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OBSERVABLES ON σ-MV ALGEBRAS
AND σ-LATTICE EFFECT ALGEBRAS

Anna Jenčová, Silvia Pulmannová and Elena Vinceková

Effect algebras were introduced as abstract models of the set of quantum effects which
represent sharp and unsharp properties of physical systems and play a basic role in the
foundations of quantum mechanics. In the present paper, observables on lattice ordered σ-
effect algebras and their ”smearings” with respect to (weak) Markov kernels are studied. It
is shown that the range of any observable is contained in a block, which is a σ-MV algebra,
and every observable is defined by a smearing of a sharp observable, which is obtained from
generalized Loomis–Sikorski theorem for σ-MV algebras. Generalized observables with the
range in the set of sharp real observables are studied and it is shown that they contain all
smearings of observables.

Keywords: lattice effect algebra, MV algebra, observable, state, Markov kernel, weak
Markov kernel, smearing, generalized observable

Classification: 81P10, 81P15, 03G12

1. INTRODUCTION

Effect algebras [9] (equivalently, D-posets, [18], or weak orthoalgebras, [11]) were
introduced as abstract models of the set of quantum effects (self-adjoint operators
between the zero and identity operator in the usual ordering). Quantum effects
represent sharp and unsharp properties of physical systems and play a basic role
in the foundations of quantum mechanics [1]. They contain the usual quantum
logics (orthomodular posets and lattices) as special subclasses. Also MV-algebras,
introduced by Chang [5] as algebraic bases for many-valued logic, are a special
subclass of effect algebras. In this paper, we consider lattice ordered effect algebras,
which are a common generalization of MV-algebras and orthomodular lattices.

An effect algebra is an algebraic structure (E;⊕, 0, 1) where ⊕ is a partial binary
operation and 0 and 1 are constants, such that for every a, b, c ∈ E, the following
axioms hold:

(E1) a⊕ b = b⊕ a;

(E2) (a⊕ b)⊕ c = a⊕ (b⊕ c);

(E3) for every a ∈ E there is a unique a⊥ such that a⊕ a⊥ = 1;

(E4) if a⊕ 1 is defined, then a = 0.
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The equalities in (E1) and (E2) mean that if one side is defined, so is the other
and the equality holds. We write a ⊥ b and say that a and b are orthogonal if a⊕ b
is defined. If we write a⊕ b, we tacitly assume a ⊥ b.

A partial order on E is defined by the relation a ≤ b iff there is c such that
a⊕ c = b. If such element c exists, it is unique, and we write c =: b	 a. Thus b	 a
is defined and equals c iff a ≤ b and a ⊕ c = b. The element a⊥ in (E3) is called
the orthosupplement of a, and we have a⊥ = 1	 a. It can be shown that a ⊥ b iff
a ≤ b⊥ and (a⊕ b)⊥ = a⊥ 	 b. Moreover we have 0 ≤ a ≤ 1 for all a ∈ E.

The orthogonality relation can be naturally extended as follows. Any finite set of
elements a1, a2, . . . , an (not necessarily all different) are said to be orthogonal if a1⊕
a2⊕· · ·⊕an exists, where the latter ⊕-sum is defined recurrently. Owing to (E1) and
(E2), we can omit parentheses, and the resulting sum does not depend on the order
of its summands. More generally, an arbitrary system (ai)i∈I is said to be orthogonal
if every its finite subsystem is orthogonal. If the element

⊕
i∈I ai :=

∨
F⊆I ⊕i∈Fai

exists, where the supremum on the right is taken over all finite subsystems F ⊆ I,
we call it the orthosum of the system (ai)i∈I . An effect algebra E is orthocomplete
if every orthogonal family admits an orthosum, and E is σ-orthocomplete if every
countable orthogonal family admits an orthosum. Equivalently, E is orthocomplete
if every ascending family has a supremum in E and E is σ-orthocomplete if every
countable ascending family has a supremum in E.

A subalgebra of an effect algebra E is a subset F ⊆ E such that 1 ∈ F , a ∈ F
implies a⊥ ∈ F , and a, b ∈ F , a ⊥ b implies a⊕ b ∈ F .

An effect algebra E which is lattice ordered with respect to its ordering, is called a
lattice effect algebra. It is easy to see that a lattice effect algebra is σ-orthocomplete
(orthocomplete) iff it is a σ-lattice (complete lattice).

Two elements a, b in an effect algebra E are said to be compatible (in Mackey’s
sense, written a ↔ b) if there are orthogonal elements a1, b1, c such that a = a1 ⊕
c, b = b1 ⊕ c. In a lattice effect algebra, compatibility is equivalent to the condition
(a ∨ b)	 b = a	 (a ∧ b) [6].

