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Abstract. We give sufficient conditions for the existence of global small solutions to the
quasilinear dissipative hyperbolic equation

utt + 2ut − aij(ut,∇u)∂i∂ju = f

corresponding to initial values and source terms of sufficiently small size, as well as of small
solutions to the corresponding stationary version, i.e. the quasilinear elliptic equation

−aij(0,∇v)∂i∂jv = h.

We then give conditions for the convergence, as t → ∞, of the solution of the evolution
equation to its stationary state.

Keywords: quasilinear evolution equation, quasilinear elliptic equation, a priori estimates,
global existence, asymptotic behavior, stationary solutions
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1. Introduction

In this paper we consider the Cauchy problem for the quasilinear dissipative hy-

perbolic evolution equation

(1.1) utt + 2ut − aij(ut,∇u)∂i∂ju = f

with f = f(t, x), t > 0, x ∈ R
N , N > 3, and u subject to the initial conditions

(1.2) u(0, x) = u0(x), ut(0, x) = u1(x).
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In (1.1), as well as in the sequel, summation for i, j from 1 to N is understood. Our

goal is to prove a global existence result for small strong solutions of (1.1) (as defined

in the beginning of Section 4 below), corresponding to small data u0, u1, and f (if

the data are large, blow up of solutions of nonlinear hyperbolic problems in finite

time is in general expected), and then to study the behavior of such solutions as

t → ∞. In particular, we look for sufficient conditions that imply the boundedness

of the solutions in t, as well their convergence to the solutions of the corresponding

stationary equation

(1.3) − aij(0,∇v)∂i∂jv = h.

When f ≡ 0, global existence results for strong solutions of (1.1) corresponding

to small initial values (1.2) were given by Matsumura [9], by means of direct energy

estimates which yield an a priori bound on any local solution. In the case of a

bounded domain, this method shows that solutions decay exponentially to 0. In the

whole space case, polynomial decay to 0 can still be established by considering (1.1)

as a “small” perturbation of the linear dissipative wave equation

(1.4) utt + 2ut − ∆u = 0,

whose solutions are known to decay, via the variation of parameters formula (see

Section 3, where we also report the explicit decay rates for solutions of (1.4) provided

by Matsumura [8]). This procedure is reminiscent of the so-called “Lp-Lq estimates”

technique, used e.g. by Klainerman [6] and Ponce [14], to prove a global existence

result for small solutions of nonlinear non-dissipative wave equations, and Racke [15],

for nonlinear dissipative wave equations of the general form

(1.5) utt + ut − ∂j [ajk(x)∂ku] = f(x, t, u,Du,∇ut, ∂
2
xu)

(which, however, does not include (1.1) when f ≡ 0). In fact, we will follow this

same perturbation method to prove an a priori global bound on solutions of (1.1),

which ensures their extendibility to a global bounded solution. In contrast, we will

solve the stationary equation (1.3) directly, by means of a variational technique and

a fixed point argument, and resort again to energy estimates to show the convergence

of the solutions of (1.1) to those of (1.3). The nonhomogeneous case (non-zero f)

is not explicitly treated by Matsumura and Racke; while it is not difficult to extend

their methods in the bounded domain case, with solutions that remain bounded as

t → ∞, we have not been able to find analogous results in the whole space case.

Our results in this direction seem to require an additional integrability condition at

infinity on f , either with respect to t (namely, f ∈ L1(0,∞;Hs)), or with respect
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to x (i.e., f(t, ·) ∈ Lq for some q ∈ [1, 2[). We do not know if the latter conditions

are necessary, although our results on the linear equation

(1.6) utt + 2ut − ∆u = f

seem to indicate that they almost are. On the other hand, the integrability con-

ditions in x also allow us to examine the convergence of solutions of (1.1) to those

of the stationary equation (1.3): in fact, if the integrability of f on [0,∞[ were a

consequence of sufficiently fast decay of f , this would prevent its convergence to a

non-zero source h of (1.3). In turn, this motivates us to consider the stationary

equation in some detail, because while it is relatively straightforward to establish

existence of small strong solutions in the bounded domain case, we have not been

able to locate analogous results in the case of the whole space.

We refer to [11] for a more detailed discussion of our main motivations and possible

applications of our results, which include, among others, models of heat equations

with delay (see e.g. Li [7] and Cattaneo [2]), Maxwell’s equations in ferro-magnetic

materials ([10]), traffic flow models (Schochet [17]), as well as simple models of laser

optic equations (Haus [4]) and random walk systems (Hadeler [3]). In these models,

the reciprocal of the coefficient of the dissipation term ut is a measure, respectively,

of the delay shift-time; of the displacement of the currents, usually much stronger

than the eddy ones; of the drivers’ response time to sudden disturbances; of the

low frequencies of the electromagnetic field, and of the turning rates of the moving

particles. For example, the complete system of Maxwell’s equations

(1.7) Dt + J − curlH = F, Bt + curlE = 0,

supplemented by the constituent relations D = εE, J = σE (linear) and H = ζ(B)

(nonlinear monotone), can be transformed into the quasilinear system

(1.8) εAtt + σAt + curl ζ(curlA) −∇divA = −F,

which is of type (1.1), by means of the introduction of the electromagnetic poten-

tials A, ϕ, defined by the relations B = curlA, E = −At+∇ϕ, εϕt+σϕ = divA (the

latter being one of various possible gauge relations). Typically, ferro-magnetic mate-

rials are characterized by very small frequency values, hence the interest in studying

the long-time behavior of dissipative equations like (1.7) and, more generally, (1.1).

We also refer to [18] for another aspect of the asymptotic behavior of solutions

of (1.1) (at least when (1.1) is in divergence form and f ≡ 0), consisting in showing

that such behavior is the same as that of the solution of the corresponding parabolic
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equation

(1.9) wt − ∂j(aij(0,∇w)∂iw) = 0,

in the sense that the difference u− w decays to 0 faster than either u or w.

This paper is organized as follows. In Section 2 we introduce the notation and

function spaces we use in the sequel. In Section 3 we consider the non-homogeneous

linear equation (1.6), and give necessary and sufficient conditions for the existence

of bounded solutions. In Section 4 we state a global existence and boundedness

result on the quasilinear equation (1.1), an existence and uniqueness result for the

stationary equation (1.3), and a convergence result of solutions of (1.1) to solutions

of (1.3) as t→ ∞. We prove these results in Sections 5, 6, and 7.

2. Notation and function spaces

We adopt the following notation throughout this paper. If x ∈ R, ⌊x⌋ denotes

its integer part. Bounded intervals of R are denoted by [a, b] if closed, ]a, b[ if open,

[a, b[ or ]a, b] otherwise. If u = u(t, x) is a smooth function, we denote its partial

derivatives with respect to t by ut, utt, etc., and with respect to the space variables

by ∂ju, ∂i∂ju, etc. We also set ∇u := (∂1u, . . . , ∂Nu) and Du := {ut,∇u}; more

generally, given a multiindex α = (α1, . . . , αN ) ∈ N, we denote by |α| := α1+. . .+αN

its length, and set ∂αu := ∂α1

1 . . . ∂αN

N u. Given a positive integer k, we denote by ∂k
xu

and ∂k
t u the set of all derivatives of u of order k with respect to the space or the

time variables.

For 1 6 p 6 ∞, | · |p denotes the norm in the Lebesgue space L
p := Lp(RN ). For

m ∈ N, Hm is the usual Sobolev space Wm,2(RN ) of those functions in L2 whose

distributional derivatives of order up tom are again in L2. We identify H0 = L2, and

denote by ‖ · ‖m, 〈·, ·〉m, and ‖ · ‖, 〈·, ·〉, respectively, the norms and scalar products

in Hm and L2 (thus, ‖ · ‖ = ‖ · ‖0 = | · |2). Unless there is a risk of misunderstanding,

with abuse of notation we also denote by Lp, Hm, etc., the product spaces (Lp)N and

(Hm)N , . . .; that is, for instance, the formula ∇u ∈ Hm means that each component

of ∇u is in Hm. Likewise, in many of the estimates we establish, we often omit

one or both of the variables t, x, writing e.g. u(t) instead of u(t, ·), or ‖u‖m instead

of ‖u(t)‖m. Finally, we denote by F(f) = f̂ the Fourier transform of a function f

whenever defined (e.g., in L2), and by F−1(g) = ǧ its inverse transform whenever

defined.

We denote by C a generic, universal constant, which may change from formula

to formula, or even within the same formula. Some of these constants depend only

on N or s, while other may depend on the coefficients aij of (1.1); however, they
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never depend on the data f , u0, u1, nor on t, nor on any of the functions involved

in any of the formulas where such constants appear. When the specific value of a

constant has to be fixed (for example, to define another one, or a parameter such as

µ0 in Theorem 4.1 below), we number that constant, denoting it C1, C2, etc. Unless

otherwise specified, we assume that C,C1, . . . ∈ [1,∞[.

