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Abstract. The classical Serre-Swan’s theorem defines an equivalence between the category
of vector bundles and the category of finitely generated projective modules over the algebra
of continuous functions on some compact Hausdorff topological space. We extend these
results to obtain a correspondence between the category of representations of an étale Lie
groupoid and the category of modules over its Hopf algebroid that are of finite type and of
constant rank. Both of these constructions are functorially defined on the Morita category
of étale Lie groupoids and we show that the given correspondence represents a natural
equivalence between them.
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1. Introduction

There are many phenomena in different areas of mathematics and physics that
are most naturally described in the language of smooth manifolds and smooth maps
between them. However, some natural constructions, coming from the theory of
foliations or from Lie group actions, result in slightly more singular spaces and require
a different approach. The Morita category of Lie groupoids and principal bundles [7],
[12], [14], [21], [22], [25], [26], [27], [30] provides a natural framework in which to study
many such singular spaces like spaces of leaves of foliations [7], [9], [10], [13], [24], [39],
spaces of orbits of Lie group actions or for example orbifolds [1], [7], [23], [24] and
[34]. A Lie groupoid can be viewed as an atlas for the given singular space. It turns
out that different Lie groupoids represent the same geometric space precisely when
they are Morita equivalent, i.e. when they are isomorphic in the Morita category. For
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this reason we are primarily interested in those algebraic invariants of Lie groupoids
which are functorially defined on the Morita category of Lie groupoids.
The theory of representations of Lie groupoids naturally extends the notions of

tangent bundles, bundles of higher order tensors and line bundles to the category of
étale Lie groupoids [1], [24]. It entails well known constructions such as equivariant
vector bundles [3], [35], orbibundles over orbifolds [1], foliated and transversal vector
bundles over spaces of leaves of foliations [9], [10], [17], [24], as well as vector bundles
over manifolds or representations of discrete groups. The construction of the category
of representations of a Lie groupoid is invariant under the Morita equivalence and
thus represents one of the basic algebraic invariants of Lie groupoids.
The Hopf algebroid of smooth functions with compact support [6], [7], [28], [29],

[32] on an étale Lie groupoid is another example of such an invariant. Smooth func-
tions with compact support on a smooth manifold, group Hopf algebras of discrete
groups, matrix algebras and noncommutative tori are all examples of Hopf algebroids
of functions. It turns out that the Hopf algebroid of smooth functions with com-
pact support on an étale Lie groupoid completely determines the groupoid up to
an isomorphism [29]. Moreover, the Morita category of étale Lie groupoids admits
a precise algebraic description as the Morita category of locally grouplike Hopf alge-
broids and locally grouplike principal bimodules [16]. We are therefore interested in
characterizing those modules over Hopf algebroids of functions which correspond to
representations of étale Lie groupoids in the spirit of Serre and Swan [36], [37].
The paper is organized as follows. In Section 3 we first recall the definition of

a natural action of the Hopf algebroid C∞
c (G) of an étale Lie groupoid G on the

space of sections Γ∞
c (E) of any representation E of G. We then define the notion of

a module of finite type and of constant rank, which characterizes modules of sections,
and show that such modules form an additive monoidal category for any étale Lie
groupoid in a functorial fashion and therefore represent a Morita invariant.
In Section 4 (Theorem 4.1) we naturally extend the Serre-Swan’s correspondence

to the category of étale Lie groupoids. The functor of smooth sections with compact
support defines an equivalence between the category of representations of an étale
Lie groupoid G and the category of modules over the Hopf algebroid C∞

c (G) which
are of finite type and of constant rank. These modules generalize finitely generated
projective modules over algebras of functions and coincide with them if G is the unit
groupoid of a compact connected manifold.
Categories of representations and of modules of finite type and of constant rank

are both additive monoidal categories, and by passing to the sets of isomorphism
classes they can be viewed as contravariant functors Rep and Mod from the Morita
category of étale Lie groupoids to the category of semirings. Our main result in
this paper (Theorem 5.1) shows that in the framework of étale Lie groupoids the
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Serre-Swan’s correspondence can be understood as a natural equivalence between
these two functors with respect to generalized maps between Lie groupoids.

An alternative approach has been recently studied in [2], where representations
up to homotopy of Lie groupoids are characterized in terms of modules over the
differential graded algebra of smooth cochains on a groupoid.

2. Basic definitions and examples

2.1. The Morita category of Lie groupoids. For the convenience of the
reader, and to fix the notation, we begin by summarizing some basic definitions
concerning Lie groupoids that will be used throughout this paper. We refer the
reader to one of the books [18], [24], [25] for a more detailed exposition and further
examples.

A Lie groupoid over a smooth, second countable, Hausdorff manifold M is given
by a smooth manifold of arrows G1 = G and a structure of a category on G1 with
objects G0 = M , in which all the arrows are invertible and all the structure maps

G1 ×
s,t
G0
G1

mlt
// G1

inv
// G1

s
//

t
// G0

uni
// G1

are smooth. We allow the manifold G1 to be non-Hausdorff, but we assume that
the source map s is a submersion with Hausdorff fibers. If the space of arrows G1

is Hausdorff, we call G a Hausdorff groupoid. For any x, y ∈ G0 we denote by
G(x, y) = s−1(x) ∩ t−1(y) the manifold of arrows from x to y.

A Lie groupoid is étale if all of its structure maps are local diffeomorphisms. A
bisection of an étale Lie groupoid G is an open subset V of G such that both s|V
and t|V are injective. Bisections of the groupoid G form a basis for the topology on
G, so in particular they can be chosen arbitrarily small.

Generalized morphisms between Lie groupoids [7], [13], [14], [21], [25], [26], [27],
[30] turn out to be the right notion of a map between Lie groupoids. They are closely
connected to groupoid actions and principal bundles, which we briefly describe.

A smooth left action of a Lie groupoid G on a smooth manifold P along a smooth
map π : P → G0 is a smooth map µ : G ×s,πG0

P → P , (g, p) 7→ g · p, which satisfies
π(g · p) = t(g), 1π(p) · p = p and g′ · (g · p) = (g′g) · p for all g′, g ∈ G and p ∈ P with
s(g′) = t(g) and s(g) = π(p). Right actions of Lie groupoids on smooth manifolds
are defined in a similar way.

A principal H-bundle over G is a manifold P , equipped with a left action µ of G
along a smooth surjective submersion π : P → G0, and a right action η of H along
a smooth map ϕ : P → H0, such that (i) ϕ is G-invariant, π is H-invariant and both
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actions commute: ϕ(g ·p) = ϕ(p), π(p ·h) = π(p) and g ·(p ·h) = (g ·p)·h for all g ∈ G,
p ∈ P and h ∈ H with s(g) = π(p) and ϕ(p) = t(h), (ii) π : P → G0 is a principal
right H-bundle: the map (pr1, η) : P ×ϕ,tH0

H → P ×π,πG0
P is a diffeomorphism.

