Czechoslovak Mathematical Journal

Adara M. Blaga
Affine connections on almost para-cosymplectic manifolds

Czechoslovak Mathematical Journal, Vol. 61 (2011), No. 3, 863-871

Persistent URL: http://dml.cz/dmlcz/141644

Terms of use:

© Institute of Mathematics AS CR, 2011

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

AFFINE CONNECTIONS ON ALMOST PARA-COSYMPLECTIC MANIFOLDS

Adara M. Blaga, Timişoara

(Received November 10, 2010)

Abstract

Identities for the curvature tensor of the Levi-Cività connection on an almost para-cosymplectic manifold are proved. Elements of harmonic theory for almost product structures are given and a Bochner-type formula for the leaves of the canonical foliation is established.

Keywords: para-cosymplectic manifold, harmonic product structure
MSC 2010: 53C15, 58A10, 70G45

1. Introduction

The almost para-cosymplectic manifolds contain the class of weakly para-cosymplectic manifolds which are almost para-cosymplectic manifolds satisfying an additional curvature property. The latter were studied (for dimension 3) by P. Dacko and Z. Olszak [2], who showed that if a 3-dimensional weakly para-cosymplectic manifold is locally homogeneous as a Riemannian manifold, then it is para-cosymplectic (which means that the 1- and 2-forms of the structure are parallel with respect to the Levi-Cività connection of the metric) or is locally flat. They also gave a classification for such manifolds.

In the present paper we deal with the almost para-contact hyperbolic metric structures and establish properties of the Levi-Cività connection associated to the pseudoRiemannian structure (Proposition 2.1 and Theorem 2.2).

Let M be a $(2 n+1)$-dimensional smooth manifold, φ a $(1,1)$-tensor field called the structure endomorphism, ξ a vector field called the characteristic vector field, η a 1-form called the contact form and g a pseudo-Riemannian metric on M. In this case, we say that (φ, ξ, η, g) defines an almost para-contact hyperbolic metric structure on $M[3]$ if
(1) $\varphi^{2}=I-\eta \otimes \xi$;
(2) $\eta(\xi)=1$;
(3) $g(\varphi X, \varphi Y)=-g(X, Y)+\eta(X) \eta(Y)$ for any $X, Y \in \Gamma(T M)$.

The definition implies $\varphi \xi=0, \eta(\varphi X)=0, \eta(X)=g(X, \xi), g(\xi, \xi)=1$ and $g(\varphi X, Y)=-g(\varphi Y, X)$ for any $X, Y \in \Gamma(T M)$. The fundamental 2-form $\omega(X, Y):=$ $g(\varphi X, Y), X, Y \in \Gamma(T M)$, defined by φ and g, is skew-symmetric. The $2 n$ dimensional distribution $\mathscr{D}:=\operatorname{ker} \eta$ is called the canonical distribution associated with the almost para-contact hyperbolic metric structure (φ, ξ, η, g) and the foliation \mathscr{F} generated by \mathscr{D}, the canonical foliation on M. Note that the canonical distribution is involutive and φ-invariant $(\operatorname{as} \mathscr{D}=\operatorname{Im} \varphi)$ and ξ is orthogonal to \mathscr{D}. The restrictions $\varphi_{\alpha}:=\left.\varphi\right|_{F_{\alpha}}$ of φ and $g_{\alpha}:=\left.g\right|_{F_{\alpha}}$ of g to the leaves $\left\{F_{\alpha}\right\}_{\alpha \in I}$ of the foliation \mathscr{F} satisfy

$$
\varphi_{\alpha}^{2} X=X, \quad g_{\alpha}\left(\varphi_{\alpha} X, \varphi_{\alpha} Y\right)=-g_{\alpha}(X, Y)
$$

for any $X, Y \in \Gamma(T M)$ and $\alpha \in I$, so they define an almost para-Hermitian structure $\left(\varphi_{\alpha}, g_{\alpha}\right)$ on each leaf F_{α} of \mathscr{F}.