We recall some results on the Sobolev spaces Hm which we need in the sequel; for

a proof, see e.g. Adams-Fournier [1] for the first three, and Racke [16, Lemma 4.7]

for the fourth.

1) The continuity of the Sobolev imbedding H1 →֒ Lp, 2 6 p 6 p̄ := 2N/(N − 2),

N > 3, in the “limit case” p = p̄; that is,

(2.1) |u|p̄ 6 C1|∇u|2, u ∈ H1.

2) The continuity of the imbeddings Hm+k →֒ Ck ∩W k,∞ →֒ W k,∞, m > 1
2N

and k > 0; in particular, for k = 0,

(2.2) |u|∞ 6 C2‖u‖m, u ∈ Hm.

When N > 3, (2.2) can be improved to

(2.3) |u|∞ 6 C3‖∇u‖m−1,

as we easily see by direct use of the Fourier transform.

3) The continuity of the imbedding Hp ·Hq →֒ Hr, in the sense described by

Proposition 2.1. Let p, q, r ∈ N be such that p > r, q > r, p+ q > r + 1
2N . If

u ∈ Hp and v ∈ Hq, the pointwise product uv is defined a.e. in Hr, and

(2.4) ‖uv‖r 6 C4‖u‖p‖v‖q,

with C4 independent of u and v. In particular, for p = q = r =: m > 1
2N ,

(2.5) ‖uv‖m 6 C5‖u‖m‖v‖m;

in fact, using (2.3) and (2.4), (2.5) can be improved to

(2.6) ‖uv‖m 6 C5‖u‖m‖∇v‖m−1.

4) The Chain Rule in Sobolev spaces:

429



Proposition 2.2. Let m ∈ N>1, u = (u1, . . . , uN ) ∈ Hm, and ϕ ∈ Cm(RN ;R).

Then the function x 7→ ϕ(u(x)) − ϕ(0) is in Hm, and for all α ∈ N
N with |α| 6 m,

(2.7) ‖∂α[ϕ(u) − ϕ(0)]‖ 6 C6βm,ϕ(|u|∞)(1 + |u|m−1
∞ )‖∂|α|u‖,

where βm,ϕ(R) := ‖ϕ‖Cm(B(0,R)).

Corollary 2.1. Let m > 1
2N , u, v ∈ Hm, and ϕ as in Proposition 2.2. Then,

(2.8) ‖ϕ(u)v‖m 6 (|ϕ(0)| + C5C6βm,ϕ(|u|∞)(1 + |u|m−1
∞ )‖u‖m)‖v‖m.

P r o o f. Writing ϕ(u)v = (ϕ(u) − ϕ(0))v + ϕ(0)v, (2.8) follows from inequali-

ties (2.5) and (2.7). �

For integerm > 1, we define Vm as the completion ofHm with respect to the norm

‖∇u‖m−1. The space C
∞
0 (RN ) is dense in Vm, because it is dense in Hm, and the

operator∇ : Hm → Hm−1 extends continuously to an operator in V m, which we still

denote by ∇. Likewise, the Laplacian −∆ is a positive-definite, self-adjoint operator

from Hm+1 into Hm−1, with the square root (−∆)1/2 : (Hm →֒ Hm−1) → Hm−1.

In fact, (−∆)1/2 is an isometry from V m into Hm−1, with

(2.9) ‖(−∆)1/2u‖m−1 = ‖∇u‖m−1

for all u ∈ V m. Also note that V m is continuously imbedded into C0 ∩ L∞, see 2)

above. Thus, if m > 1
2N and N > 3, Vm can be identified with a linear subspace of

C0 ∩ L∞.

Proposition 2.3. Let m > 1 and h ∈ Hm−1. A function h is in the range space

(−∆)1/2(Hm) if and only if

(2.10) κ2 :=

∫

RN

|ĥ(ξ)|2

|ξ|2
dξ <∞.

In particular, (2.10) holds if h ∈ Hm−1 ∩ Lp, with 1 6 p < 2N/(N + 2) (which

requires N > 3). If h ∈ Hm−1 ∩ Lp and h = (−∆)1/2h0 for some h0 ∈ Hm, then

there is C > 0, depending only on N and m, such that

(2.11) ‖h‖m−1 = ‖∇h0‖m−1 6 ‖h0‖m 6 C(‖h‖m−1 + |h|p).

P r o o f. If h ∈ Hm−1 and h = (−∆)1/2h0 for some h0 ∈ Hm, then κ =

‖ĥ0‖ = ‖h0‖ is finite. Conversely, assume h ∈ Hm−1 satisfies (2.10). Then h0 :=

F−1(| · |−1ĥ) ∈ L2, and an induction procedure based on the easily proved identity

(2.12) ‖h0‖
2
k = ‖h0‖

2
k−1 + ‖h‖2

k−1,
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k > 1, shows that, in fact, h0 ∈ Hm. Assume now that N > 3. Since h ∈ Lp

and 1 6 p < 2, the Hausdorff-Young theorem implies that ĥ ∈ Lq, 1/p + 1/q = 1.

Let r be the conjugate index of 1
2q; we compute that r <

1
2N , so that the function

ξ : 7→ 1/|ξ| is in L2r
loc(R

N ). Thus, the function ξ : 7→ ĥ(ξ)/|ξ| is in L2
loc(R

N ), which

implies (2.10). The equality in (2.11) follows from (2.9) with u = h0; next, we sum

the inequalities (2.12) from k = 1 to k = m, which yields

(2.13) ‖h0‖
2
m = ‖h0‖

2
0 +

m∑

k=1

‖h‖2
k−1 6 ‖h0‖

2 + C‖h‖2
m−1.

We now recall that h ∈ Lp, ĥ ∈ Lq, and | · |−1 ∈ L2r
loc(R

N ); thus, letting R :=
(∫

|ξ|61 |ξ|
−2r dξ

)1/r
, by (2.10) we obtain

(2.14) ‖h0‖
2 = κ2

6 |ĥ|22 +R|ĥ|2q 6 |h|22 + CR|h|2p.

Inserting this into (2.13) yields the last inequality of (2.11). �

3. The linear equation

In this section we consider the linear equation (1.6) and its homogeneous ver-

sion (1.4). Given a function g = g(x), we denote by t 7→ S(t; g) the solution to (1.4)

with initial data u0 = 0 and u1 = g. By the variation of parameters formula, we can

then write the solution of (1.6) as

(3.1) u(t) = S(t; 2u0 + u1) + ∂t(S(t;u0)) +

∫ t

0

S(t− θ; f(θ)) dθ.

More generally, for t > T > 0 the function t 7→ S(t − T ; g) denotes the solution

to (1.4) satisfying u(T ) = 0, ut(T ) = g.

We recall the following decay estimates for solutions of (1.4):

Proposition 3.1. Let k, m ∈ N, and set r := max{k +m− 1, 0}. For q ∈ [1, 2],

set ν := 1
4N(2/q − 1) + k + 1

2m. Let w ∈ Hr ∩ Lq. Then for any multiindex α with

|α| = m,

(3.2) ‖∂k
t ∂

α
x (S(t;w))‖ 6 C(1 + t)−ν(‖w‖r + |w|q).

The same result holds for the equation

(3.3) wtt + 2wt − cij∂i∂jw = 0,

where C = [cij ] is a positive definite matrix with constant entries.
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P r o o f. The cases q = 1 and q = 2 are proved in Matsumura [8]; in this proof,

the only place where the L1 norm of w enters the argument is in the estimate of the

term

(3.4) J2 :=

∫

|ξ|6δ

|ξ|2(2k+m)e−2t|ξ|2 |ŵ(ξ)|2 dξ,

where δ ∈ ]0, 1
2 [. Let q ∈ ]1, 2[, and let p = q/(q − 1) be its conjugate index. Then

p > 2 so that, with cp := p/(p− 2),

(3.5) J2
6

(∫

|ξ|6δ

|ŵ(ξ)|p dξ

)2/p(∫

|ξ|6δ

|ξ|2cp(2k+m)e−2cpt|ξ|2 dξ

)1−2/p

.

By the Hausdorff-Young inequality,

(3.6)

(∫

|ξ|6δ

|ŵ(ξ)|p dξ

)2/p

= |ŵ|2p 6 C|w|2q ;

using inequality (10) of [8], we easily see that

(3.7)

∫

|ξ|6δ

|ξ|2cp(2k+m)e−2cpt|ξ|2 dξ 6 C(1 + t)−(N+2cp(2k+m))/2,

so that we deduce from (3.5) that

(3.8) J 6 C|w|q(1 + t)−(N+2cp(2k+m))/(4cp),

from which (3.2) follows. Finally, the result also holds for (3.3) since this equation

can be transformed into (1.4) by the change of variables u(t, x) = w(t,Γx), where

Γ−1 = C1/2. �

In particular, from (3.2) with q = 2 we immediately deduce from (3.1) that the

solution of (1.4), with initial data u0 ∈ Hm+1 and u1 ∈ Hm, m > 0, satisfies the

estimate

(3.9) sup
t>0

‖u(t)‖m+1 6 C(‖u0‖m+1 + ‖u1‖m).