Any smooth functor ψ : G → H defines a principal H-bundle 〈ψ〉 = G0 ×ψ,tH0
H

over G with the actions given by the maps g · (x, h) = (t(g), ψ(g)h) for g ∈ G(x, y)

and (x, h) · h′ = (x, hh′) for h, h′ ∈ H such that s(h) = t(h′).
Principal H-bundles P and P ′ over G are isomorphic if there exists an equivariant

diffeomorphism between them. A principal bundle P is isomorphic to one induced
by a functor if and only if it is trivial [25], [26], [27].
If P is a principal H-bundle over G and if P ′ is a principal K-bundle over H for

another Lie groupoid K, one defines the composition P ⊗H P ′ [25], [26], [27], which
is a principal K-bundle over G. It is the quotient of P ×H0

P ′ with respect to the
diagonal action of the groupoid H . So defined composition is associative up to a
natural isomorphism, while Lie groupoids, viewed as principal bundles, act as units.
TheMorita category GPD of Lie groupoids consists of Lie groupoids as objects and

isomorphism classes of principal bundles as morphisms between them [25], [26]. The
morphisms in GPD are sometimes referred to as Hilsum-Skandalis maps or generalized
morphisms between Lie groupoids. Lie groupoids G and H are Morita equivalent if
they are isomorphic in the category GPD. TheMorita category of étale Lie groupoids
EtGPD is the full subcategory of the category GPD with étale Lie groupoids as objects.

2.2. Representations of Lie groupoids. Let G be a Lie groupoid and let E be
a smooth complex vector bundle over G0. A representation of the groupoid G on E
is a smooth left action ̺ : G×G0

E → E, denoted by ̺(g, v) = g · v, of G on E along
the bundle projection p : E → G0, such that for any arrow g ∈ G(x, y) the induced
map g∗ : Ex → Ey, v 7→ g · v, is a linear isomorphism [2], [4], [18], [24], [38]. We
will restrict ourselves to smooth complex representations of constant rank, although
similar formulas apply in other settings as well.
A morphism between representations E and E′ of G is a G-equivariant morphism

ϕ : E → E′ of vector bundles over G0. For any two representations E and E′ of
a Lie groupoid G one naturally defines their direct sum E ⊕ E′ and tensor product
E ⊗ E′. These operations are associative up to natural isomorphisms, with the
trivial representation C of the groupoid G acting as a unit for the tensor product.
Representations of a Lie groupoid G, together with morphisms between them, form
an additive monoidal category which will be denoted by Rep(G) [20], [38]. The direct
sum and tensor product operations turn the set Rep(G) of isomorphism classes of
representations of a Lie groupoid G into a semiring [3].

Example 2.1. (1) Let M be a smooth Hausdorff manifold and let Γ be a finite
group. The trivial bundle of finite groups G = M× Γ has a natural structure of a Lie
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groupoid over M . For any vector bundle E over M and any representation V of Γ
one obtains the tensor product representation E ⊗ V of G, where G acts naturally
on V = M × V and trivially on E. It turns out that every representation of G can
be decomposed as a direct sum of such representations [35].
(2) With any left action of a Lie group K on a manifold M one associates the

translation groupoid K ⋉M [7], [24], [31] over M . Its space of arrows is equal to
K ×M while the structure maps are induced from the action of the group K on M .
Representations of the groupoid K ⋉M then correspond to K-equivariant vector
bundles over M [3], [35].

Generalized maps between groupoids can be used to pull back representations in
the same sense as vector bundles can be pulled back along smooth maps. Let G and
H be Lie groupoids and let P be a principalH-bundle overG. For any representation
E ofH one defines the pullback representation P ∗E = P⊗HE ofG as follows (see [15]
for details). The pullback bundle P ×H0

E has a natural structure of a vector bundle
over P with projection onto the first factor as the projection map. The groupoid H
acts diagonally from the right on P ×H0

E, along the fibers of the projection onto
G0, and it is easy to see that the natural map P ⊗H E = P ×H0

E/H → G0 is well
defined, smooth and makes P ⊗H E a vector bundle over G0. Finally, the action of
the groupoid G on the space P induces a representation of the groupoid G on the
bundle P ⊗H E by acting on the first factor.
One can use an alternative description in the case of trivial bundles, i.e. when

the principal bundle comes from a smooth functor. Suppose that ψ : G → H is
a smooth functor between Lie groupoids and let E be a representation of H . One
defines a representation ψ∗E of G on the vector bundle ψ∗

0E over G0 with the action
g · (x, v) = (t(g), ψ(g)v) for g ∈ G(x, y) and v ∈ Eψ0(x). So defined representation
is naturally isomorphic to the representation 〈ψ〉 ⊗H E of G via the isomorphism
〈ψ〉 ⊗H E → ψ∗E which sends an element (x, h) ⊗ v to the element (x, h · v).
The construction of pulling back representations along a principal bundle P ex-

tends to a covariant functor Rep(P ) : Rep(H) → Rep(G) between the categories of
representations. Isomorphic principal bundles induce naturally equivalent functors,
so one obtains a well defined map Rep(P ) : Rep(H) → Rep(G), which depends only
on the isomorphism class of P . By noting that the pullback representation is locally
just a pullback along a smooth map, it follows that P ∗(E ⊕E′) ∼= P ∗E ⊕ P ∗E′ and
P ∗(E ⊗E′) ∼= P ∗E ⊗ P ∗E′, which shows that the map Rep(P ) is a homomorphism
of semirings. We thus obtain a contravariant functor

Rep: GPD→ Rng

from the Morita category of Lie groupoids to the category of semirings.
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2.3. Hopf algebroids and principal bimodules. For any Hausdorff étale Lie
groupoid G one can naturally define a convolution product on the space C∞

c (G) of
smooth functions with compact support on the space of arrows of G by the formula
(a ∗ a′)(h) =

∑

a(g)a′(g′) for any a, a′ ∈ C∞
c (G), where the sum is over all pairs

g, g′ ∈ G with h = gg′. The vector space C∞
c (G) with this multiplication is an

associative algebra called the convolution algebra of the étale Lie groupoid G [6], [7].
It is in general noncommutative but contains the algebra C∞

c (G0) of functions on the
space of objects of G with pointwise multiplication as a commutative subalgebra.