If the 1 -form η and the 2 -form ω are closed, we say that M together with the almost para-contact hyperbolic metric structure (φ, ξ, η, g) is almost para-cosymplectic manifold [2]. In this case, for any $\alpha \in I, \eta_{\alpha}:=\left.\eta\right|_{F_{\alpha}}$ is closed. The fundamental 2-form $\omega_{\alpha}(X, Y):=g_{\alpha}\left(\varphi_{\alpha} X, Y\right), X, Y \in \Gamma(\mathscr{D})$, defined by φ_{α} and g_{α}, is closed, too, so each leaf $\left(F_{\alpha}, \varphi_{\alpha}, g_{\alpha}\right)$ becomes an almost para-Kähler manifold for any $\alpha \in I$ [2]. Therefore, all almost product structures φ_{α} are integrable.

These properties yield the fact stated in the next proposition:

Proposition 1.1. Let $(M, \varphi, \xi, \eta, g)$ be an almost para-cosymplectic manifold. Assume that the Levi-Cività connection ∇_{α} associated to g_{α} is flat for any $\alpha \in I$. Then the leaves $\left(F_{\alpha}, \varphi_{\alpha}, \nabla_{\alpha}\right)$ are special para-complex manifolds.

Proof. According to [8], $\left(F_{\alpha}, \varphi_{\alpha}, \nabla_{\alpha}\right)$ is a special para-complex manifold if φ_{α} is integrable, $\varphi_{\alpha}^{2}=I, \varphi_{\alpha} \neq I, \nabla_{\alpha}$ is a torsion free, flat affine connection and satisfies $\left(\nabla_{\alpha X} \eta_{\alpha}\right) Y=\left(\nabla_{\alpha Y} \eta_{\alpha}\right) X$ for any $X, Y \in \Gamma(T M)$. Taking into account that η_{α} is closed and $d \eta_{\alpha}(X, Y)=\left(\nabla_{\alpha X} \eta_{\alpha}\right) Y-\left(\nabla_{\alpha Y} \eta_{\alpha}\right) X$ for any $X, Y \in \Gamma(T M)$, we get the conclusion.

2. Curvature properties

Let $(M, \varphi, \xi, \eta, g)$ be an almost para-cosymplectic manifold. Relations and curvature properties for the Levi-Cività connection ∇ associated with the pseudoRiemannian metric g, similar to those in the almost contact metric case studied by Z. Olszak [6], can be found for almost para-cosymplectic manifolds.

From the condition $d \omega=0$ we obtain

$$
\begin{equation*}
\left(\nabla_{X} \omega\right)(Y, Z)+\left(\nabla_{Y} \omega\right)(Z, X)+\left(\nabla_{Z} \omega\right)(X, Y)=0 \tag{2.1}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$.
Proposition 2.1. Let $(M, \varphi, \xi, \eta, g)$ be an almost para-cosymplectic manifold and ∇ the Levi-Cività connection associated with g. Then, for any $X, Y, Z \in \Gamma(T M)$,

$$
\begin{gather*}
\left(\nabla_{X} \omega\right)(\varphi Y, \varphi Z)-\left(\nabla_{X} \omega\right)(Y, Z)=\eta(Z)\left(\nabla_{X} \eta\right)(\varphi Y)-\eta(Y)\left(\nabla_{X} \eta\right)(\varphi Z) \tag{2.2}\\
\left(\nabla_{X} \omega\right)(\varphi Y, Z)-\left(\nabla_{X} \omega\right)(Y, \varphi Z)=-\eta(Z)\left(\nabla_{X} \eta\right) Y-\eta(Y)\left(\nabla_{X} \eta\right) Z \\
\left(\nabla_{X} \omega\right)(Z, Y)-\left(\nabla_{\varphi X} \omega\right)(\varphi Z, Y)=\frac{1}{2} \eta(Z)\left(L_{\xi} g\right)(Y, \varphi X)
\end{gather*}
$$

Proof. The first two relations follow from direct computation. Writing the relation (2.1) for circular permutations $-(X, \varphi Z, \varphi Y)+(Y, \varphi X, \varphi Z)+(Z, \varphi Y, \varphi X)-$ (X, Z, Y) and taking into account that $\left(L_{\xi} g\right)(X, Y)=\left(\nabla_{X} \eta\right) Y+\left(\nabla_{Y} \eta\right) X$, we obtain the last relation.