Assume now that u0, u1 ≡ 0. Then the solution of (1.6) is formally given by

u(t, x) = (F−1v(t, ·))(x), where

v(t, ξ) =

∫ t

0

f̂(t− θ, ξ)h(θ, ξ) dθ,(3.10)

h(t, ξ) := e−t sinh
(√

1 − |ξ|2 t
)

√

1 − |ξ|2
.(3.11)
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In particular, (3.10) is well defined if f ∈ L∞(0,∞;Hm) for some m ∈ N, since then

f̂(·, ξ) is locally integrable for almost all ξ ∈ R
N . Moreover, u(t, ·) ∈ Hm+1 for all

t > 0. The following properties of h are easily deduced from (3.11):

Proposition 3.2. For all t > 0 and ξ ∈ R
N ,

(3.12) |h(t, ξ)| 6 2, |ξ||h(t, ξ)| 6 2.

More precisely: If |ξ| 6 1, then

(3.13) 0 6 h(t, ξ) 6 2e−t|ξ|2/2,

while if |ξ| > 1, then

(3.14) |h(t, ξ)| 6 te−t, |ξ||h(t, ξ)| 6 2(1 + t)e−t.

Proposition 3.2 allows us to deduce that (3.9) can be improved to

(3.15) lim
t→∞

(‖u(t)‖m+1 + ‖ut(t)‖m) = 0.

In fact, considering only the case u0 = 0 for simplicity, we note that, by (3.12), there

is a constant C such that

‖u(t)‖2
m+1 6 C

∫

RN

(1 + |ξ|2)m+1|û1(ξ)|
2|h(t, ξ)|2 dξ(3.16)

6 C

∫

RN

(1 + |ξ|2)m|û1(ξ)|
2 dξ.

Since h(t, ξ) → 0 as t → ∞ for all ξ 6= 0, by Lebesgue’s dominated convergence

theorem we conclude that ‖u(t)‖m+1 → 0 as t → ∞. The convergence ut(t) → 0

in Hm is proved similarly.

We now give some sufficient conditions for the boundedness of solutions to (1.6)

(again, when u0, u1 ≡ 0) as t→ ∞.

Theorem 3.1. Let f ∈ L∞(0,∞;Hm) for some m ∈ N, and suppose there are

positive constants λ, Λ such that for all t > 0,

(3.17)

∫

RN

|f̂(t, ξ)|2

|ξ|4+λ
dξ 6 Λ.

Then the function t 7→ ‖u(t)‖m+1 is bounded on [0,∞[. In particular, (3.17) holds

for all λ ∈ ]0, λp[, λp := N(2p−1 − 1) − 4, if f ∈ L∞(0,∞;Hm ∩ Lp) with 1 6 p <

2N/(N + 4) (which requires N > 5 and implies λp > 0).
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P r o o f. By Schwarz’ inequality, we deduce from (3.10) that, for all t > 0,

(3.18) |v(t, ξ)|2 6

∫ t

0

|f̂(t− θ, ξ)|2|h(θ, ξ)| dθ

∫ t

0

|h(θ, ξ)| dθ.

If |ξ| > 1, by (3.14) we obtain from (3.18) that

(1 + |ξ|2)|v(t, ξ)|2(3.19)

6

∫ t

0

|f̂(t− θ, ξ)|2θe−θ dθ + 2

∫ t

0

|f̂(t− θ, ξ)|2(1 + θ)e−θ dθ

6 3

∫ t

0

|f̂(t− θ, ξ)|2(1 + θ)e−θ dθ.

By Fubini’s theorem, (3.19) implies that
∫

|ξ|>1

(1 + |ξ|2)m+1|v(t, ξ)|2 dξ(3.20)

6 3

∫ t

0

(1 + θ)e−θ

∫

|ξ|>1

(1 + |ξ|2)m|f̂(t− θ, ξ)|2 dξ dθ

6 C sup
t>0

‖f(t)‖2
m.

If |ξ| 6 1, by Proposition 3.2 we obtain from (3.18) that

|v(t, ξ)|2 6 4|ξ|−2

∫ t

0

|f̂(t− θ, ξ)|2e−θ|ξ|2/2 dθ(3.21)

6 4M |ξ|−4−λ

∫ t

0

|f̂(t− θ, ξ)|2 min(1, θ−1−λ/2) dθ,

where M := max
{
1,max

r>0
(r1+λ/2e−r/2)

}
. Again by Fubini’s theorem,

∫

|ξ|61

(1 + |ξ|2)m+1|v(t, ξ)|2 dξ(3.22)

6 2m+3M

∫ t

0

∫

|ξ|61

|f̂(t− θ, ξ)|2

|ξ|4+λ
min(1, θ−1−λ/2) dξ dθ

6 2m+3MΛ

∫ t

0

min(1, θ−1−λ/2) dθ 6 2m+3MΛ(1 + 2λ−1).

Together with (3.20), (3.22) clearly implies the asserted boundedness of ‖u(t)‖m+1

as t→ ∞. The second part of the theorem is proved as in the second part of Propo-

sition 2.3, noting that, now r < 1
4N , and the smallness condition on λ guarantees

that the function | · |−4−λ is in Lr
loc(R

N ). �

In an analogous way, we can also prove
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Theorem 3.2. Let f ∈ L∞(0,∞;Hm) for some m ∈ N, and suppose there are

positive constants λ, Λ such that

(3.23)

∫

RN

|f̂(t, ξ)|2

|ξ|2+λ
dξ 6 Λ

for all t > 0. Then the function t 7→ ‖∇u(t, ·)‖m is bounded on [0,∞[. In particular,

(3.23) holds for all λ ∈ ]0, λp[, λp := N(2p−1 − 1) − 2, if f ∈ L∞(0,∞;Hm ∩ Lp)

with 1 6 p < 2N/(N + 2) (which requires N > 3 and implies λp > 0).

If f is independent of t, Theorems 3.1 and 3.2 can be refined as follows.

Theorem 3.3. Let f ∈ Hm for some m ∈ N. The function t 7→ ‖u(t, ·)‖m+1 is

bounded on [0,∞[ if and only if (3.17) holds with λ = 0; that is, if

(3.24) Λ :=

∫

RN

|f̂(ξ)|2

|ξ|4
dξ <∞.

In turn, (3.24) holds if and only if there is a (unique) F ∈ Hm+2 such that −∆F = f ;

in this case,

(3.25) ‖u(t, ·) − F‖m+1 → 0 as t → ∞.

In particular, (3.24) holds if f ∈ Hm ∩Lp with 1 6 p < 2N/(N + 4) (which requires

N > 5). If N 6 4, there are functions f ∈ Hm ∩ L1 such that (3.24) fails, and

‖u(t, ·)‖m is unbounded.

P r o o f. If f does not depend on t, (3.10) reads

(3.26) v(t, ξ) = f̂(ξ)

∫ t

0

h(θ, ξ) dθ =: f̂(ξ)H(t, ξ).

Now,

(3.27) H(t, ξ) =
1

|ξ|2

(

1 − e−t

(

cosh(t
√

1 − |ξ|2) +
sinh

(
t
√

1 − |ξ|2
)

√

1 − |ξ|2

))

,

so that we easily see that for all t > 0 and ξ ∈ R
N \ {0},

(3.28) |H(t, ξ)| 6 2|ξ|−2, lim
t→∞

H(t, ξ) = |ξ|−2.

Together with (3.26), the first of (3.28) implies that for all t > 0,

(3.29) ‖u(t)‖2
m+1 6

∫

RN

(1 + |ξ|2)m+1|f̂(ξ)|24|ξ|−4 dξ.
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Splitting the integral over the regions |ξ| 6 1 and |ξ| > 1, we deduce from (3.29)

that, if (3.24) holds, then

(3.30) ‖u(t)‖2
m+1 6 8(2mΛ + ‖f‖2

m);

that is, ‖u(t)‖m+1 is bounded in t. Conversely, if (3.24) did not hold, Fatou’s lemma

would yield

lim
n→∞

‖u(n)‖2
m+1 >

∫

RN

(1 + |ξ|2)m+1 |f̂(ξ)|2

|ξ|4
dξ(3.31)

>

∫

RN

|f̂(ξ)|2

|ξ|4
dξ = ∞,

contradicting the assumption that ‖u(t)‖m+1 is bounded. The claim concerning F

is clear, since −∆w = F−1(| · |2ŵ) for all w ∈ H2. Then (3.25) follows from (3.28)

and

(3.32) ‖u(t) − F‖2
m+1 =

∫

RN

(1 + |ξ|2)m|f̂(ξ)|2(H(t, ξ) − |ξ|−2)2 dξ

via Lebesgue’s dominated convergence theorem. Finally, the function x 7→ e−|x|2 is

in Hm ∩ L1 for every m ∈ N, but fails to satisfy (3.24) if N 6 4. �

In fact, if f is independent of t, the solution u takes values in Hm+2 and not

just in Hm+1 (this, of course, because the initial values, being zero, are smooth). It

is then clear from the proof of Theorem 3.3 that, if (3.24) holds, also the function

t 7→ ‖u(t)‖m+2 is bounded on [0,∞[. More specifically, proceeding as in Theorem 3.3

we can also prove

Theorem 3.4. Let f ∈ Hm for some m ∈ N. The function t 7→ ‖∇u(t, ·)‖m is

bounded on [0,∞[ if and only if

(3.33)

∫

RN

|f̂(ξ)|2

|ξ|2
dξ <∞.