In the case of a general étale Lie groupoid a suitable notion of a smooth function
with compact support on a non-Hausdorff manifold is needed [8]. Considering that
smooth functions on a Hausdorff manifold M correspond precisely to the contin-
uous sections of the sheaf of germs of smooth complex valued functions on M , it
makes sense to use this alternative approach to define smooth functions with com-
pact support on an arbitrary manifold P . One first considers the vector space of all
(not-necessarily continuous) sections of the sheaf of germs of smooth functions on
P . The trivial extension of any smooth function with compact support in a Haus-
dorff open subset of P naturally represents a section of that sheaf. The vector space
C∞
c (P ) of smooth functions with compact support on P is then defined to be the
subspace of the space of all sections, generated by such sections. This definition of
the vector space C∞

c (P ) agrees with the classical one if P is Hausdorff. The support,
i.e. the set where the values of the section are nontrivial, of any function in C∞

c (P )

is always a compact subset of P , but not necessarily closed if P is a non-Hausdorff
manifold. If G is a (non-Hausdorff) étale Lie groupoid, then C∞

c (G) is generated
as a vector space by functions with supports in bisections of G. Any a ∈ C∞

c (G)

with support in a bisection V can be written in the form a = a0 ◦ t|V for a unique
a0 ∈ C∞

c (t(V )). If b ∈ C∞
c (G) is another function, with support in a bisection W of

G, one defines a ∗ b = (a0 ◦ t|V )(b0 ◦ t|W ) =
(

a0 ·
(

b0 ◦ s|V ◦ (t|V )−1
))

◦ t|V ·W , where
V ·W = {gh | g ∈ V, h ∈ W, s(g) = t(h)} is the product bisection of bisections V
and W , to obtain the convolution algebra C∞

c (G) for any non-Hausdorff étale Lie
groupoid G [29]. This definition of the convolution algebra coincides with the orig-
inal definition due to Connes [6], [7] in the case of a Hausdorff étale Lie groupoid.
In general, however, the space C∞

c (G) as defined above contains more functions than
the Connes’s one.

Example 2.2. (1) The convolution algebra C∞
c (M × Γ) of a trivial bundle of

finite groups is naturally isomorphic to the algebra C∞
c (M) ⊗C C[Γ], where C[Γ] is

the group algebra of the group Γ.

(2) Noncommutative tori or irrational rotation algebras are perhaps the most
known examples of noncommutative spaces [5], [7], [33]. Let the group Z act on
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S1 by k · eiϕ = e2πkθi · eiϕ for k ∈ Z, eiϕ ∈ S1 and some fixed irrational number
θ ∈ (0, 1). We will denote by Gθ = Z ⋉ S1 the associated translation groupoid.
Any function a0 ∈ C∞

c (S1) can be expanded into its Fourier series a0 =
∑

k∈Z

cke
ikϕ

where the sequence {ck}k∈Z is rapidly decaying since a0 is smooth. First denote by
U = const1 · 1 the function which is equal to 1 on the bisection corresponding to the
generator 1 ∈ Z and is zero elsewhere. It then follows that Uk = const1 · k for all
k ∈ Z. Furthermore, let V = eiϕ · 0 be the generator of the algebra C∞

c (S1) in the
sense of the Fourier expansion as above. An arbitrary function a ∈ C∞

c (Gθ) can now
be written as a =

∑

k,l

cklU
k ∗ V l, where ckl are nonzero for only finitely many k ∈ Z

and such that the sequence {ckl}l∈Z decays rapidly for each k ∈ Z. One checks the
equalities U ∗ V = eiϕ · 1 and V ∗ U = e2πθieiϕ · 1 and thus V ∗ U = e2πθiU ∗ V .
The convolution algebra C∞

c (Gθ) is therefore generated by two elements U and V
that satisfy the above relation. The case θ = 0 resembles the usual commutative
algebra of functions on a torus which motivates us to call the algebra C∞

c (Gθ), or
a C∗-algebra completion of it, a noncommutative torus.

The convolution algebra C∞
c (G) of an étale Lie groupoid G admits an additional

structure of a coalgebra over the commutative subalgebra C∞
c (G0), which turns the

space C∞
c (G) into a Hopf algebroid over C∞

c (G0) [28], [29]. The construction of the
Hopf algebroid of an étale Lie groupoid naturally extends to a functor from the Morita
category of étale Lie groupoids to the Morita category of Hopf algebroids [27], [28].
More precisely, if G and H are étale Lie groupoids and if P is a principal H-bundle
over G, then the space C∞

c (P ) of smooth functions with compact support on P has
a natural structure of a C∞

c (G)-C∞
c (H)-bimodule and a structure of a coalgebra over

C∞
c (G0) which is compatible with both actions. Composition of principal bundles is
reflected as the tensor product of the corresponding bimodules. This functor induces
an equivalence C∞

c : EtGPD→ LgHoALGD between the Morita category of étale Lie
groupoids and the Morita category of locally grouplike Hopf algebroids [16]. A locally
grouplike Hopf algebroid is given by a pair (A,M), whereM is a smooth manifold and
A is a Hopf algebroid over C∞

c (M) such that for every x ∈M the localized coalgebra
Ax (over the algebra C∞

c (M)x of germs of smooth functions at x) is freely generated
by the subset of grouplike elements of Ax which consists of arrows of A at x [29]. Mor-
phisms between locally grouplike Hopf algebroids (A,M) and (B,N) are isomorphism
classes of locally grouplike principal A-B-bimodules. An A-B-bimoduleM is princi-
pal if it is equipped with a compatible C∞

c (M)-coalgebra structure (ε,∆) such that
ε : M → C∞

c (M) is surjective and such that the induced map ∆: M⊗C∞

c (N) B →

M⊗C∞

c (M)M is an isomorphism. A principal A-B-bimoduleM is locally grouplike if
for every x ∈M the localized coalgebraMx is freely generated by grouplike elements.
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A module over a Hopf algebroid of functions on an étale Lie groupoid will mean
for us in the sequel just a module over the convolution algebra. Although coalgebra
structures are used to define tensor products of modules over such Hopf algebroids,
we can describe all constructions in terms of convolution algebras. However, due to
the above correspondence we prefer to think of modules coming from representations
of Lie groupoids as modules over Hopf algebroids rather than convolution algebras.

We will restrict ourselves to Hausdorff groupoids and manifolds for simplicity,
although essentially the same formulas apply in the non-Hausdorff case as well.

3. Modules over Hopf algebroids

For any vector bundle E over a manifold M the vector space Γ∞
c (E) of smooth

sections of E with compact support admits a natural structure of a left module over
the algebra C∞

c (M). We recall in this section how to extend that structure to a left
action of the Hopf algebroid C∞

c (G) of an étale Lie groupoid G on the vector space
Γ∞
c (E) of sections of an arbitrary representation E of the groupoid G. We describe
modules of sections by being of finite type and of constant rank and show that such
modules form an additive monoidal category for any étale Lie groupoid.