We recall that an MV-algebra [4, 5, 8] is an algebraic structure (M ; +̇,∗ , 0) with
a binary operation +̇1, a unary operation ∗ and a constant 0 such that +̇ is commu-
tative and associative with neutral element 0, a+̇a∗ = 0∗ =: 1, a+̇1 = 1, (a∗)∗ = a,
and (a∗+̇b)∗+̇b = (b∗+̇a)∗+̇a, the last axiom is called the Lukasziewicz axiom. With
the operations a∨b = (a∗+̇b)∗+̇b, a∧b = (a∗∨b∗)∗, M is a distributive lattice with 0
as the smallest and 0∗ = 1 as the greatest element. MV-algebras were introduced in
[5] as algebraic bases for many-valued logic. In [19], categorical equivalence between
unit intervals in abelian `-groups with strong unit and MV-algebras was shown, as
well as their importance in the K-theory of AF C*-algebras.

If E is a lattice effect algebra such that a ↔ b for all a, b ∈ E, then a+̇b :=
(a ∧ b⊥) ⊕ b is a total binary operation such that (E; +̇,⊥ , 0) is an MV-algebra
[6]. Conversely, if in an MV-algebra (M ; +̇,∗ , 0) we restrict the +̇ operation to
{(a, b) : a ≤ b∗}, we obtain a lattice effect algebra in which any pair of elements is
compatible. An effect algebra with the latter properties is called an MV-effect alge-

1Our notation differs from the one in [4, 5], as we reserved the symbol ⊕ for the operation in
effect algebras
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bra. Equivalently, MV-effect algebras can be characterized as lattice effect algebras
satisfying Riesz decomposition properties, [8, Corollary 1.10.11]. MV-effect algebras
are in one-to-one correspondence with MV-algebras [6].

An MV-algebra M is a σ-MV algebra if M is a σ-lattice.
It is well known that an orthomodular lattice can be covered by its blocks (i. e.,

maximal sets of pairwise compatible elements) which are boolean algebras. An
analogous statement has been proved in [28] for lattice effect algebras: every lattice
effect algebra E can be covered by its blocks, which are subalgebras and sublattices
of E, and are MV-effect algebras in their own right. If E is a σ-orthocomplete lattice
effect algebra, then blocks are σ-orthocomplete MV-effect algebras (equivalently, σ-
MV algebras) [14].

An element a in an effect algebra E is sharp if a ∧ a⊥ = 0. The set of all sharp
elements in a lattice effect algebra forms an orthomodular lattice (OML), which is
a subalgebra and sublattice Sh(E) of E [14]. If E is σ-orthocomplete, then Sh(E)
is a σ-OML.

A state on an effect algebra E is a mapping m : E 7→ [0, 1] such that m(a⊕ b) =
m(a)+m(b) whenever a ⊥ b and m(1) = 1. A state m is σ-additive if m(an) → m(a)
whenever an ↑ a. A state is pure if it is an extreme point in the convex set of states.
We say that a state m on E is faithful if m(a) = 0 iff a = 0, a ∈ E. Let S(E) denote
the set of all states on E, and Sσ(E) denote the set of all σ-additive states on E.

2. LOOMIS–SIKORSKI THEOREM FOR σ-MV EFFECT ALGEBRAS

For the proof of the Loomis–Sikorski theorem for σ-MV-algebras, see [7, 20] (see also
[3] for a different approach). In this paragraph, we briefly recall some basic facts
that are used in the proof of this theorem.

The following notion is a direct generalization of a σ-algebra of sets. A tribe of
fuzzy sets on a set X 6= ∅ is a nonempty system T ⊆ [0, 1]Ω such that

(T1) 1X ∈ T ;

(T2) if a ∈ T then 1X − a ∈ T ;

(T3) (an)∞n=1 ⊆ T entails that the pointwise minimum

min
( ∞∑

n=1

an, 1
)
∈ T .

Elements of T are called fuzzy subsets of X. Elements of T which are characteristic
functions are called crisp subsets of X.

The basic properties of tribes are [8, Prop. 7.16]:

Proposition 2.1. Let T be a tribe of fuzzy subsets of X. Then

(i) a ∨ b = max{a, b} ∈ T , a ∧ b = min{a, b} ∈ T ;

(ii) b− a ∈ T if a ≤ b, i. e. a(x) ≤ b(x) for all x ∈ X;

(iii) if an ∈ T , n ≥ 1, and an ↗ a (point-wise) then a = limn an ∈ T ;
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(iv) T is a σ-MV-algebra closed under point-wise suprema of sequences of its ele-
ments.