If (3.33) holds, there is v ∈ V m+2 such that

(3.34) ‖∇(u(t) − v)‖m → 0 as t → ∞.

In particular, (3.33) holds if f ∈ Hm ∩Lp with 1 6 p < 2N/(N + 2) (which requires

N > 3). If N 6 2, there are functions f ∈ Hm ∩ L1 such that (3.33) fails and

‖∇u(t, ·)‖m is unbounded.
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R em a r k s. Comparing Theorems 3.3 with 3.1, or 3.4 with 3.2, the natural

question arises whether we can allow λ = 0 in (3.17) or (3.23). In this case, our

proof would allow for logarithmic growth of ‖u(t)‖m or ‖∇u(t)‖m as t → ∞, but

we do not know if this can truly happen. On the other hand, the last claim of

Theorem 3.3 shows that if N 6 4, Matsumura’s estimate (3.2) with k = m = 0 is

sharp, since even the L2-boundedness of solutions of (1.6) may fail.

4. The quasi-linear equation

For N > 3 we consider integers s > 1
2N + 1 so that, by (2.2), Hs−1 →֒ L∞.

We assume that the coefficients aij ∈ Cs(R1+N ;R), the matrix A(p) := [aij(p)] is

symmetric for all p ∈ R
1+N and satisfies the uniformly strong ellipticity condition

(4.1) ∃ ν > 0: ∀ p ∈ R
1+N , q ∈ R

N , aij(p)q
iqj

> ν |q|2;

without loss of generality, we take ν = 1.

We assume that u0 ∈ Hs+1, u1 ∈ Hs and, with Cb := C ∩ L∞,

(4.2) f ∈ Cb([0,∞[;Hs ∩ Lq), 1 6 q < q̄ :=
2N

N + 2
;

correspondingly, we set

(4.3) δ2 := ‖u0‖
2
s+1 + ‖u1‖

2
s, σ2 := sup

t>0
(‖f(t)‖2

s + |f(t)|2q).

Note that, since q < q̄ < 2, the interpolation inequality

(4.4) |f |q̄ 6 C|f |θq |f |
1−θ
2 , θ =

1

N

(1

q
−

1

2

)−1

∈ ]0, 1[,

implies that for all t > 0,

(4.5) |f(t)|q̄ 6 Cσ.

For 0 6 m 6 s and T > 0, we define

(4.6) Xm
T :=

m⋂

j=0

Cj([0, T ];Hs+1−j)

and, analogously,

(4.7) Xm
∞ :=

m⋂

j=0

Cj([0,∞[;Hs+1−j);
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correspondingly, we look for solutions of (1.1)–(1.2) in the space

(4.8) Y := {u ∈ X 2
∞ : Du ∈ Cb([0,∞; [Hs) ∩ C1

b([0,∞[;Hs−1)}.

As we shall see in Subsection 5.1, if (1.1) has a solution u ∈ X 1
T for some T > 0, then

automatically u ∈ X 2
T .

Under the above stated assumptions on the data and coefficients, in Section 5 we

prove

Theorem 4.1. Let N > 3. There exist µ0 ∈ ]0, 1[, K1,K2 > 1 such that, if

δ + σ 6 µ2
0, problem (1.1)–(1.2) has a unique solution u ∈ Y, which satisfies the

estimates

(4.9) sup
t>0

‖Du(t)‖s 6 µ0, sup
t>0

‖Dut(t)‖s−1 6 K1µ0.

If N > 5, then u ∈ Cb([0,∞[;L2) and satisfies the estimate

(4.10) sup
t>0

‖u(t)‖0 6 K2µ0.

The constants µ0, K1, and K2 depend on the aij , N , s, and q, but not on u.

We recall that, as we have seen in Theorem 3.3 for the linear Cauchy problem, if

N = 3 or N = 4 then there are data u0, u1, f such that the corresponding solution

satisfies (4.9), but

(4.11) lim sup
t→∞

‖u(t)‖0 = ∞.

We next consider the stationary equation (1.3). Given m ∈ N and R > 0, we

denote by Bm(R) the ball of V m with center 0 and radius R. In Section 6 we prove

Theorem 4.2. Assume aij ∈ Cs+1(R1+N ;R), N > 3, and h ∈ Hs−1 ∩ Lq,

q ∈ [1, q̄[. There exists R0 ∈ ]0, 1
2 [ such that if

(4.12) ‖h‖s−1 + |h|q 6 R2
0,

then (1.3) has a unique solution v ∈ Bs+1(R0), which depends continuously on h.

Finally, we consider the convergence, as t → ∞, of the solutions to (1.1) to those

of (1.3). In Section 7 we prove
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Theorem 4.3. LetN > 3, assume that aij ∈ Cs+2(R1+N ;R), and let h ∈ Hs∩Lq,

q ∈ [1, q̄[, satisfy (4.12) with s − 1 replaced by s. Assume further that, as t → ∞,

f(t, ·) → h in the sense that

(4.13)

∫ ∞

0

(‖f(t) − h‖s + |f(t) − h|q) dt =: Λ0 <∞.

The values of µ0 and R0 in Theorems 4.1 and 4.2 can be chosen so small that, if

u ∈ Y and v ∈ Bs+2(R0) are the corresponding solutions to problem (1.1)–(1.2) and

equation (1.3), then Du(t) → Dv in Hs as t→ ∞; that is,

(4.14) lim
t→∞

‖D(u(t) − v)‖s = 0.

5. Global existence and boundedness

In this section we prove Theorem 4.1. Our procedure is standard in that we

show, by means of suitable a priori estimates, that local solutions of (1.1)–(1.2)

can be extended to all of [0,∞[. The value of µ0 is determined in (5.48) below; in

particular, we choose µ0 6 C2
−1, where C2 is the norm of the Sobolev embedding

in (2.2) for m = s− 1. It follows that, if u satisfies (4.9), then |Du(t)|∞ 6 1 for all t.

5.1. Fundamental estimates. We first note that it is sufficient to prove the

first inequality of (4.9), since this implies the other. Indeed, assume that (1.1) does

have a solution u ∈ Y satisfying (4.9) with µ0 6 C2
−1. Then by Corollary 2.1 we

deduce the estimate

‖aij(Du)∂i∂ju‖s−1(5.1)

6 (|aij(0)| + C5C6βs−1,aij
(|Du|∞)(1 + |Du|s−2

∞ ))‖∂i∂ju‖s−1.

Since |aij(0)| 6 βs−1,aij
(1), estimating

(5.2) |Du(t)|∞ 6 C2 ‖Du(t)‖s−1 6 C2‖Du(t)‖s 6 C2µ0 6 1 6 C5C6

we conclude from (5.1) that

(5.3) ‖aij(Du)∂i∂ju‖s−1 6 3C5C6βs,aij
(1)‖∇u‖s =: K‖∇u‖s.

Consequently, since σ 6 µ0,

‖utt‖s−1 6 ‖f‖s−1 + 2‖ut‖s−1 + ‖aij(Du)∂i∂ju‖s−1(5.4)

6 σ + 2µ0 +Kµ0 6 (3 +K)µ0 =: K1µ0,

from which the second inequality of (4.9) follows by virtue of Dut = {utt,∇ut}.
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5.2. Further estimates. We now turn to the proof of the first inequality of (4.9).

We define maps Q : Hs+1 ×Hs → [0,∞[ and F : Hs+1 ×Hs → R by

Q(u, v) :=
∑

|α|6s

〈aij(v,∇u)∂i∂
αu, ∂j∂

αu〉,(5.5)

F (u, v) := ‖v‖2
s + 2〈u, v〉s +Q(u, v);(5.6)

then, for u ∈ X 1
T and t ∈ [0, T ], we abbreviate

(5.7) F (t) := F (u(t), ut(t)), Q(t) := Q(u(t), ut(t));

note that (4.1) implies that

(5.8) Q(u, v) > ‖∇u‖2
s

for all (u, v) ∈ Hs+1 ×Hs. Since f ∈ L2
loc(0,∞;Hs), Kato’s results of [5] imply the

existence of a unique local solution of problem (1.1)–(1.2); more precisely, we have

Theorem 5.1. Under the above stated assumptions on the coefficients and the

data, there exists τ > 0 such that the problem has a unique solution u ∈ X 2
τ .

