq L-c_{i}(t)-\left(\int_{T}^{+\infty} \frac{\alpha_{i}(s)}{\lambda_{i}(s)} d s+\int_{T}^{+\infty} \int_{s}^{+\infty} \frac{\beta_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.\quad+\int_{T}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\gamma_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right) \\
& \geq L-c-(L-c-\bar{a}) \\
& \geq a(t), \quad t \geq T
\end{aligned}
$$

Thus $Q_{L} \Omega(a, b) \subseteq \Omega(a, b)$.
Secondly, we claim that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \varphi(t)=0=\varphi(0) \tag{3.20}
\end{equation*}
$$

Because $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is nondecreasing and nonnegative, we deduce that

$$
0 \leq \varphi(0) \leq \varphi(t) \leq \varphi(s), \quad \forall s>t>0
$$

which together with $\varphi(t+)<t$ for each $t>0$ ensures that

$$
0 \leq \varphi(0) \leq \varphi(t) \leq \lim _{s \rightarrow t^{+}} \varphi(s)=\varphi(t+)<t, \quad \forall t>0
$$

Letting $t \rightarrow 0^{+}$in the above inequalities, we get that (3.20) holds.
Thirdly, we prove that Q_{L} is continuous. Let $x_{0}=\left(x_{01}, x_{02}, x_{03}\right) \in \Omega(a, b)$ and $\left\{x_{k}\right\}_{k \geq 0}=\left(\left\{x_{k 1}\right\}_{k \geq 0},\left\{x_{k 2}\right\}_{k \geq 0},\left\{x_{k 3}\right\}_{k \geq 0}\right) \subset \Omega(a, b)$ with $x_{k} \rightarrow x_{0}$ as $k \rightarrow+\infty$. Let $D_{k}^{-}=\left\{x_{k}, x_{0}\right\} \overline{\text { for }} k \geq 1$. It follows from (vi), (3.17) and (3.20) that

$$
\begin{aligned}
& \left\|Q_{L} x_{k}-Q_{L} x_{0}\right\|=\max _{1 \leq i \leq 3} \sup _{t \in I}\left|\left(Q_{L i} x_{k}\right)(t)-\left(Q_{L i} x_{0}\right)(t)\right| \\
& \leq \max _{1 \leq i \leq 3} \sup _{t \geq T}\left[\mid f_{i}\left(t, x_{k 1}\left(t-\sigma_{i 1}\right), x_{k 2}\left(t-\sigma_{i 2}\right), x_{k 3}\left(t-\sigma_{i 3}\right)\right)\right. \\
& \quad-f_{i}\left(t, x_{01}\left(t-\sigma_{i 1}\right), x_{02}\left(t-\sigma_{i 2}\right), x_{03}\left(t-\sigma_{i 3}\right)\right) \mid \\
& \left.\quad+\int_{t}^{+\infty} \frac{1}{\lambda_{i}(s)} \right\rvert\, g_{i}\left(s, x_{k 1}\left(p_{i 1}(s)\right), x_{k 2}\left(p_{i 2}(s)\right), x_{k 3}\left(p_{i 3}(s)\right)\right) \\
& \quad-g_{i}\left(s, x_{01}\left(p_{i 1}(s)\right), x_{02}\left(p_{i 2}(s)\right), x_{03}\left(p_{i 3}(s)\right)\right) \mid d s \\
& \left.\quad+\int_{t}^{+\infty} \int_{s}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, h_{i}\left(u, x_{k 1}\left(q_{i 1}(u)\right), x_{k 2}\left(q_{i 2}(u)\right), x_{k 3}\left(q_{i 3}(u)\right)\right) \\
& \quad-h_{i}\left(u, x_{01}\left(q_{i 1}(u)\right), x_{02}\left(q_{i 2}(u)\right), x_{03}\left(q_{i 3}(u)\right)\right) \mid d u d s \\
& \left.\quad+\int_{t}^{+\infty} \int_{u}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, l_{i}\left(v, x_{k 1}\left(\eta_{i 1}(v)\right), x_{k 2}\left(\eta_{i 2}(v)\right), x_{k 3}\left(\eta_{i 3}(v)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad-l_{i}\left(v, x_{01}\left(\eta_{i 1}(v)\right), x_{02}\left(\eta_{i 2}(v)\right), x_{03}\left(\eta_{i 3}(v)\right)\right) \mid d v d u d s\right] \\
& \leq \sup _{t \geq T} \varphi\left(D_{k}(t)\right)=\sup _{t \geq T} \varphi\left(\max _{1 \leq j \leq 3}\left|x_{k j}(t)-x_{0 j}(t)\right|\right) \\
& \leq \varphi\left(\left\|x_{k}-x_{0}\right\|\right) \rightarrow 0 \text { as } k \rightarrow+\infty .
\end{aligned}
$$