We will assume all our vector bundles to be of globally constant rank. This
is automatically satisfied if for example the manifold of objects of the groupoid
is connected. Similar constructions hold however in the case of vector bundles of
globally bounded rank as well.

3.1. Module of sections of a representation. We first recall the construction
of a left action of the Hopf algebroid C∞

c (G) of an étale Lie groupoid G on the vector
space Γ∞

c (E) of sections of a representation E of G. Define a bilinear map

C∞
c (G) × Γ∞

c (E) → Γ∞
c (E)

by the formula

(au)(x) =
∑

t(g)=x

a(g)(g · u(s(g)))

for a ∈ C∞
c (G) and u ∈ Γ∞

c (E). Since the function a ∈ C∞
c (G) has a compact

support, there are only finitely many g ∈ t−1(x) with a(g) 6= 0 for each x ∈ G0,
hence au is a well defined section of the vector bundle E. By decomposing a function
a ∈ C∞

c (G) as a sum a =
∑

aj of functions each of which has support contained in
some bisection, it follows that au ∈ Γ∞

c (E) and we have the following result.
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Proposition 3.1. The space of sections Γ∞
c (E) has a natural structure of a left

module over the Hopf algebroid C∞
c (G), given by the above formula.

Example 3.1. (1) Let M × Γ be a trivial bundle of finite groups with fiber
Γ over a manifold M and let E ⊗ V be its representation as in Example 2.1 (1).
The action of the Hopf algebroid C∞

c (M × Γ) ∼= C∞
c (M) ⊗C C[Γ] on the module

Γ∞
c (E ⊗ V) ∼= Γ∞

c (E) ⊗C∞

c (M) Γ∞
c (V) is then the natural tensor product action. In

particular, ifM is a point, this action corresponds to the action of the group algebra
C[Γ] on the vector space V , extending the representation of Γ to V . On the other
hand, if Γ is trivial, we recover the usual action of C∞

c (M) on Γ∞
c (E).

(2) Now letGθ = Z⋉S1 be the translation groupoid from Example 2.2 (2). Unitary
irreducible representations of the group Z are all one dimensional and classified by
the group S1. Explicitly, for any eiα ∈ S1 let us denote by Vα the vector space C
with the action of Z given by m ·z = eimαz for m ∈ Z and z ∈ C. This representation
induces a representation Vα = S1 × Vα [35] of the groupoid Gθ such that the vector
space Γ∞

c (Vα) of sections of Vα is naturally isomorphic to the space C∞
c (S1). With

this identification in mind we can expand an arbitrary section u ∈ Γ∞
c (Vα) as u =

∑

k∈Z

ukek where uk ∈ C and ek = eikϕ. Recall now from Example 2.2 (3) that C∞
c (Gθ)

is generated by the elements U = const1 · 1 and V = eiϕ · 0. The action of the Hopf
algebroid C∞

c (Gθ) on the space Γ∞
c (Vα) can be now explicitly described by the

formulas
Uek = ei(α−2πθk)ek,

V ek = ek+1

for any k ∈ Z.

By the above procedure one obtains a left module of sections Γ∞
c (E) over the

Hopf algebroid C∞
c (G) for an arbitrary representation E of the groupoid G. Any

morphism ϕ : E → F of representations of G is in particular a morphism of vector
bundles over G0 and it induces a homomorphism Γ∞

c (ϕ) : Γ∞
c (E) → Γ∞

c (F ) of left
C∞
c (G0)-modules, given by composition with ϕ, i.e. Γ∞

c (ϕ)(u) = ϕ ◦ u for any u ∈

Γ∞
c (E). Considering that the map ϕ is fiberwise linear and G-equivariant, we have
the equality Γ∞

c (ϕ)(au) = aΓ∞
c (ϕ)(u) for any a ∈ C∞

c (G) and u ∈ Γ∞
c (E). It follows

that Γ∞
c (ϕ) is a homomorphism of C∞

c (G)-modules, so one can define a covariant
functor

Γ∞
c = (Γ∞

c )G : Rep(G) → GMod

from the category of representations of the groupoidG to the category of left modules
over the Hopf algebroid C∞

c (G) of the groupoid G.

3.2. Modules of finite type and of constant rank. According to the previous
subsection one can associate a left C∞

c (G)-module Γ∞
c (E) with every representation
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E of G. However, not every C∞
c (G)-module is of this kind and it is not too hard to

find counter-examples. In this subsection we define and explain the properties that
characterize modules of sections of representations of étale Lie groupoids.

LetM be a Hausdorff manifold and let C∞
c (M) be the algebra of smooth functions

with compact support onM . There is a bijective correspondence between the points
of the manifold M and nontrivial homomorphisms η : C∞

c (M) → C of C-algebras.
With any x ∈ M one associates the evaluation evx : C∞

c (M) → C at the point x
given by evx(f) = f(x) for f ∈ C∞

c (M). Suppose now η : C∞
c (M) → C is a nontrivial

homomorphism of C-algebras. Its kernel is a maximal ideal of C∞
c (M) of the form

ker(η) = IxC
∞
c (M) = {f ∈ C∞

c (M) | f(x) = 0} for a unique point x ∈ M (we will
use the notation IxC∞

c (M) for the maximal ideal of functions that vanish at x and
C∞
c (M)(x) = C∞

c (M)/IxC
∞
c (M) for the quotient algebra). Both the induced maps

η, evx : C∞
c (M)(x) → C are isomorphisms of C-algebras. Since identity is the only

automorphism of the C-algebra C, it follows η = evx and hence η = evx. Note
also that evx induces a canonical isomorphism between C∞

c (M)(x) and C. Now
choose a left C∞

c (M)-module M. The C∞
c (M)-module IxM = IxC

∞
c (M) · M is then

a submodule of M and we denote by

M(x) = M/IxM

the quotient C∞
c (M)(x)-module and consider it as a complex vector space.

Now let G be an étale Lie groupoid and letM be a left C∞
c (G)-module. It follows

thatM is a left module over the algebra C∞
c (G0) as well since C∞

c (G0) is a subalgebra
of C∞

c (G). The C∞
c (G)-module M is of finite type if it is isomorphic, as a C∞

c (G0)-
module, to some submodule of the module C∞

c (G0)
k for some natural number k. The

C∞
c (G0)-modules of the form C∞

c (G0)
k correspond precisely to the modules of sections

of trivial vector bundles G0×C
k, so one can roughly think of modules of finite type as

corresponding to subfamilies of trivial vector bundles. Suppose now that the C∞
c (G)-

moduleM is of finite type and choose an injective homomorphism Φ: M → C∞
c (G0)

k

of C∞
c (G0)-modules. For each x ∈ G0 we obtain an injective complex linear map

Φ(x) : M(x) → C∞
c (G0)(x)

k ∼= C
k, which shows that M(x) is a finite dimensional

complex vector space for each x ∈ G0. We denote by rankxM = dimC M(x) the
rank of the module M at the point x ∈ G0. A C∞

c (G)-module M of finite type is of
constant rank if the function x 7→ rankxM is a constant function on G0. One can
similarly define the notions of modules of locally constant rank and of modules of
globally bounded rank.