In particular, if we put $X=\xi$ in (2.4), we get $\nabla_{\xi} \omega=0$. Moreover, $\nabla_{\xi} \varphi=0$.
If we replace Z by φZ in the relation (2.3), we obtain

$$
\begin{equation*}
g\left(\varphi Y, \nabla_{X} \xi\right)=\left(\nabla_{X} \eta\right)(\varphi Y) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(Y, \varphi\left(\nabla_{X} \xi\right)\right)=\eta\left(\nabla_{X} \varphi Y\right) \tag{2.6}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$.
We also have

$$
\begin{equation*}
\left(\nabla_{\varphi X} \varphi\right) \varphi Y=-\varphi\left(\left(\nabla_{\varphi X} \varphi\right) Y\right)-\eta(Y) \nabla_{\varphi X} \xi-\left(\nabla_{\varphi X} \eta\right) Y \cdot \xi \tag{2.7}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.
From

$$
\left(\nabla_{X} \omega\right)(Z, Y)-\left(\nabla_{\varphi X} \omega\right)(\varphi Z, Y)=\eta(Z)\left(\nabla_{\varphi X} \eta\right) Y
$$

we get

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y-\left(\nabla_{\varphi X} \varphi\right) \varphi Y=\eta(Y) \nabla_{\varphi X} \xi \tag{2.8}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.
Replacing (2.7) in (2.8), we obtain

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y+\varphi\left(\left(\nabla_{\varphi X} \varphi\right) Y\right)+\left(\nabla_{\varphi X} \eta\right) Y \cdot \xi=0 \tag{2.9}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.
Applying φ to (2.9), we have

$$
\begin{equation*}
\varphi\left(\left(\nabla_{X} \varphi\right) Y\right)+\left(\nabla_{\varphi X} \varphi\right) Y+\left(\nabla_{\varphi X} \eta\right) \varphi Y \cdot \xi=0 \tag{2.10}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.
For $X=Y=\xi$ in the previous relation we deduce that $\varphi\left(\nabla_{\xi} \xi\right)=0$. But $\nabla_{\xi} \xi=$ $\eta\left(\nabla_{\xi} \xi\right) \xi$ and also $g\left(\nabla_{\xi} \xi, X\right)=\left(\nabla_{\xi} \eta\right) X$ for any $X \in \Gamma(T M)$. In particular, for $X=\xi$ we have $\eta\left(\nabla_{\xi} \xi\right)=0$ and so $\nabla_{\xi} \xi=0$.

From (2.8) we have $\left(\nabla_{X} \varphi\right) \xi=\nabla_{\varphi X} \xi$ and so

$$
\begin{equation*}
\varphi\left(\nabla_{X} \xi\right)=-\nabla_{\varphi X} \xi \tag{2.11}
\end{equation*}
$$

for any $X \in \Gamma(T M)$. Then we obtain

$$
\begin{equation*}
\left(\nabla_{\varphi X} \eta\right) Y=\left(\nabla_{X} \eta\right)(\varphi Y) \tag{2.12}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.
We have

$$
\begin{equation*}
\eta\left(\nabla_{X} \xi\right)=0 \tag{2.13}
\end{equation*}
$$

for any $X \in \Gamma(T M)$ and so

$$
\begin{equation*}
\left(\nabla_{\varphi X} \eta\right) \varphi Y=\left(\nabla_{X} \eta\right) Y \tag{2.14}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$.
Theorem 2.2. Let $(M, \varphi, \xi, \eta, g)$ be an almost para-cosymplectic manifold and ∇ the Levi-Cività connection associated with g. Then the following identity holds:

$$
\begin{align*}
R_{X Y \varphi Z \varphi W} & -R_{\varphi X Y Z \varphi W}+R_{\varphi X \varphi Y \varphi Z \varphi W}-R_{X \varphi Y Z \varphi W} \tag{2.15}\\
& -R_{\varphi X Y \varphi Z W}+R_{\varphi X \varphi Y Z W}+R_{X Y Z W}-R_{X \varphi Y \varphi Z W} \\
& +\eta(W)\left[R_{\varphi X Y \varphi Z \xi}-R_{\varphi X \varphi Y Z \xi}-R_{X Y Z \xi}+R_{X \varphi Y \varphi Z \xi}\right] \\
& +g\left(\nabla_{[\varphi X, \varphi Y]+[X, Y]} \varphi Z+\varphi\left(\nabla_{[\varphi X, Y]+[X, \varphi Y]} \varphi Z\right), \varphi W\right)=0
\end{align*}
$$

for any $X, Y, Z, W \in \Gamma(T M)$.