Thereupon, Q_{L} is continuous in $\Omega(a, b)$.
Lastly, we demonstrate that Q_{L} is a condensing mapping. Let $\epsilon>0$. For any nonempty subset D of $\Omega(a, b)$ with $\alpha(D)>0$, where α denotes the Kuratowski measure of noncompactness, there exist finitely many subsets $D_{1}, D_{2}, \ldots, D_{n}$ of $\Omega(a, b)$ such that

$$
\begin{equation*}
D \subseteq \bigcup_{m=1}^{n} D_{m}, \operatorname{diam} D_{m} \leq \alpha(D)+\epsilon, \quad \forall m \in\{1,2, \ldots, n\} \tag{3.21}
\end{equation*}
$$

It follows from (vi) and (3.17) that for any $x, y \in D_{m}, m \in\{1,2, \ldots, n\}$,

$$
\begin{aligned}
& \left\|Q_{L} x-Q_{L} y\right\|=\max _{1 \leq i \leq 3} \sup _{t \in I}\left|\left(Q_{L i} x\right)(t)-\left(Q_{L i} y\right)(t)\right| \\
& \begin{aligned}
& \leq \max _{1 \leq i \leq 3} \sup _{t \geq T}\left[\mid f_{i}\left(t, x_{1}\left(t-\sigma_{i 1}\right), x_{2}\left(t-\sigma_{i 2}\right), x_{3}\left(t-\sigma_{i 3}\right)\right)\right. \\
& \quad-f_{i}\left(t, y_{1}\left(t-\sigma_{i 1}\right), y_{2}\left(t-\sigma_{i 2}\right), y_{3}\left(t-\sigma_{i 3}\right)\right) \mid \\
& \left.+\int_{t}^{+\infty} \frac{1}{\lambda_{i}(s)} \right\rvert\, g_{i}\left(s, x_{1}\left(p_{i 1}(s)\right), x_{2}\left(p_{i 2}(s)\right), x_{3}\left(p_{i 3}(s)\right)\right) \\
& \quad-g_{i}\left(s, y_{1}\left(p_{i 1}(s)\right), y_{2}\left(p_{i 2}(s)\right), y_{3}\left(p_{i 3}(s)\right)\right) \mid d s \\
& \left.\quad+\int_{t}^{+\infty} \int_{s}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, h_{i}\left(u, x_{1}\left(q_{i 1}(u)\right), x_{2}\left(q_{i 2}(u)\right), x_{3}\left(q_{i 3}(u)\right)\right) \\
& \quad-h_{i}\left(u, y_{1}\left(q_{i 1}(u)\right), y_{2}\left(q_{i 2}(u)\right), y_{3}\left(q_{i 3}(u)\right)\right) \mid d u d s \\
& \left.\quad+\int_{t}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, l_{i}\left(v, x_{1}\left(\eta_{i 1}(v)\right), x_{2}\left(\eta_{i 2}(v)\right), x_{3}\left(\eta_{i 3}(v)\right)\right) \\
&\left.\quad-l_{i}\left(v, y_{1}\left(\eta_{i 1}(v)\right), y_{2}\left(\eta_{i 2}(v)\right), y_{3}\left(\eta_{i 3}(v)\right)\right) \mid d v d u d s\right] \\
& \leq \sup \varphi\left(D_{m}(t)\right) \\
& \leq \varphi\left(\operatorname{diam} D_{m}\right)
\end{aligned}
\end{aligned}
$$

which means that

$$
\begin{equation*}
\operatorname{diam}\left(Q_{L} D_{m}\right) \leq \varphi\left(\operatorname{diam} D_{m}\right), \quad \forall m \in\{1,2, \ldots, n\} \tag{3.22}
\end{equation*}
$$

According to (3.21) and (3.22), we derive that

$$
\begin{aligned}
\alpha\left(Q_{L} D\right) & \leq \alpha\left(\bigcup_{m=1}^{n} Q_{L} D_{m}\right)=\max _{1 \leq m \leq n}\left\{\alpha\left(Q_{L} D_{m}\right)\right\} \leq \max _{1 \leq m \leq n} \operatorname{diam}\left(Q_{L} D_{m}\right) \\
& \leq \max _{1 \leq m \leq n} \varphi\left(\operatorname{diam} D_{m}\right) \leq \varphi(\alpha(D)+\epsilon)
\end{aligned}
$$