Suppose now that M is a smooth, Hausdorff and paracompact manifold and let
E be a vector bundle over M . The module Γ∞

c (E) of sections of the bundle E is
a basic example of a module of finite type and of constant rank. One can see that as
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follows. SinceM is finite dimensional and paracompact, there exists a vector bundle
E′ over M such that the bundle E ⊕ E′ is isomorphic to some trivial vector bundle
M × C

k over M ; vector bundles with this property are said to be of finite type.
This property basically follows from the proof of Lemma 5.9 in [19]. As a result
we obtain the isomorphism Γ∞

c (E) ⊕ Γ∞
c (E′) ∼= C∞

c (M)k, i.e. the module Γ∞
c (E)

is of finite type. Furthermore, there is a natural isomorphism Γ∞
c (E)(x) → Ex of

complex vector spaces for every x ∈ M , induced by the evaluation at the point x,
which shows that the module Γ∞

c (E) is of constant rank. We state this result as
a proposition for future reference.

Proposition 3.2. Let G be an étale Lie groupoid. The left C∞
c (G)-module Γ∞

c (E)

of sections of any representation E of the groupoid G is a module of finite type and

of constant rank.

A crucial ingredient in the proof of the above proposition is the fact that any
vector bundle over a paracompact manifold is a subbundle of a trivial bundle. Such
vector bundles are referred to as bundles of finite type, a fact which also explains
our reason to refer to the corresponding modules as modules of finite type.

Example 3.2. (1) Let M be a Hausdorff manifold and let M ⊂ C∞
c (M)k be

a C∞
c (M)-module of finite type and of locally constant rank. We can then viewM(x)

as a vector subspace of Ck for every x ∈ M and define Ex = M(x)⊥. These vector
spaces define a smooth vector bundle E over M such that M ⊕ Γ∞

c (E) ∼= C∞
c (M)k.

In particular, for any C∞
c (M)-module M of finite type and of locally constant rank

there exists a C∞
c (M)-module M

′ such that M ⊕ M
′ ∼= C∞

c (M)k.

(2) If a Hausdorff manifold M is compact, it follows that the algebra C∞
c (M) is

unital. In this case finitely generated, projective modules over the algebra C∞
c (M)

correspond to modules of finite type and of locally constant rank. If the manifold M
is connected, any such module is automatically of constant rank.

We show next that modules of finite type and of constant rank form an additive
monoidal category for any étale Lie groupoid G. Let M and N be modules of finite
type and of constant rank over the Hopf algebroid C∞

c (G) of the groupoid G. It is
straightforward to check that the direct sum module M ⊕ N is then again of finite
type and of constant rank. Furthermore, the tensor product M ⊗C∞

c (G0) N is then
a left module over the algebra C∞

c (G0) which can be made into a left module over
C∞
c (G) as follows. Let a ∈ C∞

c (G) be a smooth function with compact support in
a bisection V of G. It can be written as a = a0∗a

′ where a0 = a◦(t|V )−1 ∈ C∞
c (t(V ))

and a′ ∈ C∞
c (V ) is any function such that a · a′ = a pointwise in V . For any

m⊗n ∈ M⊗C∞

c (G0) N we define a(m⊗n) = a0(a
′m⊗a′n). Any function a ∈ C∞

c (G)
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can be decomposed as a sum a =
n
∑

k=1

ak ∗ a
′
k of functions as above and in this case

we define

a(m⊗ n) =

n
∑

k=1

ak(a
′
km⊗ a′kn).

A little bit longer calculation shows that the action is well defined so that we obtain
a left C∞

c (G)-module M⊗C∞

c (G0) N of finite type and of constant rank. The natural
isomorphism (M⊗ M

′)⊗ M
′′ ∼= M⊗ (M′ ⊗ M

′′) of left C∞
c (G0)-modules is C∞

c (G)-
linear for any C∞

c (G)-modules M,M′ and M
′′ of finite type and of constant rank.

We thus obtain the following result.

Proposition 3.3. Let G be an étale Lie groupoid. Modules of finite type and of

constant rank over the Hopf algebroid C∞
c (G), with direct sum and tensor product

as described above, form an additive monoidal category Mod(G).

Example 3.3. IfM is a compact connected manifold, then the categoryMod(M)

of modules of finite type and of constant rank over C∞
c (M) coincides with the addi-

tive monoidal category of finitely generated, projective modules over C∞
c (M), with

operations of direct sum and tensor product of modules.

4. Serre-Swan’s theorem for étale Lie groupoids

Modules of sections of representations provide typical examples of modules of
finite type and of constant rank over the Hopf algebroid of an étale Lie groupoid.
We show in this section that these modules are in fact the only examples of modules
of finite type and of constant rank, up to isomorphism. Results of this type were
first considered by Serre [36] in the category of algebraic varieties and by Swan in
the category of compact Hausdorff topological spaces [37].

Recall that we denote by Mod(G) the full subcategory of the category of left
modules over the Hopf algebroid C∞

c (G) of an étale Lie groupoid G, consisting of
modules of finite type and of constant rank. Since every module of sections of a
representation is such a module by Proposition 3.2, we have a functor

(Γ∞
c )G : Rep(G) → Mod(G)

from the category of representations of the groupoid G to the category of modules
of finite type and of constant rank over the Hopf algebroid C∞

c (G) of G.
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Theorem 4.1. The functor (Γ∞
c )G : Rep(G) → Mod(G) of smooth sections with

compact support is an equivalence of categories for any étale Lie groupoid G.

Before we begin with the proof, we recall the classical version of the Serre-Swan’s
theorem in the setting of smooth manifolds and modules over the algebras of smooth
functions with compact support.

Theorem 4.2. The functor (Γ∞
c )M : Rep(M) → Mod(M) is an equivalence of

categories for any paracompact Hausdorff manifold M .