Proof. The proof follows the same lines as in [6], taking into account the relations obtained above for the almost para-cosymplectic case.

Proposition 2.3. Under the hypotheses of Theorem 2.2, we have:

$$
R_{\varphi X Y \varphi Z \xi}+R_{X \varphi Y \varphi Z \xi}-R_{\varphi X \varphi Y Z \xi}-R_{X Y Z \xi}=0
$$

for any $X, Y, Z \in \Gamma(T M)$.
Proof. Antisymmetrizing (2.15) with respect to Z and W and taking ($W \leftrightarrow Z$ and $W \rightarrow \xi$), we get the required relation.

The leaves F_{α} of constant and quasi-constant φ_{α}-sectional curvature Consider the (0,4)-tensor fields defined in [7]:

$$
\begin{aligned}
R_{0}^{\alpha}(X, Y, Z, W):= & \frac{1}{4}\left[g_{\alpha}(X, Z) g_{\alpha}(Y, W)-g_{\alpha}(X, W) g_{\alpha}(Y, Z)\right. \\
& -g_{\alpha}\left(X, \varphi_{\alpha} Z\right) g_{\alpha}\left(Y, \varphi_{\alpha} W\right)+g_{\alpha}\left(X, \varphi_{\alpha} W\right) g_{\alpha}\left(Y, \varphi_{\alpha} Z\right) \\
& \left.-2 g_{\alpha}\left(X, \varphi_{\alpha} Y\right) g_{\alpha}\left(Z, \varphi_{\alpha} W\right)\right]
\end{aligned}
$$

and, respectively, in [1]:

$$
R_{1}^{\alpha}(X, Y, Z, W):=g_{\alpha}\left(S_{\alpha}(X, Y, Z), W\right)+g_{\alpha}\left(S_{\alpha}\left(\varphi_{\alpha} X, \varphi_{\alpha} Y, Z\right), W\right)
$$

for

$$
S_{\alpha}(X, Y, Z):=P_{\alpha}(X, Y, Z)-P_{\alpha}(Y, X, Z)
$$

where

$$
\begin{aligned}
P_{\alpha}(X, Y, Z):= & \frac{1}{8}\left\{\eta_{\alpha}(Y) \eta_{\alpha}(Z) X+\eta_{\alpha}(X) \eta_{\alpha}\left(\varphi_{\alpha} Z\right) \varphi_{\alpha} Y\right. \\
& +\eta_{\alpha}(X) \eta_{\alpha}\left(\varphi_{\alpha} Y\right) \varphi_{\alpha} Z+g_{\alpha}(Y, Z) \eta_{\alpha}(X) \xi_{\alpha} \\
& +g_{\alpha}\left(X, \varphi_{\alpha} Z\right) \eta_{\alpha}(Y) \varphi_{\alpha} \xi_{\alpha} \\
& \left.+\frac{1}{2} g_{\alpha}\left(X, \varphi_{\alpha} Y\right)\left[\eta_{\alpha}\left(\varphi_{\alpha} Z\right) \xi_{\alpha}+\eta_{\alpha}(Z) \varphi_{\alpha} \xi_{\alpha}\right]\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
R_{2}^{\alpha}(X, Y, Z, W):= & {\left[\eta_{\alpha}(X) \eta_{\alpha}\left(\varphi_{\alpha} Y\right)-\eta_{\alpha}\left(\varphi_{\alpha} X\right) \eta_{\alpha}(Y)\right] } \\
& \times\left[\eta_{\alpha}\left(\varphi_{\alpha} Z\right) \eta_{\alpha}(W)-\eta_{\alpha}(Z) \eta_{\alpha}\left(\varphi_{\alpha} W\right)\right] .
\end{aligned}
$$

Definition 2.4 ([1]). A para-Kähler manifold (M, φ, g) endowed with a unit vector field ξ is said to be
(1) of constant φ-sectional curvature if the sectional curvature of $\operatorname{span}\{u, \varphi u\}$ is constant for any $x \in M$ and any u non-isotropic tangent vector in $T_{x} M$;
(2) of quasi-constant φ-sectional curvature if the sectional curvature of $\operatorname{span}\{u, \varphi u\}$ is constant for any $x \in M$, any $\theta \in\left[0, \frac{\pi}{2}\right]$ and any u non-isotropic tangent vector in $T_{x} M$ making the angle θ with $\operatorname{span}\left\{\xi_{x}, \varphi \xi_{x}\right\}$.