Denote by
Sh(T ) = {A ⊂ X : χA ∈ T },

i. e., Sh(T ) is the system of all crisp subsets in T . According to [8, Th. 7.1.7], Sh(T )
is a σ-algebra of crisp subsets of X, and if f ∈ T , then f is Sh(T )-measurable. That
is, for every f ∈ T and every B ∈ B([0, 1]) (where B([0, 1]) denotes the Borel subsets
of [0, 1]), the pre-image f−1(B) belongs to Sh(T ). Moreover, the mapping

f−1 : B([0, 1]) → Sh(T )

is a σ-homomorphism of Boolean σ-algebras.

Lemma 2.2. Let T be a tribe of fuzzy subsets of a set X 6= ∅. For every f, g ∈ T ,
f = g if and only if f−1(B) = g−1(B) for all B ∈ B([0, 1]).

P r o o f . For the nontrivial direction, if f 6= g, there is x ∈ X such that f(x) 6= g(x).
Assume f(x) < g(x), then g(x) > f(x) + 1

n for some integer n. Putting f(x) = α,
we have x ∈ f−1[0, α], while x /∈ g−1[0, α]. �

A state on a tribe T is a mapping m : T → [0, 1] such that m(1) = 1, and
m(f + g) = m(f) + m(g) whenever f, g ∈ T with f + g ≤ 1. A state m is σ-
additive if for any nondecreasing sequence (fn)n ⊆ T , if fn ↗ f (point-wise), then
m(fn) → m(f).

By the Butnariu–Klement theorem [2], [27, Th. 8.1.12], [3] for every σ-additive
state m on T we have

m(f) =
∫

X

f(x) dµ(x), (1)

where µ is a probability measure on the σ-algebra Sh(T ) given by µ(A) = m(χA),
A ∈ Sh(T ).

Let (M ; +̇,∗ , 0) be an MV-algebra. Recall that an element a ∈ M is idempotent
iff a ⊕ a = a, and a is sharp iff a ∧ a∗ = 0. It is well-known that idempotent and
sharp elements in an MV-algebra coincide. By [5], for every MV-algebra, the set of
idempotent elements Sh(M) is a Boolean algebra. If M is a σ-MV-algebra, then
Sh(M) is a Boolean σ-algebra. Moreover, all countable suprema taken in Sh(M)
coincide with those taken in M [8, Th. 7.1.12].

On the set M(M) of all maximal ideals of M a topology τM is introduced as the
collection of all subsets of the form

O(I) := {A ∈M(M) : A 6⊇ I}, I is an ideal ofM.

For any a ∈M , we put

M(a) := {A ∈M(M) : a 6∈ A}.
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It is easy to see that for a, b ∈M , (i) M(0) = ∅, (ii) M(a) ⊆M(b) whenever a ≤ b,
(iii) M(a∧ b) = M(a)∩M(b), M(a∨ b) = M(a)∪M(b). Moreover, {M(a) : a ∈M}
is a base of τM .

In addition, we have the following facts ([8, Prop. 7.1.13]): (i) M(a)c ⊆ M(a∗)
(M(a)c is the set-theoretical complement of M(a)), (ii) if a is idempotent then
M(a)c = M(a∗), (iii) if M is semisimple (in particular, if M is a σ-MV-algebra),
then M(a)c = M(a∗) iff a is idempotent.

Denote by Ext(S(M)) the set of all extremal states on M . Then by [21, Theorem
2.5], Ext(S(M)) 6= ∅ and it is a compact Hausdorff space with respect to the weak
topology of states (i. e., mα → m iff mα(a) → m(a) for all a ∈M), and any state m
on M is in the closure of the convex hull of Ext(S(M)).

From [12, Theorem 15.32] and Mundici’s `-group representation of MV-algebras
we have that there is a one-to-one correspondence between Ext(S(M)) and M(M)
given by the homeomorphism m 7→ Kerm (see also [8, Th. 7.1.2]).

It follows that τM makes M(M) a compact Hausdorff topological space. Let M
be a σ-MV-algebra (that is, M is a σ-lattice). With the topology τM , the space
X := M(M) is basically disconnected (that is, the closure of every Fσ-subset of X
is open) [8, Proposition 7.1.15].

For a ∈M , define a 7→ â, where â ∈ [0, 1]Ext(S(M)) by

â(m) := m(a), m ∈ Ext(S(M)).

Notice that by [8, Prop. 7.1.20], a ∈M is idempotent if and only if â is a charac-
teristic function.

Let f be a real function on X 6= ∅. Define

N(f) := {x ∈ X : |f(x)| > 0}.

The following generalization of the Loomis–Sikorski theorem has been proved in
[20] and, independently, in [7].

Theorem 2.3. For every σ-MV-algebra M there exist a tribe T of fuzzy sets and
an MV-σ-homomorphism h from T onto M .