The proof of uniqueness in Theorem 5.1 is independent of the size of τ ; this yields

the uniqueness claim of Theorem 4.1. By a standard continuation argument, we can

extend the local solution u to a maximal interval [0, Tc[ with

(5.9) Tc := sup{T > 0: (1.1) has a solution u ∈ X 2
T }.

Global existence corresponds to Tc = ∞, while if Tc <∞, then

(5.10) lim sup
t→T−

c

‖Du(t)‖s = ∞.

Indeed, if the function t 7→ ‖Du(t)‖s were bounded, then, as we have shown in Sub-

section 5.1, the function t 7→ ‖Dut(t)‖s−1 would also be bounded, and the function

t 7→ ‖u(t)‖0 could not blow up, since it would grow at most linearly; hence, u ∈ Y.

To prove Theorem 4.1, it is then sufficient to establish an a priori estimate on the

maximal solution of (1.1)–(1.2). To this end, we claim:
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Proposition 5.1. Let δ and σ be as in (4.3), T ∈ [0, Tc[, and let u ∈ X 2
T be

a solution of (1.1)–(1.2). There exists µ0 ∈ ]0, 1[, independent of T , such that, if

δ + σ 6 µ2
0, u satisfies the estimates

(5.11) ‖Du(t)‖s 6 µ0, ‖Dut(t)‖s−1 6 (4 +K1)µ0

for all t ∈ [0, T ] (compare to (4.9)). Consequently, Tc = ∞.

P r o o f. As we have shown in Subsection 5.1 above, it is sufficient to prove the

first estimate in (5.11); before doing so, we prove the last claim of the proposition.

If Tc < ∞, by (5.10) there would be T1 ∈ ]0, Tc[ such that µ1 := ‖Du(T1)‖s > µ0;

but then, since ‖Du(0)‖s 6 δ < µ2
0 < µ0, there would also be T ∈ ]0, T1[ such that

for all t ∈ [0, T ],

(5.12) ‖Du(t)‖s 6
1

2
(µ0 + µ1) = ‖Du(T )‖s.

Since 1
2 (µ0 + µ1) > µ0, (5.12) contradicts the first inequality of (5.11) for t = T .

Given u ∈ X 2
T , we set bij := aij(Du), µ := max

06t6T
‖Du(t)‖s, and

(5.13) R1 := 2〈f, ut + u〉s, R2 := −2〈(∂jbij)∂iu, u〉.

We also denote by γµ a generic positive constant depending on µ in a continuous

and non-decreasing way but independent of u and t; typically, such constants appear

from applications of Corollary 2.1, as in the proof of (5.3) from (5.1) and (5.2), via

the estimate |Du|∞ 6 C2µ.

We first show that, with F as in (5.7), u satisfies for all t ∈ [0, T ] the estimate

(5.14) e2tF (t) 6 F (0) +

∫ t

0

e2θ(R1 +R2 + γµ(µ+ σ)‖Du‖2
s) dθ.

To this end, we note that the standard energy estimates on solutions of (1.1) involve

multiplication of (1.1) by 2(ut + u) in Hs; however, this is not directly possible,

since some of the terms in the equation only take values in Hs−1. We thus resort

to regularization, by means of Friedrichs’ mollifiers (̺ε)ε>0 (see e.g. [1]). Setting

uε := ̺ε ∗ u, where the convolution refers to the space variables only, we deduce

from (1.1) that uε satisfies the equation

(5.15) uε
tt + 2uε

t − bij∂i∂ju
ε = fε + gε,

where

(5.16) fε := ̺ε ∗ f, gε := ̺ε ∗ (bij∂i∂ju) − bij∂i∂ju
ε.
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Now, all terms in (5.15) take values in Hs; hence, we can multiply (5.15) in Hs by

2(uε
t + uε). In so doing, we note that the term

(5.17) Gε := −2〈bij∂i∂ju
ε, uε

t + uε〉s

can be written as

(5.18) Gε =
d

dt
Qε + 2Qε −Rε

2 −Rε
3,

where

(5.19) Qε :=
∑

|α|6s

〈bij∂
α∂iu

ε, ∂α∂ju
ε〉, Rε

2 := −2〈∂jbij∂iu
ε, uε〉,

and Rε
3 is the sum of terms containing only derivatives of u

ε, but not uε itself. Thus,

defining

(5.20) F ε := ‖uε
t‖

2
s + 2〈uε, uε

t 〉s +Qε, Rε
1 := 2〈fε + gε, uε + uε

t 〉s,

we obtain

(5.21)
d

dt
F ε + 2F ε = Rε

1 +Rε
2 +Rε

3.

By means of Corollary 2.1, it is straightforward to see that, since |Du|∞ 6

C2‖Du‖s−1 6 C2µ,

(5.22) |Rε
3(t)| 6 γµ(µ+ σ)‖Duε‖2

s,

where γµ is independent of ε. Thus, we deduce from (5.21) that

(5.23)
d

dt
F ε(t) + 2F ε(t) 6 Rε

1(t) +Rε
2(t) + γµ(µ+ σ)‖Duε‖2

s,

from which

(5.24) e2tF ε(t) − F ε(0) 6

∫ t

0

e2θ(Rε
1 +Rε

2 + γµ(µ+ σ)‖Duε‖2
s) dθ.

Following e.g. Mizohata [12], we can show that ‖gε(t)‖s remains bounded for t ∈

[0, T ], ε > 0, and ‖gε(t)‖s → 0 as ε → 0 for fixed t. We also know that fε(t) →

f(t) in Hs, ‖fε(t)‖s 6 ‖f(t)‖s, and analogously for Du
ε(t) in Hs−1. Therefore,

by Lebesque’s dominated convergence theorem, we can let ε → 0 in (5.24) and

obtain (5.14).
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We next show that for all t ∈ [0, T ]

(5.25) F (t) 6 e−2tF (0) + γµµ(σ + µ+ µ2),

as follows from estimating the terms R1(t) and R2(t) under the integral sign in (5.14).

Clearly,

(5.26) 〈f, ut〉s + 〈∇f,∇u〉s−1 6 ‖f‖s‖Du‖s 6 σµ

and, by Hölder’s inequality, (4.5), and (2.1),

(5.27) 〈f, u〉 6 |f |q̄|u|p̄ 6 C1|f |q̄|∇u|2 6 CC1σµ;

together with (5.26), this implies that

(5.28) R1(t) 6 Cσµ.

Next, since |w|r 6 |w|1 + |w|2 for 1 6 r 6 2, we have

R2(t) 6 2|∂jbij∂iu|q̄|u|p̄(5.29)

6 2C1(|∂jbij∂iu|1 + |∂jbij∂iu|2)|∇u|2

6 2C1|∇bij |2(|∇u|2 + |∇u|∞)|∇u|2

so that, by Proposition 2.2,

(5.30) R2(t) 6 γµ|∇Du|2(|∇u|2(|∇u|2 + C2‖∇u‖s−1)|∇u|2 6 γµµ
3.

Together with (5.28), this shows that

(5.31) R1(t) +R2(t) + γµ(µ+ σ)‖Du(t)‖2
s 6 γµµ(σ + σµ+ µ2);

inserting this into (5.14), we obtain (5.25).

Finally, we show that, if µ 6 1, then for all t ∈ [0, T ],

(5.32) ‖Du(t)‖2
s 6 γµ(δ2 + δµ+ σ2 + σµ+ µ3).

Because of (5.25), to show (5.32) it is sufficient to estimate the term 〈u, ut〉s of F (t),

which we can do by means of Proposition 3.1. Indeed, setting cij := aij(0) and

ãij(p) = aij(p) − cij , we can rewrite equation (1.1) in the linearized form

(5.33) utt + 2ut − cij∂i∂ju = f + g,
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where g := ãij(Du)∂i∂ju ∈ Lq for all q ∈ [1, 2], as follows from Proposition 2.2. In

fact, noting that ãij(0) = 0, (2.7) yields

|g|q 6 |g|1 + |g|2 6 |ãij(Du)|2(|∂i∂ju|2 + |∂i∂ju|∞)(5.34)

6 2C6β1(C2µ)|Du|2‖∇u‖s 6 γµµ
2.

We multiply equation (5.33) in L2 by u, obtaining

(5.35)
d

dt
〈u, ut〉 − |ut|

2
2 + 2〈u, ut〉 + 〈cij∂ju, ∂iu〉 = 〈f + g, u〉;

since q̄ ∈ [1, 2], by (5.34) and (2.1) we have

(5.36) |〈f + g, u〉| 6 |f + g|q̄|u|p̄ 6 γµ(σ + µ2)|∇u|2 6 γµ(σ + µ2)µ.

We now use the variation of parameters formula (3.1), by which

(5.37) u(t) = S(t; 2u0 + u1) + ∂t(S(t;u0)) +

∫ t

0

S(t− θ; f(θ) + g(θ)) dθ.

By (3.9), we easily see that

(5.38) |∇S(t; 2u0 + u1) + ∇∂t(S(t;u0))|2 6 Cδ.