P r o o f. The crucial point in the proof of the theorem is the observation that
every vector bundle over a paracompact manifold is of finite type, i.e. a subbundle of
some trivial bundle. Taking this into account, basically the same proof as in Swan’s
original paper [37] goes through. �

Now let G be an étale Lie groupoid. We will prove Theorem 4.1 by constructing
a quasi-inverse

Rsp : Mod(G) → Rep(G)

to the functor Γ∞
c , to show that it is an equivalence of categories. For any C∞

c (G)-
module M of finite type and of constant rank we define a vector bundle Rsp(M)

over G0 as follows. As a set, the bundle Rsp(M) is defined as a disjoint union of the
spaces M(x) for x ∈ G0,

Rsp(M) =
∐

x∈G0

M(x),

together with the natural projection onto the manifold G0. To define a topology and
a smooth structure on the space Rsp(M), we first choose a vector bundle E over G0

and an isomorphism Φ: Γ∞
c (E) → M of left C∞

c (G0)-modules. Such an isomorphism
exists due to the classical version of Serre-Swan’s Theorem 4.2. The induced map
Φ(x) : Ex → M(x) is an isomorphism of complex vector spaces for each x, so we can
use the fiberwise linear bijection ϕ =

∐

Φ(x) : E → Rsp(M) to define a structure of
a smooth vector bundle over G0 on the space Rsp(M). The so defined vector bundle
structure on the space Rsp(M) is well defined. Namely, if E′ is another vector bundle
over G0 and if Φ′ : Γ∞

c (E′) → M is an isomorphism of C∞
c (G0)-modules, we obtain

the isomorphism (Φ′)−1
◦Φ: Γ∞

c (E) → Γ∞
c (E′) of C∞

c (G0)-modules. Bundles E and
E′ are therefore isomorphic by Theorem 4.2, so they define the same vector bundle
structure on the space Rsp(M).

We next use the action of C∞
c (G) on the space M to define a representation of

G on the vector bundle Rsp(M). Choose any arrow g ∈ G(x, y) and any vector
v ∈ M(x). We can find an element m ∈ M such that v = m(x) and a function
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a ∈ C∞
c (G) with compact support in some bisection such that a(g) = 1. Since M is

a left C∞
c (G)-module, the element am ∈ M is well defined and we define

g ·m(x) = am(y) ∈ M(y).

We will denote by
µM : G×G0

Rsp(M) → Rsp(M)

the map defined by the above formula.

Proposition 4.1. The map µM defines a representation of the étale Lie groupoid

G on the vector bundle Rsp(M) over G0.

P r o o f. It is straightforward to check that the map µM is well defined and that
it defines a linear action of the groupoid G on the vector bundle Rsp(M).
To see that µM is a smooth map, we first choose any (g, v) ∈ G×G0

Rsp(M) and
a function a ∈ C∞

c (G) with compact support in a bisection V ′ such that a|V ≡ 1

for some small neighbourhood V ⊂ V ′ of g. There exist elements m1, . . . ,mk ∈ M

with the property that the vectors {m1(x), . . . ,mk(x)} form a basis of M(x) for all
x ∈ s(V ). As a result we obtain smooth functions λ1, . . . , λk : Rsp(M)|s(V) → C,

implicitly defined by the formula w =
k
∑

i=1

λi(w)mi(x) for any w ∈ M(x) where

x ∈ s(V ). Locally, on a neighbourhood V ×G0
Rsp(M) of the point (g, v), we have

µM(h,w) =
k
∑

i=1

λi(w)ami(t(h)), where ami are smooth sections of the vector bundle

Rsp(M). This concludes the proof of the proposition. �

Representation of the groupoid G on the vector bundle Rsp(M) will be referred
to as the spectral representation of the groupoid G associated with a C∞

c (G)-module
M of finite type and of constant rank.
Now choose left C∞

c (G)-modules of finite type and of constant rank M and N

and let Φ: M → N be a homomorphism of C∞
c (G)-modules. For each x ∈ G0

we have the induced linear map Φ(x) : M(x) → N(x) and these maps together
define a fiberwise linear map Rsp(Φ): Rsp(M) → Rsp(N), which is a G-equivariant
morphism of representations of the groupoid G on Rsp(M) and Rsp(N), respectively.
The functoriality of the assignment Φ 7→ Φ(x) for each x ∈ G0 extends to the
functoriality of the map Rsp, so we have the spectral representation functor

Rsp : Mod(G) → Rep(G).

P r o o f of Theorem 4.1. Theorem 4.1 will be proved by showing that the functor
Rsp : Mod(G) → Rep(G) is a quasi-inverse of the functor Γ∞

c : Rep(G) → Mod(G).
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We can naturally identify the C∞
c (G)-module M with the module Γ∞

c (Rsp(M)),
by assigning the section x 7→ m(x) of the bundle Rsp(M) to an element m ∈ M.
Denote by εM : M → Γ∞

c (Rsp(M)) the corresponding isomorphism of modules and
let ε : IdMod(G) ⇒ Γ∞

c ◦ Rsp be the corresponding natural equivalence of functors.
Now let E be a representation of G. We have an isomorphism Γ∞

c (E)(x) → Ex of
complex vector spaces for every x ∈ G0, induced by the evaluation at the point x,
which induces an isomorphism ηE : Rsp(Γ∞

c (E)) → E of representations of G. The
natural equivalence of functors η : Rsp◦Γ∞

c ⇒ IdRep(G) together with the equivalence
ε shows that the functor Γ∞

c is an equivalence of categories. �

Example 4.1. Let G be a finite group and let M be a compact connected mani-
fold. Representations of the translation groupoid G⋉M correspond to G-equivariant
vector bundles over M and by Theorem 4.1 we can identify G-equivariant bundles
over M with modules of finite type and of constant rank over the Hopf algebroid
C∞
c (G ⋉M). On the other hand, by combining the Peter-Weyl theorem for finite
groups with the result that any G-equivariant bundle over M is of finite type [35],
it follows that G-equivariant bundles over M correspond to finitely generated, pro-
jective modules over the convolution algebra C∞

c (G ⋉M). In particular, modules
of finite type and of constant rank over C∞

c (G⋉M) are precisely finitely generated
projective modules, so we obtain a natural monoidal structure on the category of
finitely generated projective modules over the algebra C∞

c (G⋉M).

5. Natural equivalence of functors Rep and Mod

Representations of étale Lie groupoids naturally define a contravariant functor Rep

from the Morita category of étale Lie groupoids to the category of semirings. In this
section we first explain that modules of finite type and of constant rank over their
Hopf algebroids similarly define a functor Mod between the same two categories and
then show how to interpret Serre-Swan’s correspondence as a natural equivalence
between these two functors.
We begin with some lemmas that describe the modules of sections of pullback

representations and of tensor product representations.