This can be briefly described as follows: Let M be a σ-MV-algebra. Let T be the
tribe of fuzzy sets defined on X := Ext(S(M)) generated by the set {â : a ∈ M}.
Denote by T ′ the class of all functions f ∈ T with the property that for some b ∈M ,
N(f − b̂) is a meager set. It can be shown that if for some b1 and b2 and f ∈ T ′ we
have N(f − b̂i) is a meager set for i = 1, 2, then b1 = b2. Moreover, T ′ = T . Due
to the definition of T ′, for any f ∈ T there is a unique element h(f) := b ∈M such
that N(f − b̂) is meager.

Moreover, h maps Sh(T ) onto Sh(M) and h(f) = 0 iff h(χN(f)) = 0, [23, § 5].
The triple (X, T , h) (X = Ext(S(M))), described in the preceding paragraph, is
called the standard Loomis–Sikorski representation of M .
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3. SHARP AND UNSHARP OBSERVABLES

Let (Ω,A) be a measurable space, where Ω is a nonempty set and A is a σ-algebra
of subsets of Ω. In accordance with [27], a (Ω,A)-observable on a σ-orthocomplete
effect algebra E is a mapping ξ : A → E such that (i) ξ(Ω) = 1; (ii) ξ(

⋃∞
i=1Ai) =⊕∞

i=1 ξ(Ai) whenever (Ai)∞i=1 is a sequence of mutually disjoint elements ofA. (Ω,A)
is called the value space of the observable ξ. If m is a σ-additive state, then m◦ξ is a
probability measure on the measurable space (Ω,A), which is called the distribution
of the observable ξ in the state m. We will assume that Sσ(E) 6= ∅.

A real observable is an observable with value space (R, B(R)), where R is the set
of real numbers and B(R) is the σ-algebra of Borel sets.

An observable is sharp if its range consists of sharp elements. Observables which
are not sharp are called unsharp.

In what follows, E will denote a σ-orthocomplete lattice effect algebra.

Theorem 3.1. The range of every observable on E is contained in a block of E.

P r o o f . Let ξ be an (Ω,A)-observable on E. Let A,B ∈ A. Then A ∩B,A \ (A ∩
B), B\(A∩B) are pairwise orthogonal sets in A, and from A = (A\(A∩B))∪(A∩B)
we get ξ(A) = ξ(A \ (A ∩ B)) ⊕ ξ(A ∩ B), and similarly ξ(B) = ξ(B \ (A ∩ B)) ⊕
ξ(A ∩ B). Since ξ(A \ (A ∩ B)) ⊕ ξ(B \ (A ∩ B) ⊕ ξ(A ∩ B) = ξ(A ∪ B), we see
that ξ(A), ξ(B) are compatible. Since A and B are arbitrary, the range of ξ consists
of pairwise compatible elements of E. Consequently, the range of ξ is contained in
block of E. �

Remark 3.2. Since by Theorem 3.1 the range of every observable ξ on E is con-
tained in a block M of E, we may consider ξ as an observable on the σ-MV alge-
bra M .

Since the restriction of a σ-additive state m on E to M is a σ-additive state on
M , we have {m ◦ ξ : m ∈ Sσ(E)} ⊆ {m ◦ ξ : m ∈ Sσ(M)}. Similarly, the restriction
of a faithful state on E to M is a faithful state on M .

Let (Z,F) and (Y,G) be measurable spaces. We recall that a mapping ν : Z×G →
[0, 1] is a Markov kernel (MK) (see e. g. [30]) if

(i) for any fixed G ∈ G, the mapping νG(·) := ν(·, G) : Z → [0, 1] is F-measurable;

(ii) for any fixed z ∈ Z, νz(·) := ν(z, .) : G → [0, 1] is a probability measure.

The notion of a Markov kernel can be weakened as follows (see [15]). Let (Z,F)
and (Y,G) be measurable spaces. Let P be a family of probability measures on
(Z,F). We will say that ν : Z × G → [0, 1] is a weak Markov kernel (WMK) with
respect to P if

(i) z 7→ ν(z,G) is F-measurable;

(ii) for every G ∈ G, 0 ≤ ν(z,G) ≤ 1 P-a.e.;

(iii) ν(z, Y ) = 1 P-a.e. and ν(z, ∅) = 0 P-a.e.;
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(iv) if {Gn} is a sequence in G such that Gn ∩Gm = ∅ whenever n 6= m, then

ν(z,
⋃
n

Gn) =
∑

n

ν(z,Gn), P − a.e.

Let (Z,F) and (Y,G) be measurable spaces, and let ν : Z×G → [0, 1] be a WMK
w.r. P. It is easy to see that the mapping

G 7→
∫

Z

ν(z,G)P (dz)

is a probability measure on (Y,G) for every probability measure P in P.
For a (Z,F)-observable ξ, with range in a block M , denote P(ξ) := {m ◦ ξ : m ∈

Sσ(M)}. Then P(ξ) is a subset of the set of probability measures on (Z,F).