Next, we use Proposition 3.1, with q specified in assumption (4.2), to estimate

|∇S(t− θ; f(θ) + g(θ))|2 6 C(1 + t− θ)−ν(|f + g|2 + |f + g|q)(5.39)

6 γµ(1 + t− θ)−ν(σ + µ2),

where

(5.40) ν =
N

4

(2

q
− 1

)

+
1

2
>
N

4

(2

q̄
− 1

)

+
1

2
= 1

(it is at this point that we need q < q̄); therefore, from (5.37), (5.38), and (5.39) we

obtain

(5.41) |∇u|2 6 γµ(δ + σ + µ2).

From (5.35), (5.36), and (5.41) we deduce then that

−
d

dt
〈u, ut〉 − 2〈u, ut〉 6 |〈f + g, u〉| + |cij ||∇u|

2
2(5.42)

6 γµ(δ2 + σ2 + σµ+ µ3),
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from which, finally, since |〈u0, u1〉| 6 δ2,

(5.43) −〈u, ut〉 6 γµ(δ2 + σ2 + σµ+ µ3).

We are now ready to estimate 〈u, ut〉s. Clearly,

(5.44) −〈u, ut〉s = −〈u, ut〉 − 〈∇u,∇ut〉s−1 6 −〈u, ut〉 + µ‖∇u‖s−1;

we estimate ‖∇u‖s−1 by the same method we used to show (5.41), applying Propo-

sition 3.1 with k = 0, 0 6 m 6 s, 0 6 r 6 s−1 (note that we cannot estimate ‖∇u‖s

in this way since this would require an estimate of ‖g(t)‖s; now, we do not know

whether g(t) ∈ Hs, while we do have the estimate ‖g(t)‖s−1 6 γµµ
2). We obtain

(5.45) ‖∇u‖s−1 6 γµ(δ + σ + µ2);

therefore, from (5.54) and (5.43),

(5.46) −〈u, ut〉s 6 γµ(δ2 + δµ+ σ2 + σµ+ µ3).

We now use (4.1) (with ν = 1), (5.25), and (5.46) to conclude that

‖Du‖2
s = ‖ut‖

2
s + ‖∇u‖2

s 6 ‖ut‖
2
s +Q(t) = F (t) − 2〈u, ut〉s(5.47)

6 γµ(δ2 + δµ+ σ2 + σµ+ µ3),

which yields the desired estimate (5.32).

We can now conclude the proof of Proposition 5.1. Indeed, denote by Γ(µ) the

specific constant γµ appearing in estimate (5.32), and choose µ0 ∈ ]0, 1/C2[ so small

that

(5.48) 20 Γ(1)µ0 6 1.

We claim that the first inequality of (5.11) holds with this choice of µ0. Indeed, there

would otherwise be t1 ∈ ]0, T ] such that ‖Du(t1)‖s > µ0; but since

(5.49) ‖Du(0)‖s = δ 6 µ2
0 < µ0,

there would also be t2 ∈ [0, t1[ such that for all t ∈ [0, t2],

(5.50) ‖Du(t)‖s 6 µ0 = ‖Du(t2)‖s.

On the other hand, since C2µ0 6 1, (5.32) with µ = µ0 and δ + σ 6 µ2
0 yields that

for all t ∈ [0, T ],

(5.51) ‖Du(t)‖2
s 6 Γ(1)(2µ4

0 + 3µ3
0) 6 5 Γ(1)µ3

0 6
1

4
µ2

0.

Since for t = t2 (5.50) contradicts (5.51), we conclude that (5.11) holds. As a

consequence, the local solution cannot blow up; that is, as we have already seen,

Tc = ∞. This concludes the proof of Proposition 5.1. �
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Finally, the proof of (4.10) follows from (5.37) in the same way as (5.38) and (5.39);

the only change is that, in the estimate for |S(t− θ; f(θ) + g(θ))|2, the rate of decay

given by Proposition 3.1 is r = 1
4N , and r > 1 if N > 5. This concludes the proof of

Theorem 4.1. �

6. The stationary equation

In this section we prove Theorem 4.2. For simplicity, we only consider the case q =

1; the case for 1 < q < q̄ follows in a similar way by interpolation, via the inequality

|w|q 6 |w|1 + |w|2. We find v as the fixed point of the map Φ: V s+1 7→ V s+1, which

formally defines u = Φ(w) as the solution of the linear elliptic equation

(6.1) Aw(u) := −∂j(aij(Dw)∂iu) = h− a′ij(Dw) · ∇Dw∂iw
︸ ︷︷ ︸

=:hw

where, with slight abuse of notation, we have set Dw := (0,∇w).

We first show that for each fixed w ∈ V s+1 with sufficiently small norm, we can

solve the equation

(6.2) Aw(u) = g, g ∈ Hs−1 ∩ L1,

for u ∈ V s+1, by means of the Lax-Milgram theorem. Thus, let aw be the bilinear

form on V s+1 × V s+1 associated to Aw, defined by

(6.3) aw(u, v) := 〈aij(Dw)∂iu, ∂jv〉s, u, v ∈ V s+1.

Since g ∈ Hs−1 ∩ L1 and N > 3, by Proposition 2.3 there is G ∈ Hs such that

g = (−∆)1/2G. We claim that (6.2) is equivalent to finding u ∈ V s+1 such that

(6.4) aw(u, v) = 〈G, (−∆)1/2v〉s ∀ v ∈ V s+1.

In fact, assume u ∈ V s+1 solves (6.4). The set (−∆)1/2(Hs+1) is dense in Hs;

therefore, (6.4) implies that

(6.5) 〈aij(Dw)∂iu, ∂j(−∆)−1/2z〉s = 〈G, z〉s

for all z ∈ Hs. Now, Dj := (−∆)−1/2∂j is a bounded linear operator on H
s (indeed,

F(Dju)(ξ) = −i(ξj/|ξ|)û(ξ)), with adjoint −Dj. Hence, (6.5) reads

(6.6) 〈−(−∆)−1/2∂j(aij(Dw)∂iu), z〉s = 〈(−∆)−1/2Aw(u), z〉s = 〈G, z〉s.
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Since z in (6.6) is arbitrary, it follows that

(6.7) (−∆)−1/2Aw(u) = G

in Hs; in turn, this implies that

(6.8) Aw(u) = (−∆)1/2G = g

in Hs−1; that is, (6.4) implies (6.2). Reversing this argument proves the converse.

We solve (6.2) (for fixed small w) by means of the following results, which also

yield a (small) solution to (1.3). For r ∈ R>0 we set

(6.9) ψ(r) := max
06k6s+1

|∂k
r aij(0)| + C3

∗βs+1,aij
(C2r)(1 + (C2r)

s−1)r,

where C∗ is the largest of the constants C1, . . . , C6, and C7, the last one being the

algebraic constant appearing in (6.16) below.

Proposition 6.1. Let Aw and aw be as in (6.1) and (6.3). Then, for all w ∈ V s+1:

1) Aw is a continuous, injective operator from V
s+1 intoHs−1, and for all u ∈ V s+1

we have

(6.10) ‖Aw(u)‖s−1 6 ψ(‖∇w‖s)‖∇u‖s.

2) For all u, v ∈ V s+1 we have

|aw(u, v)| 6 ψ(‖∇w‖s)‖∇u‖s‖∇v‖s,(6.11)

aw(u, u) > (1 − ψ(‖∇w‖s)‖∇w‖s)‖∇u‖
2
s.(6.12)

P r o o f. 1) Let u ∈ V s+1. Then aij(Dw)∂iu ∈ Hs, which is an algebra. Thus,

(6.10) follows by (2.8) of Corollary 2.1, with ϕ = aij and m = s; that is,

(6.13) ‖Aw(u)‖s−1 6 ‖aij(Dw)∂iu‖s 6 ψ(‖∇w‖s)‖∇u‖s.

Next, assume that Aw(u) = 0 for some u ∈ V s+1, and choose a sequence (un)n>0 ⊂

Hs+1 such that ∇un → ∇u in L2. Then

(6.14) 0 = 〈Aw(u), un〉 = 〈aij(Dw)∂iu, ∂ju
n〉 → 〈aij(Dw)∂iu, ∂ju〉;

consequently, by (4.1), ∇u = 0, which implies u = 0 in V s+1. That is, Aw is injective.
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2) (6.11) is proved as in (6.13); when v = u, we compute

aw(u, u) =
∑

|α|6s

〈aij(Dw)∂i∂
αu, ∂i∂

αu〉(6.15)

+
∑

16|α|6s

∑

0<β6α

(
α

β

)

〈∂β [aij(Dw)]∂α−β∂iu, ∂i∂
αu〉.

We denote by S2 the second sum of (6.15); since |β| > 1, we can estimate

S2 6 C7C4‖∇[aij(Dw)]‖s−1‖∇u‖
2
s(6.16)

6 C7C4C6βs−1(C1‖∇w‖s−1)‖∇w‖s‖∇u‖
2
s

6 ψ(‖∇w‖s)‖∇w‖s‖∇u‖
2
s.