According to Theorem 2.1 from [1], the following result holds:

Theorem 2.5. Let $(M, \varphi, \xi, \eta, g)$ be an almost para-cosymplectic manifold. Then the leaf $\left(F_{\alpha}, \varphi_{\alpha}, g_{\alpha}\right)$
(1) is of constant φ_{α}-sectional curvature if and only if there exists a function c_{α} : $F_{\alpha} \rightarrow \mathbb{R}$ such that the curvature tensor field R^{α} satisfies $R^{\alpha}=c_{\alpha} R_{0}^{\alpha}$;
(2) is of quasi-constant φ_{α}-sectional curvature if and only if there exists three functions $c_{\alpha}^{0}, c_{\alpha}^{1}, c_{\alpha}^{2}: F_{\alpha} \rightarrow \mathbb{R}$ such that the curvature tensor field R^{α} satisfies $R^{\alpha}=c_{\alpha}^{0} R_{0}^{\alpha}+c_{\alpha}^{1} R_{1}^{\alpha}+c_{\alpha}^{2} R_{2}^{\alpha}$.

For the complex case, S. Funabashi, H. S. Kim, Y.-M. Kim, J. S. Pak [4] gave necessary and sufficient conditions for a Kähler manifold to be of constant holomorphic sectional curvature, involving certain spectral properties of the Laplace operator.

In the next section we will determine a relation between the curvature of the leaves of the canonical foliation and the Hodge-Laplace operator (equation (3.3)).

3. Harmonic forms on the leaves of the canonical foliation

Let $(M, \varphi, \xi, \eta, g)$ be an almost para-cosymplectic manifold of dimension $2 n+1$. Consider the exterior differential and codifferential operators defined for any tangent bundle-valued p-form $T \in \Gamma\left(\Lambda^{p} T^{*} M \otimes T M\right)$ by

$$
d T\left(X_{0}, \ldots, X_{p}\right):=\sum_{i=0}^{p}(-1)^{i}\left(\nabla_{X_{i}} T\right)\left(X_{0}, \ldots, \widehat{X_{i}}, \ldots, X_{p}\right)
$$

and

$$
\delta T\left(X_{1}, \ldots, X_{p-1}\right):=-\sum_{i=0}^{2 n}\left(\nabla_{E_{i}} T\right)\left(E_{i}, X_{1}, \ldots, X_{p-1}\right)
$$

for an orthonormal frame field $\left\{E_{i}\right\}_{0 \leqslant i \leqslant 2 n}$ and the Hodge-Laplace operator on $\Gamma\left(\Lambda^{p} T^{*} M \otimes T M\right)$

$$
\begin{equation*}
\Delta:=d \circ \delta+\delta \circ d \tag{3.1}
\end{equation*}
$$

W. Jianming studied in [5] some properties of harmonic complex structures. Similar results hold for the leaves of the canonical foliation of an almost para-cosymplectic manifold. In our case, the leaves being almost para-Kähler manifolds, we shall deal with harmonic almost product structures and give the following obvious definition:

Definition 3.1. An almost product structure E is called harmonic if $\Delta E=0$.
From the definition we infer that E is harmonic if and only if $d E=0$ and $\delta E=0$ which is equivalent to $\left(\nabla_{X} E\right) Y=\left(\nabla_{Y} E\right) X$ for any $X, Y \in \Gamma(T M)$ and $\operatorname{trace}(\nabla E)=0$ for ∇ the Levi-Cività connection associated with the pseudoRiemannian structure g.

Proposition 3.2. Any harmonic almost product structure E is integrable (that is, it is a product structure).