Definition 3.3. Let (Z,F) and (Y,G) be measurable spaces, let ξ be (Z,F)-observable
on E and let ν : Z × G → [0, 1] be a WMK with respect to P(ξ). The mapping ψ
from P(ξ) to the set of probability measures on (Y,G) defined by

ψ(m ◦ ξ)(G) :=
∫

Z

ν(z,G)m ◦ ξ(dz)

will be called the smearing of the observable ξ with respect to ν.
If, in addition, there is an (Y,G)-observable η on E such that

m(η(G)) = ψ(m ◦ ξ)(G), G ∈ G,

we say that η is defined by the smearing of ξ with respect to ν.

We note that sometimes the observable η is also called a smearing of ξ with
respect to ν.

Theorem 3.4. Every observable on a σ-lattice effect algebra is defined by a smear-
ing of a sharp observable.

P r o o f . Let ξ be an (Ω,A)-observable on E. By Theorem 3.1, the range {ξ(A) :
A ∈ A} is contained in a block M of E, and M is a σ-MV algebra. Let (X, T , h)
be the standard LS-representation of M , where X is a nonempty set, T is a tribe of
functions f : X → [0, 1] and h : T → M is a σ-MV algebra homomorphism which
maps T onto M and maps the sharp elements Sh(T ) of T onto sharp elements
Sh(M) of M . For every A ∈ A there is an fA ∈ T with h(fA) = ξ(A), where fA

is Sh(T )-measurable, and is unique up to h-null sets. Define ν : X ×A → [0, 1] by
ν(x,A) = fA(x). It was proved in [15, Examples 3.3, 4.2], that ν(x,A) is a weak
Markov kernel with respect to {m ◦ h : m ∈ Sσ(M)}. Owing to [2] we have

m(ξ(A)) = m(h(fA)) =
∫

X

fA(x)P (dx),
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where P := m ◦ h/Sh(T ) = m((h/Sh(T )). The restriction h/Sh(T ) : Sh(T ) →
Sh(M) can be considered as a sharp (X,Sh(T ))-observable on M , hence also on E.
By Definition 3.3, the observable ξ is defined by a smearing of the sharp observable
h/Sh(T ). �

Let for every block M , (XM , TM , hM ) denote its standard LS representation. By
Theorems 3.1 and 3.4, every observable ξ is defined by a smearing of hM/Sh(TM )
for some block M . Observe that the functions fA ∈ TM such that ξ(A) = hM (fA),
A ∈ A, are defined up to hM -null sets. Thus we may say that ν(x,A) = fA(x) is a
WMK with respect to hM , independently of states.

In what follows, we denote hR
M := hM/Sh(TM ), and we call hR

M a basic observable.
Next we show some conditions under which a smearing of a basic observable defines
an observable.

Let M be a block of E, and let (Ω,A) be a measurable space. Assume that
ν : XM × A → [0, 1] is a WMK with respect to P(hR

M ) = {m ◦ hR
M : m ∈ Sσ(M)}.

Suppose further that νA ∈ TM . Then for m ∈ Sσ(M),

ψ(m ◦ hR
M )(A) =

∫
XM

νA(x)m ◦ hR
M (dx) = m(hM (νA))

Clearly, if the mapping η : A 7→ hM (νA) is an observable, then η is defined by a
smearing of hR

M and we write η = ν ◦ hR
M .

Theorem 3.5. Let M be a block of E and (XM , TM , hM ) be its standard LS-
representation. Let (Ω,A) be a measurable space and let ν : XM ×A → [0, 1] be a
mapping with the property that for all A ∈ A, the function νA : X → [0, 1] belongs
to TM . Then:

(1) If ν is a Markov kernel, then η : A 7→ hM (νA) is an (Ω,A)-observable with
range in M .

(2) If ν is a weak MK with respect to P(hR
M ), and there is a faithful σ-additive

state on M , then η : A 7→ hM (νA) is an (Ω,A)-observable with range in M .

P r o o f . (1) Let ν be a MK. Since νA ∈ T , we have, by the BK-theorem, that for
every m ∈ Sσ(M),

m ◦ hM (νA) =
∫

X

νA(x)m ◦ hM (dx).

Define η(A) := hM (νA) ∈ M , A ∈ A. Since ν is MK, we have η(Ω) = hM (νΩ) =
h(1) = 1. If (Ai) is any sequence of pairwise disjoint sets in A with A =

⋃∞
i=1Ai,

then νA =
∑∞

i=1 νAi (for all x ∈ X), whence
∑n

i=1 νAi ≤ νA ≤ 1, which entails
that +̇n

i=1νAi = min(
∑n

i=1 νAi , 1) =
∑n

i=1 νAi , so that νAi are orthogonal and,
since hM is a σ-MV algebra morphism, we obtain hM (νA) = hM (

∑∞
i=1 νAi) =

hM (limn→∞
∑n

i=1 νAi) =
∨∞

n=1 hM (
∑n

i=1 νAi) =
∨∞

n=1⊕n
i=1hM (νAi) = ⊕∞i=1hM (νAi).