Setting $\epsilon \rightarrow 0$ in the above inequality, we gain that

$$
\alpha\left(Q_{L} D\right) \leq \varphi(\alpha(D)+0)<\alpha(D)
$$

which implies that Q_{L} is condensing. Lemma 2.3 ensures that there exists $x \in$ $\Omega(a, b)$ with $Q_{L} x=x$, which is a solution of equations (1.5). The rest of the proof is similar to that of Theorem 3.1. This completes the proof.
Theorem 3.4. Let $a, b \in C\left(I, \mathbb{R}^{+}\right)$with $\bar{a}<\underline{b}$ and let (i)-(iv), (vii) and (viii) hold. If $c<\frac{b-\bar{a}}{2}$ and $d \in(0,1)$, then equations (1.5) possess uncountably many bounded positive solutions in $\Omega(a, b)$.
Proof: Put $L \in(\bar{a}+c, \underline{b}-c)$. Due to (i) and (viii), we derive that there exists $T \geq t_{0}+\sigma$ large enough satisfying (3.1) and

$$
\begin{align*}
& \sum_{i=1}^{3}\left[\int_{T}^{+\infty} \frac{\mu_{i}(s)}{\lambda_{i}(s)} d s+\int_{T}^{+\infty} \int_{s}^{+\infty} \frac{\tau_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \tag{3.23}\\
& \left.\quad+\int_{T}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\zeta_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right]<\frac{1-d}{2}
\end{align*}
$$

Define a mapping $Q_{L}: \Omega(a, b) \rightarrow C\left(I, \mathbb{R}^{3}\right)$ by (3.12) and (3.17). Just as (3.18) and (3.19), we can demonstrate that Q_{L} is a self-mapping on $\Omega(a, b)$ by (ii), (iv) and (3.1).

We now investigate that Q_{L} is a contraction mapping. According to (iii), (vii) and (3.23), we get that

$$
\begin{aligned}
& \left|\left(Q_{L i} x\right)(t)-\left(Q_{L i} y\right)(t)\right| \\
& \leq \mid f_{i}\left(t, x_{1}\left(t-\sigma_{i 1}\right), x_{2}\left(t-\sigma_{i 2}\right), x_{3}\left(t-\sigma_{i 3}\right)\right) \\
& \quad-f_{i}\left(t, y_{1}\left(t-\sigma_{i 1}\right), y_{2}\left(t-\sigma_{i 2}\right), y_{3}\left(t-\sigma_{i 3}\right)\right) \mid \\
& \left.\quad+\int_{t}^{+\infty} \frac{1}{\lambda_{i}(s)} \right\rvert\, g_{i}\left(s, x_{1}\left(p_{i 1}(s)\right), x_{2}\left(p_{i 2}(s)\right), x_{3}\left(p_{i 3}(s)\right)\right) \\
& \quad-g_{i}\left(s, y_{1}\left(p_{i 1}(s)\right), y_{2}\left(p_{i 2}(s)\right), y_{3}\left(p_{i 3}(s)\right)\right) \mid d s \\
& \left.\quad+\int_{t}^{+\infty} \int_{s}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, h_{i}\left(u, x_{1}\left(q_{i 1}(u)\right), x_{2}\left(q_{i 2}(u)\right), x_{3}\left(q_{i 3}(u)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -h_{i}\left(u, y_{1}\left(q_{i 1}(u)\right), y_{2}\left(q_{i 2}(u)\right), y_{3}\left(q_{i 3}(u)\right)\right) \mid d u d s \\
& \left.+\int_{t}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{1}{\lambda_{i}(s) r_{i}(u)} \right\rvert\, l_{i}\left(v, x_{1}\left(\eta_{i 1}(v)\right), x_{2}\left(\eta_{i 2}(v)\right), x_{3}\left(\eta_{i 3}(v)\right)\right) \\
& \left.-l_{i}\left(v, y_{1}\left(\eta_{i 1}(v)\right), y_{2}\left(\eta_{i 2}(v)\right), y_{3}\left(\eta_{i 3}(v)\right)\right) \mid d v d u d s\right] \\
\leq & d_{i}(t) \max _{1 \leq j \leq 3}\left|x_{j}\left(t-\sigma_{i j}\right)-y_{j}\left(t-\sigma_{i j}\right)\right| \\
& +\int_{t}^{+\infty} \frac{\mu_{i}(s) \max _{1 \leq j \leq 3}\left|x_{j}\left(p_{i j}(s)\right)-y_{j}\left(p_{i j}(s)\right)\right|}{\lambda_{i}(s)} d s \\
& +\int_{t}^{+\infty} \int_{s}^{+\infty} \frac{\tau_{i}(u) \max _{1 \leq j \leq 3}\left|x_{j}\left(q_{i j}(u)\right)-y_{j}\left(q_{i j}(u)\right)\right|}{\lambda_{i}(s) r_{i}(u)} d u d s \\
& +\int_{t}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\zeta_{i}(v) \max _{1 \leq j \leq 3}\left|x_{j}\left(\eta_{i j}(v)\right)-y_{j}\left(\eta_{i j}(v)\right)\right|}{\lambda_{i}(s) r_{i}(u)} d v d u d s \\
\leq & \left(d+\int_{T}^{+\infty} \frac{\mu_{i}(s)}{\lambda_{i}(s)} d s+\int_{T}^{+\infty} \int_{s}^{+\infty} \frac{\tau_{i}(u)}{\lambda_{i}(s) r_{i}(u)} d u d s\right. \\
& \left.+\int_{T}^{+\infty} \int_{s}^{+\infty} \int_{u}^{+\infty} \frac{\zeta_{i}(v)}{\lambda_{i}(s) r_{i}(u)} d v d u d s\right)\|x-y\| \\
< & \frac{1+d}{2}\|x-y\|, \quad t \geq T, i \in\{1,2,3\},
\end{aligned}
$$