Proof. Let $X, Y \in \Gamma(T M)$. Then

$$
\begin{aligned}
(d E)(X, Y): & =(\nabla E)(X, Y)-(\nabla E)(Y, X) \\
& =[X, E Y]+\nabla_{E Y} X-[Y, E X]-\nabla_{E X} Y-E[X, Y]
\end{aligned}
$$

As $\Delta E=0$ implies $d E=0$, we get

$$
\begin{aligned}
0 & =(d E)(E X, Y)+(d E)(X, E Y) \\
& =[E X, E Y]+[X, Y]-E[E X, Y]-E[X, E Y]
\end{aligned}
$$

which shows the integrability of E.
In particular, for any $T \in \Gamma\left(\Lambda^{1} T^{*} M \otimes T M\right)$ we have [9]

$$
\begin{equation*}
\Delta T=-\nabla^{2} T-S \tag{3.2}
\end{equation*}
$$

where $\nabla^{2} T:=\sum_{i=0}^{2 n} \nabla_{E_{i}} \nabla_{E_{i}} T-\nabla_{\nabla_{E_{i}} E_{i}} T$ and $S(X):=\sum_{i=0}^{2 n}\left(R_{E_{i} X} T\right) E_{i}, X \in \Gamma(T M)$, for $\left\{E_{i}\right\}_{0 \leqslant i \leqslant 2 n}$ an orthonormal frame field and $R_{X Y}:=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}$, $X, Y \in \Gamma(T M)$, the Riemann curvature tensor field. We shall also use the notation $R_{X Y Z}=: R_{X Y} Z$ and $R_{X Y Z W}=: g\left(R_{X Y Z}, Z\right), X, Y, Z, W \in \Gamma(T M)$. Then for T equal to E and for any vector field X,

$$
\begin{aligned}
S(X):=\sum_{i=0}^{2 n}\left(R_{E_{i} X} E\right) E_{i} & =\sum_{i=0}^{2 n} R_{E_{i} X E E_{i}}-\sum_{i=0}^{2 n} E\left(R_{E_{i} X E_{i}}\right) \\
& =\sum_{i=0}^{2 n}\left[R_{E_{i} X E E_{i}}-E\left(R_{E_{i} X E_{i}}\right)\right] .
\end{aligned}
$$

Denote by $e(E):=\sum_{i=0}^{2 n} \frac{1}{2} g\left(E E_{i}, E E_{i}\right)=\frac{1}{2}|E|^{2}$ the energy density of E (which does not depend on the orthonormal frame field $\left\{E_{i}\right\}_{0 \leqslant i \leqslant 2 n}$). We can state the following theorem:

Theorem 3.3. Let $(M, \varphi, \xi, \eta, g)$ be an almost para-cosymplectic manifold and assume that any φ_{α} is a harmonic product structure. Then on each leaf $F_{\alpha}, \alpha \in I$, of the canonical foliation \mathscr{F}, a Bochner-type formula

$$
\begin{equation*}
\Delta e\left(\varphi_{\alpha}\right)=\left|\nabla \varphi_{\alpha}\right|^{2}-\sum_{0 \leqslant i, j \leqslant 2 n}\left(R_{E_{i}^{\alpha} E_{j}^{\alpha} \varphi_{\alpha} E_{i}^{\alpha} \varphi_{\alpha} E_{j}^{\alpha}}+R_{E_{i}^{\alpha} E_{j}^{\alpha} E_{i}^{\alpha} E_{j}^{\alpha}}\right) \tag{3.3}
\end{equation*}
$$

holds for an orthonormal frame field $\left\{E_{i}^{\alpha}\right\}_{0 \leqslant i \leqslant 2 n}$ on F_{α} with $\nabla_{E_{i}} E_{i}=0,0 \leqslant i \leqslant 2 n$.
Proof. A computation similar to that in [5] leads to

$$
\left\langle\nabla^{2} \varphi_{\alpha}, \varphi_{\alpha}\right\rangle=\sum_{i=0}^{2 n}\left\langle\nabla_{E_{i}^{\alpha}} \nabla_{E_{i}^{\alpha}} \varphi_{\alpha}, \varphi_{\alpha}\right\rangle=\Delta e\left(\varphi_{\alpha}\right)-\left|\nabla \varphi_{\alpha}\right|^{2}
$$

and

$$
\begin{aligned}
\left\langle S, \varphi_{\alpha}\right\rangle & =\sum_{j=0}^{2 n}\left\langle S E_{j}^{\alpha}, \varphi_{\alpha} E_{j}^{\alpha}\right\rangle \\
& =\sum_{0 \leqslant i, j \leqslant 2 n} g\left(R_{E_{i}^{\alpha} E_{j}^{\alpha} \varphi_{\alpha E_{i}^{\alpha}}}, \varphi_{\alpha E_{j}^{\alpha}}\right)-g\left(\varphi_{\alpha}\left(R_{E_{i}^{\alpha} E_{j}^{\alpha} E_{i}^{\alpha}}\right), \varphi_{\alpha} E_{j}^{\alpha}\right) .
\end{aligned}
$$