Hence η(A) = ⊕∞i=1η(Ai), which proves that η is an observable. By the definition,
η = ν ◦ hR

M .
(2) Let ν be a weak MK, and let m0 be a faithful state in Sσ(M). Let a ∈ M ,

then a = hM (fa) for some fa ∈ TM , and m0(a) = m0(hM (fa)), hence m0(a) = 0



Observables on σ-lattice effect algebras 549

iff a = hM (fa) = 0. Moreover, for any a ∈ M , m0(a) = 0 implies m(a) = 0
for all m ∈ Sσ(M). It follows that ν is a weak MK with respect to {m ◦ hR

M :
m ∈ Sσ(M)} iff ν is a weak MK with respect to m0 ◦ hR

M . Since ν is a WMK,
νA is Sh(T )-measurable function for every A ∈ A, and by supposition, νA ∈ T .
Therefore hM (νA) ∈ M . We have to prove that A 7→ hM (νA) is an observable. Let
(An)∞n=1 ⊆ A, An ∩Am = ∅, m 6= n, A =

⋃
nAn. Since ν is a WMK, νA =

∑
n νAn

a.e. {m ◦ hM : m ∈ Sσ(M)}. It follows that for all n ∈ N,
∑n

i=1 νAi ≤ νA

a.e. m0 ◦ hM , and therefore hM ({x :
∑n

i=1 νAi(x) � 1}) = 0. Put g1 = νA1 ,
gi = νAi ∧ (g1 + · · · + gi−1)⊥, i = 2, . . . , n. Then gi ∈ T , gi, i = 1, . . . , n are
pairwise orthogonal, and νAi = gi a.e. m0 ◦ hM . It follows that hM (+̇n

i=1νAi) =
hM (min(

∑n
i=1 νAi , 1) = hM (

∑n
i=1 gi) = ⊕n

i=1hM (gi) = ⊕n
i=1hM (νAi). Now νA =

limn

∑n
i=1 νAi a.e. m0 ◦ h, so that hM (νA) = hM (limn

∑n
i=1 gi) = ⊕∞i=1hM (gi) =

⊕∞i=1hM (νAi). Hence η(A) = ⊕∞i=1η(Ai), and η is an observable. �

Notice that if (Ω,A) is a standard Borel space (in particular, if (Ω,A) ≡ (R,B(R)),
then under conditions (2), there is a Markov kernel ν∗ such that, for every A ∈ A,
ν(x,A) = ν∗(x,A) a.e. m0 ◦ hR

M (see, e. g., [29, pp. 338–340], [26, Appendix] or [30,
Theorem 6.11]).

In the next theorem, a joint distribution of real observables on a σ-MV algebra
is constructed by means of Markov kernels. The method applies also to observables
on lattice σ-effect algebras, since the range of an observable is contained in a block,
which is a σ-MV algebra.

Notice that a standard LS representation need not contain all Sh(T )-measurable
functions. Indeed, by [8, Theorem 7.1.7 (3)], a tribe T contains all Sh(T )-measurable
functions iff T contains all constant [0, 1]-valued functions.

Theorem 3.6. Let M be a σ-MV algebra with a faithful state m0 ∈ Sσ(M)
which has a standard LS-representation (X, T , h) such that T contains all Sh(T )
-measurable functions. Let ξ, η be two real observables on M . Then there is
an observable ρ with value space (R2,B(R2)) such that ρ(B × R) = ξ(B) and
ρ(R×B) = η(B) for all B ∈ B(R).

P r o o f . Since the observables are real, and there is a faithful state, we may deal
with MKs instead of WMKs. Let µ : X×B(R) → [0, 1], ν : X×B(R) → [0, 1] be MKs
such that m(ξ(A)) =

∫
X
µ(x,A)m(hR(dx)) and m(η(B)) =

∫
X
ν(x,B)m(hR(dx)),

A,B ∈ B(R), m ∈ Sσ(E). For any fixed x ∈ X, µ(x, .) and ν(x, .) are probability
measures on B(R). Define λ(x,A × B) = µ(x,A)ν(x,B), then λ(x, .) extends to a
probability measure on B(R2) for every x ∈ X.

Moreover, for every fixedD ∈ B(R2), λD := λ(·, D) is Sh(T )-measurable. Indeed,
the family {D ∈ B(R2) : λD is measurable} is a monotone system and contains the
algebra generated by rectangle sets. Hence λ is a Markov kernel.