which implies that $\left\|Q_{L} x-Q_{L} y\right\|<\frac{1+d}{2}\|x-y\|$ for any $x, y \in \Omega(a, b)$. Clearly, Q_{L} is a contraction mapping by $d \in(0,1)$. Consequently, Q_{L} has a unique fixed point $x \in \Omega(a, b)$, which is a bounded positive solution of equations (1.5). The rest of the proof is similar to that of Theorem 3.1 and is omitted. This completes the proof.

Acknowledgment. The author is grateful to the editor and the referee for their kind help, careful reading and editing, valuable comments and suggestions.

References

[1] Agarwal R.P., O'Regan D., Saker S.H., Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. Math. Anal. Appl. 300 (2004), 203-217.
[2] Erbe L.H., Kong W.K., Zhang B.G., Oscillatory Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
[3] El-Metwally H., Kulenovic M.R.S., Hadziomerspahic S., Nonoscillatory solutions for system of neutral delay equation, Nonlinear Anal. 54 (2003), 63-81.
[4] Hanuštiaková L'., Olach R., Nonoscillatory bounded solutions of neutral differential systems, Nonlinear Anal. 68 (2008), 1816-1824.
[5] Islam M.N., Raffoul Y.N., Periodic solutions of neutral nonlinear system of differential equations with functional delay, J. Math. Anal. Appl. 331 (2007), 1175-1186.
[6] Levitan B.M., Some problems of the theory of almost periodic functions I, Uspekhi Mat. Nauk 2(5) (1947), 133-192.
[7] Liu Z., Gao H.Y., Kang S.M., Shim S.H., Existence and Mann iterative approximations of nonoscillatory solutions of nth-order neutral delay differential equations, J. Math. Anal. Appl. 329 (2007), 515-529.
[8] Lin X.Y., Oscillatory of second-order nonlinear neutral differential equations, J. Math. Anal. Appl. 309 (2005), 442-452.
[9] Parhi N., Rath R.N., Oscillation critiria for forced first order neutral differential equations with variable coefficients, J. Math. Anal. Appl. 256 (2001), 525-541.
[10] Sadovskii B.N., A fixed point principle, Funct. Anal. Appl. 1 (1967), 151-153.
[11] Yu Y., Wang H., Nonoscillatory solutions of second-order nonlinear neutral delay equations, J. Math. Anal. Appl. 311 (2005), 445-456.
[12] Zhou Y., Existence for nonoscillatory solutions of second-order nonlinear differential equations, J. Math. Anal. Appl. 331 (2007), 91-96.
[13] Zhang W.P., Feng W., Yan J.R., Song J.S., Existence of nonoscillatory solutions of firstorder linear neutral delay differential equations, Compu. Math. Appl. 49 (2005), 1021-1027.
[14] Zhou Y., Zhang B.G., Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients, Appl. Math. Lett. 15 (2002), 867-874.

School of Sciences, Liaoning Shihua University, Fushun, Liaoning 113001, People's Republic of China

E-mail: min_liu@yeah.net