Inserting this into (6.15) and recalling (4.1), (6.12) follows. �

Proposition 6.2. Let R0 ∈ ]0, 1[ be so small that ψ(R0)R0 6 1
2 , and assume

w ∈ Bs+1(R0). Then for every g ∈ Hs−1 ∩L1 there is a unique u ∈ V s+1, a solution

of (6.4) (and, therefore, of (6.2)). Moreover, u satisfies the estimate

(6.17) ‖∇u‖s 6 C(‖g‖s−1 + |g|1),

with C independent of w and u.

P r o o f. If w ∈ Bs+1(R0), from (6.12) we obtain that, for all u ∈ V s+1,

(6.18) aw(u, u) >
1

2
‖∇u‖2

s;

that is, aw is coercive on V
s+1. In addition, by (6.11), for all u, v ∈ V s+1 we have

(6.19) |aw(u, v)| 6 ψ(R0)‖∇u‖s‖∇v‖s;

that is, aw is bilinear continuous on V
s+1 × V s+1. Recalling that (−∆)1/2 is an

isometry between V s+1 andHs (see (2.9)), so that the right-side of (6.4) is a bounded

linear functional on V s+1, we can apply the Lax-Milgram theorem and deduce that

(6.4) admits a unique solution u ∈ V s+1. From (6.18), (6.4), and (2.11) with m = s

we deduce that

(6.20)
1

2
‖∇u‖2

s 6 ‖G‖s‖∇u‖s 6 C(‖g‖s−1 + |g|1)‖∇u‖s,

from which (6.17) follows. �
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Proposition 6.3. Let C be as in (6.17), and assume R0 ∈ ]0, 1[ is so small that

(6.21) 12CR0(1 + ψ(2R0)) 6 1.

Assume h satisfies (4.12). Then:

1) For all w ∈ Bs+1(R0), (6.1) has a unique solution u ∈ Bs+1(R0); this defines a

map w 7→ u = Φ(w) from Bs+1(R0) into itself.

2) Φ is a strict contraction on Bs+1(R0) with

(6.22) ‖∇(Φ(w) − Φ(w̃))‖s 6
1

2
‖∇(w − w̃)‖s

for all w, w̃ ∈ V s+1.

P r o o f. 1) We first show that for all w ∈ V s+1 we have hw ∈ Hs−1 ∩ L1 with

(6.23) ‖hw‖s−1 + |hw|1 6 2ψ(‖∇w‖s)‖∇w‖
2
s.

This follows from the fact that, by Corollary 2.1,

(6.24) ‖hw‖s−1 6 ‖a′ij(Dw)∂jDw‖s−1‖∂iw‖s−1 6 ψ(‖∇w‖s)‖∇w‖
2
s

and

(6.25) |hw|1 6 β1(|Dw|∞)|∂2w|2|∇w|2 6 ψ(‖∇w‖s)‖∇w‖
2
s.

Assume now that w ∈ Bs+1(R0). By Proposition 6.2, (6.1) has a unique solution

u ∈ V s+1 which, by (6.17), satisfies the estimate

(6.26) ‖∇u‖s 6 C(‖h− hw‖s−1 + |h− hw|1).

By (4.12), (6.23), and (6.21) it then follows that

(6.27) ‖∇u‖s 6 C(R2
0 +R2

0ψ(R0)) 6 R0,

that is, Φ(w) ∈ Bs+1(R0), as claimed.

2) Given w, w̃ ∈ Bs+1(R0), set u = Φ(w), ũ = Φ(w̃), v = w − w̃, z = u− ũ. Then

z ∈ V s+1, and it satisfies the equation

(6.28) Aw(z) = ∂j((aij(Dw) − aij(Dw̃))∂iũ)
︸ ︷︷ ︸

=:χ

+hw̃ − hw.
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It is now straightforward to see that χ ∈ Hs−1 ∩ L1; in fact, writing

(6.29) aij(Dw) − aij(Dw̃) =

∫ 1

0

a′ij(λDw + (1 − λ)Dw̃) · (Dw −Dw̃) dλ,

we obtain that

(6.30) ‖χ‖s−1 + |χ|1 6 2ψ(2R0)R0‖∇v‖s.

As proved in the first part of Proposition 6.3, hw −hw̃ ∈ Hs−1∩L1; hence, by (6.17)

of Proposition 6.2,

(6.31) ‖∇z‖s 6 C(2R0ψ(R0)‖∇v‖s + ‖hw − hw̃‖s−1 + |hw − hw̃|1).

To estimate hw − hw̃, we decompose

(6.32) hw − hw̃ = U3 + U4 + U5,

where

U3 := (a′ij(Dw) ·D∂jw)∂iv,(6.33)

U4 := (a′ij(Dw) ·D∂jv)∂iw̃,(6.34)

U5 :=

(∫ 1

0

a′′ij(λDw + (1 − λ)Dw̃)(Dv,D∂jw̃) dλ

)

∂iw̃.(6.35)

The terms U3 and U4 can be estimated exactly as the term hw in (6.24) and (6.25),

yielding

(6.36) ‖U3‖s−1 + ‖U4‖s−1 6 2ψ(R0)R0‖∇v‖s;

likewise, the term U5 can be estimated as χ in (6.30) (it is at this point that we need

the additional regularity of the coefficients aij), yielding

(6.37) ‖U5‖s−1 6 2ψ(2R0)R0‖∇v‖s.

In conclusion, we obtain that

(6.38) ‖hw − hw̃‖s−1 + |hw − hw̃|1 6 4R0ψ(R0)‖∇v‖s,

and, putting this into (6.31),

(6.39) ‖∇z‖s 6 6CR0ψ(2R0)‖∇v‖s 6
1

2
‖∇v‖s.

By (6.21), (6.22) follows. �
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As a consequence of Proposition 6.3, Φ admits a unique fixed point u ∈ Bs+1(R0),

which is clearly the desired solution to the nonlinear elliptic equation (1.3). We now

proceed to show that this solution depends continuously on h. Let u, ũ ∈ Bs+1(R0)

be the solutions to (1.3) corresponding, respectively, to source terms h, h̃ ∈ Hs−1∩L1.

Then, as in (6.28), the difference z = u− ũ satisfies the equation

(6.40) Aw(z) = ∂j((aij(Du) − aij(Dũ))∂iũ)
︸ ︷︷ ︸

=:U6

+h̃− h.

The term U6 can again be estimated as χ in (6.30), with

(6.41) ‖U6‖s−1 + |U6|1 6 2R0ψ(2R0)‖∇z‖s;

thus,

(6.42) ‖∇z‖s 6 2CR0ψ(2R0)‖∇z‖s + C(‖h− h̃‖s−1 + |h− h̃|1).

By (6.21), 2CR0ψ(2R0) 6 1
6 , so that we deduce from (6.42)

(6.43) ‖∇u−∇ũ‖s 6 C(‖h− h̃‖s−1 + |h− h̃|1),

which shows the asserted continuous dependence of u on h. This ends the proof of

Theorem 4.2. �

7. Convergence as t→ ∞

In this section we prove Theorem 4.3; again, we only consider the case q = 1 and,

with abuse of notation, we write Dv := (0,∇v). We denote by γj , j ∈ N, a generic

positive constant, depending on µ0 and R0 in a continuous and non-decreasing way.

The difference z(t) := u(t) − v satisfies the equation

(7.1) ztt + 2zt − bij∂i∂jz = f − h+ g,

where, as before, bij = aij(Du), and

(7.2) g := (aij(Du) − aij(Dv))∂i∂jv = (Aij ·Dz)∂i∂jv

with

(7.3) Aij :=

∫ 1

0

a′ij(λDu + (1 − λ)(Dv)) dλ;
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note that g ∈ L∞(0,∞;Hs∩L1), since h ∈ V s+2 (the L1 part of this assertion follows

by noting that aij(Du) − aij(Dv) = (aij(Du) − aij(0)) + (aij(0) − aij(Dv)) ∈ L2).

We proceed to establish energy estimates on ∇z, similar to those on u established

in the proof of Theorem 4.1. We multiply (7.1) in V s by 2(zt + z) (this procedure is

formal, but can be justified by regularization, as in the proof of (5.14)). In doing so,

we realize that the term B := −2〈∇(bij∂i∂jz),∇(zt + z)〉s−1 can be written as

(7.4) B =
d

dt
Q̃+ 2Q̃+ R̃3,

where

(7.5) Q̃ :=
∑

|β|6s−1

N∑

k=1

〈bij∂i∂
β
x∂kz, ∂j∂

β
x∂kz〉,

and R̃3 is the sum of terms containing only derivatives of z, but not z itself. The

terms with derivatives of z of order higher than 1 can be easily estimated, as we

have done for Rε
3 (cf. (5.22)), in terms of (µ0 + R0)‖∇Dz(t)‖s−1; the terms with

first order derivatives of z have the form

(7.6) R̃3,1 = 〈a′ij(Du) ·D∂ku∂j∂lz, ∂rz〉,

and these can be estimated by

R̃3,1 6 |a′ij(Du)|∞|∇Du|N |∂2z|2|∇z|p̄(7.7)

6 γ0‖Du‖s−1‖∂
2z‖2

6 γ0µ0‖∇Dz‖
2.