By our assumptions, λD ∈ T for every D. Define ρ(D) = h(λD), by Theorem
3.5, ρ is an observable on M with the desired properties. �

Let ξ : (Ω,A) → E be a sharp observable with the range R(ξ). Then there is
a block M such that R(ξ) is contained in the Boolean σ-algebra Sh(M) of sharp
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elements of M . Since Sh(M) is the range of the basic observable hR
M , we have

R(ξ) ⊆ R(hR
M ), whence by [31, Theorem 1.4], there is a measurable function f :

X → Ω such that ξ(A) = hR
M ◦ f−1(A), A ∈ A (where f−1(A) ∈ Sh(TM ), owing to

measurability). In other words, ξ is the function f of hR
M . For every m ∈ Sσ(M) we

then have m(ξ(A)) =
∫

X
χf−1(A)(x)m ◦ hR

M (dx). If we put λ(x,A) := χf−1(A)(x),
then λ is a MK such that ξ = λ ◦ hR

M , and for every A ∈ A, λ(x,A) ∈ {0, 1}. This
proves the following statement:

Theorem 3.7. An observable ξ from (Ω,A) to E is sharp if and only if there is a
block M of E and a measurable function f : XM → Ω such that ξ(A) = hR

M ◦f−1(A)
for every A ∈ A. Moreover, ξ is defined by a smearing of hR

M with respect to the
MK λ(x,A) := χf−1(A)(x).

The method of the proof of the following theorem is a modification of the last
part of the proof of [16, Theorem 3.3].

Theorem 3.8. Let m0 be a faithful σ-additive state on E. Let ξ : (Ω,A) → E,
η : (Σ,B) → E be observables, and let ξ be defined by a smearing of η with respect
to a WMK ν with values in {0, 1}. If (Ω,A) is a standard Borel space, then there
is a measurable function f : Σ → Ω such that for every state m and every A ∈ A,
m(ξ(A)) = m(η ◦ f−1(A)).

P r o o f . Since (Ω,A) is standard Borel space, by [26, Appendix], there is a MK
λ : Σ × A → [0, 1] such that, for every A ∈ A, λ(y,A) ∈ {0, 1} modulo m0 ◦ η.
Put π(A) := {y ∈ Σ : λ(y,A) = 1}, A ∈ A. Then π(A) ∩ π(Ac) = ∅, since λ(y, .)
is a probability measure. This yields a partition Σ = π(A) ∪ π(Ac) ∪ CA, where
η(CA) = 0 by the assumptions. Then, for every state m,

m(ξ(A)) =
∫

π(A)

λ(y,A)m(η(dy)) +
∫

π(Ac)

λ(y,A)m(η(dy)) +
∫

CA

λ(y,A)m(η(dy))

The first integral is m(η(π(A)), the other two are 0. Next we show that π is a
σ-homomorphism of sets modulo m0 ◦ η.

(1) π(A ∩ B) = {y : λ(y,A ∩ B) = 1}. Since λ(y, .) is a probability measure,
λ(y,A ∩B) = 1 iff λ(y,A) = 1 = λ(y,B). This entails π(A ∩B) = π(A) ∩ π(B).

(2) If A ⊆ B, then π(A) ⊆ π(B) follows from λ(y,A) ≤ λ(y,B). It is also clear
that π(B \A) = π(B) \ π(A).

(3) Let An ∈ A,n ∈ N, An∩Am = ∅m 6= n. Put A :=
⋃

nAn. Then An ⊆ A =⇒
π(An) ⊆ π(A), hence

⋃
n π(An) ⊆ π(A). Let C := π(A) \

⋃
n π(An). If y ∈ C, then

λ(y,A) = 1 while λ(y,An) 6= 1 for all n, so that either λ(y,An) = 0 or y ∈ CAn .
Since λ(y,A) =

∑
n λ(y,An) = 1, there is n with λ(y,An) 6= 0, hence y ∈ CAn .

Therefore C ⊆
⋃

n CAn , so that η(C) = 0, hence π(A) =
⋃

n π(An) modulo η-null
sets.

This concludes the proof that π is a set σ-homomorphism modulo η.
Recall that µ := m0◦η is a probability measure on B. Put I := {B∈B : µ(B)=0},

then I is a σ-ideal of sets, and B/I is a Boolean algebra. Let p : B 7→ [B] be the
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canonical homomorphism. Put π1 : A π→ B p→ B/I. Then π1 is a σ-homomorphism.
The triple (Σ,B, p), where p : B → B/I is surjective, satisfies conditions of [22,
Lemma 4.1.8], or [31, Theorem 1.4], and hence there is f : Σ → Ω, measurable, and
such that π1(A) = p◦f−1(A), A ∈ A. By definition of I, B1 ∈ [B] iff µ(B1∆B) = 0,
and since m0 is faithful, η(B1) = η(B). Hence π1(A) = [f−1(A)] = [π(A)] implies
m(ξ(A)) = m(η(π(A)) = m(η(f−1(A)), m ∈ Sσ(E). �

A set S of states on E is said to be order determining iff for a, b ∈ E, m(a) ≤ m(b)
for all m ∈ S implies a ≤ b [8, p. 254].