Lemma 5.1. Let G and H be étale Lie groupoids and let P be a principal H-

bundle over G. For any representation E of H there exists a natural isomorphism

σP (E) : C∞
c (P ) ⊗C∞

c (H) Γ∞
c (E) → Γ∞

c (P ⊗H E)

of left modules over the Hopf algebroid C∞
c (G).
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P r o o f. First define a bilinear map σP (E) : C∞
c (P ) × Γ∞

c (E) → Γ∞
c (P ⊗H E)

by the formula
(σP (E)(f, u))(x) =

∑

π(p)=x

f(p)(p⊗ u(ϕ(p)))

for f ∈ C∞
c (P ) and u ∈ Γ∞

c (E). It is not too hard to check that the map σP (E) is
well defined and that it induces a homomorphism

σP (E) : C∞
c (P ) ⊗C∞

c (H) Γ∞
c (E) → Γ∞

c (P ⊗H E)

of C∞
c (G)-modules, which we claim to be an isomorphism. It suffices to show that

σP (E) is a bijective map.
We first consider the case when the bundle P is trivial, i.e. P = 〈ψ〉 for some

smooth functor ψ : G → H . Representations P ⊗H E and ψ∗E of G are then
isomorphic via an isomorphism f : P ⊗H E → ψ∗E, which induces an isomorphism

Γ∞
c (f) : Γ∞

c (P ⊗H E) → Γ∞
c (ψ∗

0E)

of modules over C∞
c (G0). Consider now the representation E of H as a vector bundle

over H0. The map

σψ0
(E) : C∞

c (G0) ⊗C∞

c (H0) Γ∞
c (E) → Γ∞

c (ψ∗
0E),

defined analogously as the map σP (E), is then an isomorphism of modules over the
algebra C∞

c (G0) [11]. Finally, since P = G0 ×H0
H is a trivial bundle, we have by

[27] the isomorphism ΩG0,H : C∞
c (P ) ∼= C∞

c (G0) ⊗C∞

c (H0) C
∞
c (H), which induces an

isomorphism

C∞
c (P ) ⊗C∞

c (H) Γ∞
c (E) → C∞

c (G0) ⊗C∞

c (H0) Γ∞
c (E)

of C∞
c (G0)-modules. We can collect all these isomorphisms into the following com-

mutative diagram of homomorphisms of C∞
c (G0)-modules

C∞
c (P ) ⊗C∞

c (H) Γ∞
c (E)

σP (E)
//

∼=

��

Γ∞
c (P ⊗H E)

Γ∞

c (f)V

��

C∞
c (G0) ⊗C∞

c (H0) Γ∞
c (E)

σψ0
(E)

// Γ∞
c (ψ∗

0E)

Since the remaining maps are bijective, the map σP (E) is bijective as well.
A principal H-bundle P over G is in general only locally trivial [25]. Let U be

an open subset of G0 such that P |U is a trivial H-bundle. We then have a natural
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injective homomorphism C∞
c (P |U ) → C∞

c (P ) of right C∞
c (H)-modules which induces

an injective homomorphism of abelian groups

C∞
c (P |U ) ⊗C∞

c (H) Γ∞
c (E) → C∞

c (P ) ⊗C∞

c (H) Γ∞
c (E).

The map σP (E) restricts, via this injection and injection Γ∞
c (P |U⊗HE) → Γ∞

c (P⊗H

E), to the bijection σP |U (E). One concludes the proof by using a partition of unity
subordinated to a trivializing open cover for P over G0 and the fact that σP (E) is
a homomorphism of C∞

c (G)-modules. �

Lemma 5.2. Let G be an étale Lie groupoid. For any representations E and F

of the groupoid G there exists a natural isomorphism

Ω = ΩE,F : Γ∞
c (E) ⊗C∞

c (G0) Γ∞
c (F ) → Γ∞

c (E ⊗ F )

of left modules over the Hopf algebroid C∞
c (G).

P r o o f. Define a bilinear map ΩE,F : Γ∞
c (E) × Γ∞

c (F ) → Γ∞
c (E ⊗ F ) by

associating with (u, v) ∈ Γ∞
c (E) × Γ∞

c (F ) the section u ⊗ v ∈ Γ∞
c (E ⊗ F ), which is

given pointwise by (u⊗v)(x) = u(x)⊗v(x) for every x ∈ G0. From the definitions of
actions of the algebra C∞

c (G0) on modules of sections it follows that the above map
is C∞

c (G0)-bilinear and induces a bijective C∞
c (G0)-linear map

ΩE,F : Γ∞
c (E) ⊗C∞

c (G0) Γ∞
c (F ) → Γ∞

c (E ⊗ F ).

It remains to be proved that the map ΩE,F is C∞
c (G)-linear. To this effect let

a function a ∈ C∞
c (G) have support in a bisection V of the groupoid G and let us

write it as a = a0 ∗ a′ where a0 = a ◦ (t|V )−1 ∈ C∞
c (t(V )) and a′ ∈ C∞

c (V ) is any
function such that a · a′ = a pointwise in V . Moreover, choose any u ∈ Γ∞

c (E) and
any v ∈ Γ∞

c (F ). We then have ΩE,F (a(u ⊗ v)) = a0(a
′u ⊗ a′v). It follows that the

support of the section ΩE,F (a(u⊗ v)) is contained in the support of the function a0.
Next, for any y ∈ G0 with a0(y) 6= 0 we have

(a0(a
′u⊗ a′v))(y) = a0(y)(g · u(x) ⊗ g · v(x))

where g ∈ G(x, y) is the unique arrow in the bisection V with target y. On the other
hand, the definition of the action of the algebra C∞

c (G) on the module Γ∞
c (E ⊗ F )

yields
(aΩE,F (u⊗ v))(y) = a(g)(g · u(x) ⊗ g · v(x)).

Since a(g) = a0(y), we have the equality (ΩE,F (a(u ⊗ v)))(y) = (aΩE,F (u ⊗ v))(y)

for every y ∈ G0, which shows that the map ΩE,F is C∞
c (G)-linear. �
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We are now ready to show how to interpret modules of finite type and of constant
rank as functors. Let P be a principal H-bundle over G. Tensoring by the C∞

c (G)-
C∞
c (H)-bimodule C∞

c (P ) induces a covariant functor Mod(P ) : Mod(H) → Mod(G)

by Theorem 4.1 and Lemma 5.1. Note also that isomorphic principal bundles induce
naturally equivalent functors. Let us now denote by Mod(G) the set of isomorphism
classes of modules of finite type and of constant rank over the Hopf algebroid C∞

c (G)

of G. Operations of direct sum and tensor product of C∞
c (G)-modules turn the set

Mod(G) into a semiring. For any principal H-bundle P over G we obtain a map
Mod(P ) : Mod(H) → Mod(G) induced by tensoring by the bimodule C∞

c (P ). To see
that Mod(P ) is a multiplicative map, we define a natural isomorphism