Thus, defining

(7.8) G := ‖∇zt‖
2
s−1 + 2〈∇z,∇zt〉s−1 + 2‖∇z‖2

s−1 + Q̃,

we obtain an estimate of the form

d

dt
G(t) + 2‖∇Dz(t)‖2

s−1(7.9)

6 γ1(µ0 +R0)‖∇Dz‖
2
s−1 + 2〈∇(f − h+ g),∇(zt + z)〉s−1.

We can choose µ0 and R0 so small as to absorb the first term on the right side of (7.9)

into the positive term ‖∇Dz(t)‖2
s−1 on its left, thus leading to an inequality of the

form

(7.10) G′(t) +
3

2
‖∇Dz(t)‖2

s−1 6 2〈∇(f − h+ g),∇(zt + z)〉s−1.
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Clearly,

(7.11) 〈∇(f − h+ g),∇zt〉s−1 6 ‖f − h+ g‖s‖∇zt‖s−1,

and, integrating by parts,

(7.12) 〈∇(f − h+ g),∇z〉s−1 6 ‖f − h+ g‖s−1‖∆z‖s−1;

thus, we deduce from (7.10) that

(7.13) G′(t) +
3

2
‖∇Dz(t)‖2

s−1 6 C‖f − h+ g‖s‖∇Dz(t)‖s−1.

By (2.6),

(7.14) ‖g‖s 6 C‖Aij∂i∂jv‖s‖∇Dz‖s−1 6 γ2R0‖∇Dz‖s−1;

inserting this into (7.13), by the smallness of R0 we obtain

(7.15) G′(t) + ‖∇Dz(t)‖2
s−1 6 C‖f − h‖s‖∇Dz‖s−1.

Now, for all t > 0,

(7.16) ‖∇Dz(t)‖s−1 6 ‖Dz(t)‖s 6 ‖Du(t)‖s + ‖∇v‖s 6 µ0 +R0 6 2,

so that, by virtue of (7.15),

(7.17) G′(t) + ‖∇Dz(t)‖2
s 6 2C‖f − h‖s.

Integrating this and recalling that, by Schwarz’ inequality, G(t) > 0 for all t > 0, we

deduce that

(7.18)

∫ t

0

‖∇Dz(θ)‖2
s−1 dθ 6 G(0) + 2CΛ0.

Thus, the function t 7→
∫ t

0
‖∇Dz(θ)‖2

s−1 dθ is bounded. Finally, applying the stan-

dard energy estimate for (7.1) (i.e., multiplying the gradient of (7.1) only by 2∇zt

in Hs−1) and using the bounds so far obtained, we can deduce that the function

t 7→ (d/dt)‖∇Dz(t)‖2
s−1 is also bounded from above. In conclusion, the positive

function t 7→ ‖∇Dz(t)‖2
s−1 is absolutely continuous on [0,∞[, has a bounded inte-

gral and a derivative bounded above. These conditions imply that ‖∇Dz(t)‖2
s−1 → 0

as t→ ∞.
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To prove (4.14), we still need to show that also

(7.19) ‖∇z(t)‖ + ‖zt(t)‖ → 0.

To this end, we rewrite (7.1) as in (5.33) in the form

(7.20) ztt + 2zt − cij∂i∂jz = f − h+ g + g̃,

where cij = aij(0) and

(7.21) g̃(·) := (aij(Du) − aij(0))∂i∂jz.

From the first part of this proof we know that for every ε > 0 there is T1 > 0 such

that for all t > T1,

(7.22) ‖∇Dz(t)‖s−1 6 ε.

Assumption (4.13) on the data f and h also implies that there is T2 > 0 such that

for all t > T2,

(7.23)

∫ ∞

t

(‖f(θ) − h‖ + |f(θ) − h|1
︸ ︷︷ ︸

=ζ(θ)

) dθ 6 ε.

Fix ε ∈ ]0, 1[ and let Tε := max{T1, T2}, ϕε := z(Tε), ψε := zt(Tε); also, set

Φ := f − h + g̃. Then, for all t > Tε, by the variation of parameters formula we

obtain as in (5.37)

∇z(t) = S(t− Tε;∇(2ϕε + ψε)) + ∂tS(t− Tε;∇ϕε)(7.24)

+

∫ t

Tε

∇S(t− θ; Φ(θ)) dθ +

∫ t

Tε

∇S(t− θ; g(θ)) dθ.

As in (3.15), the fact that ∇(ϕε + ψε) ∈ L2 implies that

(7.25) ‖S(t− Tε;∇(2ϕε + ψε))‖ → 0 as t→ ∞;

by Matsumura’s estimate (3.2) with q = 2, m = 0 and ν = k = 1,

(7.26) ‖∂tS(t− Tε;∇ϕε)‖ 6 C(1 + t− Tε)
−1‖∇ϕε‖.
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We estimate the third term of (7.24) again by (3.2), now with q = 1, k = 0 and

m = 1; then ν1 := 1
4N + 1

2 > 5
4 > 1 and

W1(t) :=

∫ t

Tε

‖∇S(t− θ; Φ(θ))‖ dθ(7.27)

6 C

∫ t

Tε

(1 + t− θ)−ν1(|Φ(θ)|2 + |Φ(θ)|1) dθ.

Recalling (7.21), we conclude that

|Φ(θ)|2 6 ‖f(θ) − h‖ + |aij(Du) − aij(0)|∞|∂i∂jz|2(7.28)

6 ‖f(θ) − h‖ + γ3‖∇Dz‖.

Likewise, by (2.7),

|Φ(θ)|1 6 |f(θ) − h|1 + |aij(Du) − aij(0)|2|∂i∂jz|2(7.29)

6 |f(θ) − h|1 + γ4‖∇Dz‖.

Inserting (7.28) and (7.29) into (7.27) and recalling (7.23) and (7.22), we obtain that

for all t > Tε,

W1(t) 6 C

∫ t

Tε

(1 + t− θ)−ν1(ζ(θ) + ‖∇Dz(θ)‖1) dθ(7.30)

6 C

∫ ∞

Tε

ζ(θ) dθ + Cγ5ε

∫ t

0

(1 + τ)−ν1 dτ.

To estimate the last term of (7.24), we need to proceed in a slightly different manner

because, even if, as we know, g(θ) ∈ L1, we do not know how to estimate |g(θ)|1

in terms of ‖∇Dz(θ)‖s−1. Thus, we first define positive numbers λ, µ by λ
−1 =

1 − 1
4N

−1, µ−1 = 1
2 − 1

4N
−1; it is immediate to verify that λ ∈ ]1, q̄[ and µ ∈ ]2, p̄[.

We apply (3.2) again, with q = λ, k = 0 and m = 1, noting that, since λ < q̄, it still

follows that νλ := 1
4N(2λ−1 − 1) + 1

2 > 1. Then

W2(t) :=

∫ t

Tε

‖∇S(t− θ; g(θ))‖ dθ(7.31)

6 C

∫ t

Tε

(1 + t− θ)−νλ(|g(θ)|2 + |g(θ)|λ) dθ.

Since λ−1 = µ−1 + 1
2 , using interpolation we estimate

(7.32) |g|λ 6 C|Aij |∞|Dz|µ|∂i∂jv|2 6 γ6|Dz|µ 6 Cγ6|Dz|
3/4
2 |Dz|

1/4
p̄ .
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Arguing as in (7.16) and recalling (7.14), we conclude from (7.32) and (7.22) that

(7.33) |g|2 + |g|λ 6 γ2R0‖∇Dz‖s−1 + γ7|∇Dz|
1/4
2 6 γ8ε

1/4;

and, therefore, from (7.31) we obtain

(7.34) W2(t) 6 γ8ε
1/4

∫ t

0

(1 + τ)−νλ dτ 6 Cε1/4.

Together with (7.25), (7.26), and (7.30), (7.34) allows us to assert, via (7.24), that

‖∇z(t)‖ → 0 as t → ∞. The proof that ‖zt(t)‖ → 0 as t → ∞ is similar; we can

therefore conclude the proof of Theorem 4.3. �

R em a r k. To prove (4.14), it would be natural to multiply (7.1) inHs by 2(zt+z)

as in the proof of Theorem 4.1; however, we cannot do so because, in contrast to

that situation, we do not know that u(t) − v ∈ L2, because we do not know that

v ∈ L2. Note also that Theorem 4.1 guarantees that u(t) ∈ L2, boundedly in t, only

when N > 5, and, as we have noted already in the linear case (Theorem 3.3), the

map t 7→ u(t) may fail to be bounded in L2 if N = 3 or N = 4.
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