Therefore, as φ_{α} is harmonic if $\Delta \varphi_{\alpha}=0$, from (3.2) we obtain

$$
\begin{aligned}
0= & \left\langle\Delta \varphi_{\alpha}, \varphi_{\alpha}\right\rangle \\
= & -\left\langle\nabla^{2} \varphi_{\alpha}, \varphi_{\alpha}\right\rangle-\left\langle S, \varphi_{\alpha}\right\rangle \\
= & -\Delta e\left(\varphi_{\alpha}\right)+\left|\nabla \varphi_{\alpha}\right|^{2} \\
& -\sum_{0 \leqslant i, j \leqslant 2 n}\left[g\left(R_{E_{i}^{\alpha} E_{j}^{\alpha} \varphi_{\alpha} E_{i}^{\alpha}}, \varphi_{\alpha E_{j}^{\alpha}}\right)-g\left(\varphi_{\alpha}\left(R_{E_{i}^{\alpha} E_{j}^{\alpha} E_{i}^{\alpha}}\right), \varphi_{\alpha} E_{j}^{\alpha}\right)\right] \\
= & -\Delta e\left(\varphi_{\alpha}\right)+\left|\nabla \varphi_{\alpha}\right|^{2}-\sum_{0 \leqslant i, j \leqslant 2 n}\left(R_{E_{i}^{\alpha} E_{j}^{\alpha} \varphi_{\alpha} E_{i}^{\alpha} \varphi_{\alpha} E_{j}^{\alpha}}+R_{E_{i}^{\alpha} E_{j}^{\alpha} E_{i}^{\alpha} E_{j}^{\alpha}}\right) .
\end{aligned}
$$

References

[1] C. L. Bejan, M. Ferrara: Para-Kähler manifolds of quasi-constant P-sectional curvature. Proceedings of the Conference Contemporary Geometry and Related Topics, Belgrade, Serbia and Montenegro, June 26-July 2, 2005 (N. Bokan, ed.). Cigoja Publishing Company, 2006, pp. 29-36.
[2] P. Dacko, Z. Olszak: On weakly para-cosymplectic manifolds of dimension 3. J. Geom. Phys. 57 (2007), 561-570.
[3] S. Erdem: On almost (para)contact (hyperbolic) metric manifolds and harmonicity of ($\varphi, \varphi^{\prime}$)-holomorphic maps between them. Houston J. Math. 28 (2002), 21-45.
[4] S. Funabashi, H.S. Kim, Y.-M. Kim, J.S. Pak: Traceless component of the conformal curvature tensor in Kähler manifold. Czech. Math. J. 56 (2006), 857-874.
[5] W. Jianming: Harmonic complex structures. Chin. Ann. Math., Ser. A 30 (2009), 761-764; arXiv: 1007.4392v1/math.DG (2010).
[6] Z. Olszak: On almost cosymplectic manifolds. Kodai Math. J. 4 (1981), 239-250.
[7] M. Prvanović: Holomorphically projective transformations in a locally product space. Math. Balk. 1 (1971), 195-213.
[8] L. Schäfer: $t t^{*}$-bundles in para-complex geometry, special para-Kähler manifolds and para-pluriharmonic maps. Differ. Geom. Appl. 24 (2006), 60-89.
[9] Y. L. Xin: Geometry of Harmonic Maps. Progress in Nonlinear Differential Equations and Their Applications 23. Birkhäuser, Boston, 1996.

Author's address: A. M. Blaga, West University of Timişoara, Department of Mathematics and Computer Science, Bld. V. Pârvan Nr. 4, 300223 Timişoara, România; e-mail: adara@math.uvt.ro.