C∞
c (P ) ⊗ (M ⊗C∞

c (H0) M
′) → (C∞

c (P ) ⊗ M) ⊗C∞

c (G0) (C∞
c (P ) ⊗ M

′)

of C∞
c (G)-modules, given by f ⊗ (m⊗n) 7→ f0(f

′ ⊗m)⊗ (f ′ ⊗n), where f ∈ C∞
c (P )

has compact support in a open subset U of P , which maps injectively into G0 by
the bundle projection π : P → G0, f0 = f ◦ (π|U )−1 ∈ C∞

c (π(U)) and f ′ ∈ C∞
c (U)

is such that f · f ′ = f pointwise in U . It follows that Mod(P ) is a homomorphism
of semirings, depending only on the isomorphism class of the principal bundle P .
Furthermore, if P ′ is a principal K-bundle over H , where K is an étale Lie groupoid,
there is a natural homomorphism ΩP,P ′ : C∞

c (P ) ⊗C∞

c (H) C
∞
c (P ′) → C∞

c (P ⊗H P ′)

of C∞
c (G)-C∞

c (K)-bimodules, which is in fact an isomorphism [27]. We thus obtain
a contravariant functor

Mod: EtGPD→ Rng

from the Morita category of étale Lie groupoids to the category of semirings.
The functor (Γ∞

c )G : Rep(G) → Mod(G) is an equivalence of categories and by
Lemma 5.2 it induces an isomorphism (Γ∞

c )G : Rep(G) → Mod(G) of semirings.
Now let H be another étale Lie groupoid and let P be a principal H-bundle over
G. From Lemma 5.1 it follows that (Γ∞

c )G ◦ Rep(P ) = Mod(P ) ◦ (Γ∞
c )H , so we

can consider the family Γ∞
c of isomorphisms of semirings as a natural equivalence

between the functors Rep and Mod, and as a result we obtain the following theorem.

Theorem 5.1. Contravariant functors Rep and Mod from the Morita category

of étale Lie groupoids to the category of semirings are naturally equivalent.

The Morita category of étale Lie groupoids contains as a full subcategory the
category of compact global quotients, whose objects are translation groupoids of finite
groups acting on compact manifolds [31]. Restricted to this subcategory, the above
functors correspond respectively, to the equivariant topological and the algebraic K-
theory. Equivariant maps between global quotients correspond to trivial bundles, so
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in general we obtain the following improvement of the standard equivalence between
K-functors.

Corollary 5.1. Topological and algebraicK-theories of compact global quotients

are naturally isomorphic with respect to generalized maps.
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[13] A.Haefliger: Groupöıdes d’holonomie et classifiants. Astérisque 116 (1984), 70–97.
[14] M.Hilsum, G. Skandalis: Morphismes K-orientés d’espaces de feuilles et fonctorialité en

théorie de Kasparov. Ann. Sci. Éc. Norm. Supér. 20 (1987), 325–390.
[15] J.Kališnik: Representations of orbifold groupoids. Topology Appl. 155 (2008),

1175–1188.
[16] J.Kališnik, J.Mrčun: Equivalence between the Morita categories of étale Lie groupoids

and of locally grouplike Hopf algebroids. Indag. Math., New Ser. 19 (2008), 73–96.
[17] F.Kamber, P. Tondeur: Foliated Bundles and Characteristic Classes. Lecture Notes in

Mathematics 493, Berlin-Heidelberg-New York, Springer-Verlag, 1975.
[18] K.C.H.Mackenzie: The General Theory of Lie Groupoids and Lie Algebroids. LMS

Lecture Note Series 213, Cambridge University Press, Cambridge, 2005.

671



[19] J.W.Milnor, J. D. Stasheff: Characteristic Classes. Annals of Mathematics Studies 76.
Princeton, N.J., Princeton University Press and University of Tokyo Press, 1974.

[20] S.MacLane: Categories for the Working Mathematician. 4th corrected printing, Grad-
uate Texts in Mathematics, 5. New York etc., Springer-Verlag, 1988.

[21] I.Moerdijk: The classifying topos of a continuous groupoid I. Trans. Am. Math. Soc.
310 (1988), 629–668.

[22] I.Moerdijk: Classifying toposes and foliations. Ann. Inst. Fourier 41 (1991), 189–209.
[23] I.Moerdijk: Orbifolds as groupoids: an introduction. Contemp. Math. 310 (2002),

205–222.
[24] I.Moerdijk, J.Mrčun: Introduction to Foliations and Lie Groupoids. Cambridge Studies

in Advanced Mathematics 91, Cambridge University Press, Cambridge, 2003.
[25] I.Moerdijk, J.Mrčun: Lie groupoids, sheaves and cohomology. Poisson Geometry, Defor-

mation Quantisation and Group Representations, London Mathematical Society Lecture
Note Series 323, Cambridge University Press, Cambridge, 2005, pp. 145–272.

[26] J.Mrčun: Stability and invariants of Hilsum-Skandalis maps. PhD Thesis, Utrecht Uni-
versity, 1996.

[27] J.Mrčun: Functoriality of the bimodule associated to a Hilsum-Skandalis map.
K-Theory 18 (1999), 235–253.

[28] J.Mrčun: The Hopf algebroids of functions on étale groupoids and their principal Morita
equivalence. J. Pure Appl. Algebra 160 (2001), 249–262.

[29] J.Mrčun: On duality between étale groupoids and Hopf algebroids. J. Pure Appl. Alge-
bra 210 (2007), 267–282.

[30] J.Pradines: Morphisms between spaces of leaves viewed as fractions. Cah. Topologie
Géom. Différ. Catég. 30 (1989), 229–246.

[31] D.Pronk, L. Scull: Translation groupoids and orbifold cohomology. Can. J. Math. 62
(2010), 614–645.

[32] J.Renault: A Groupoid Approach to C
∗-algebras. Lecture Notes in Mathematics 793,

Berlin-Heidelberg-New York, Springer-Verlag, 1980.
[33] M.A.Rieffel: C∗-algebras associated with irrational rotations. Pac. J. Math. 93 (1981),

415–429.
[34] I. Satake: On a generalization of the notion of manifold. Proc. Natl. Acad. Sci. USA 42

(1956), 359–363.
[35] G.Segal: Equivariant K-theory. Publ. Math., Inst. Hates Étud. Sci. 34 (1968), 129–151.
[36] J.-P. Serre: Faisceaux algébriques cohérents. Ann. Math. 61 (1955), 197–278.
[37] R.G. Swan: Vector bundles and projective modules. Trans. Am. Math. Soc. 105 (1962),

264–277.
[38] G.Trentinaglia: On the role of effective representations of Lie groupoids. Adv. Math.

225 (2010), 826–858.
[39] H.E.Winkelnkemper: The graph of a foliation. Ann. Global Anal. Geom. 1 (1983),

51–75.

Author’s address: J u r e K a l i š n i k, Institute of Mathematics, Physics and Mechan-
ics, Jadranska 19, 1000 Ljubljana; University of Ljubljana, Ljubljana, Slovenia, e-mail:
jure.kalisnik@fmf.uni-lj.si.

672


		webmaster@dml.cz
	2020-07-03T19:25:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