Corollary 3.9. If there is an order determining set of states on E, then under the
conditions of Theorem 3.8, ξ(A) = η ◦ f−1(A) for every A ∈ A. Consequently,
R(ξ) ⊆ R(η). In particular, if η is sharp, then ξ is sharp as well.

In what follows, we will consider ordering with respect to smearings of observables
with ranges in the same block. For a blockM , letR(M) denote the set of observables
with ranges in M .

If ξ and η are observables in R(M), we will write ξ � η if η is defined by a
smearing of ξ.

If ξ � η and η � ξ, we will say that ξ and η are equivalent and write ξ ∼ η. An
observable ξ is called minimal if η � ξ implies ξ ∼ η. By Theorem 3.4, we have for
every block M , hR

M ∈ R(M) and hR
M � ξ for every ξ ∈ R(M). Moreover, hR

M is
minimal in R(M).

Let us recall the following facts (cf. [17]). Let (Z,F), (Y,G) and (V,H) be
measurable spaces, ν : Z × G → [0, 1] be a WMK with respect to a probability
measure τ on (Z,F), µ : Y × H → [0, 1] be a WMK with respect to a probability
measure ρ on (Y,G) such that Tν(τ) is absolutely continuous with respect to ρ, where
Tν(τ) is the smearing of τ by ν, i. e., Tν(τ)(G) =

∫
Z
ν(z,G)τ(dz), G ∈ G. By [17,

§ 2.1], then there is a WMK λ : Z × H → [0, 1], such that for every probability
measure p� τ , Tµ(Tν(p)) = Tλ(p). This WMK λ is called the composition of µ and
ν, and will be denoted by λ = µ ◦ ν.

Assume that there is a faithful statem0 onM . Let ξ � η w.r. ν, and η � ζ w.r. µ.
Putting τ = m0 ◦ ξ, ρ = m0 ◦ η, we have ρ(G) = m0(η(G)) =

∫
Z
ν(z,G)m0(ξ(dz)) =

Tν(τ)(G), and for every m ∈ Sσ(M), m◦ξ � m0◦ξ = τ . This entails that ζ � ξ w.r.
λ, where λ = µ ◦ ν. It follows that � is reflexive and transitive, hence a preorder.

4. OBSERVABLES WITH THE RANGE IN THE SET OF SHARP REAL
OBSERVABLES

For every a ∈ E, there is a block M with a ∈ M , hence by the LS theorem,
a = hM (fa), where fa ∈ TM . Put Λa : B(R) → E, Λa(B) = hR

M (f−1
a (B)). Since fa

is Sh(TM )-measurable, it follows that Λa is a sharp real observable. It was proved in
[23, Theorem 4.1] that the map a 7→ Λa is one-to-one, i. e. it does not depend on the
choice of the representative fa of the element a. Owing to [2], for every σ-additive
statem, m(a) = m(hM (fa)) =

∫
XM

fa(x)m◦hR
M (dx). By the integral transformation

theorem,
∫

XM
fa(x)m ◦ hR

M (dx) =
∫ 1

0
tm ◦ hR

M (f−1(dt)) =
∫ 1

0
tm(Λa(dt)).
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It was proved in [10], that every element of a Dedekind σ-complete unital `-
group admits a unique rational spectral resolution. Since σ-MV algebras in the
Mundici representation are categorically equivalent with Dedekind σ-complete `-
groups with strong unit [8, Prop. 6.22], we may derive from [10, Corollary 4.8] that
for every element a in a σ-MV algebra M , the observable Λa is uniquely determined
by its rational spectral resolution, and hence does not depend on the choice of the
LS representation, and conversely, every element a ∈ M is uniquely defined by
the observable Λa [24]. Moreover, it was proved in [25], that for any a ∈ E, the
observable Λa does not depend on the choice of the block M to which a belongs.
Consequently, elements of E are in one-to-one correspondence with special sharp
real observables of E.

As a special case of Theorem 3.7 and taking into account the proof of [26, Theorem
4.1], we obtain the following result.

Theorem 4.1. A real observable ξ on E is sharp if and only if there is a block
M and a measurable function f : XM → [0, 1] such that ξ(B) = hR

M (f−1(B)),
B ∈ B(R). In addition, if f ∈ TM , then ξ = Λa, where a = hM (f).

Let M be a block of E, which is σ-MV algebra with standard LS-representation
(XM , TM , hM ). Let ξ : (Ω,A) → E be an observable with range in M . For every
A ∈ A, ξ(A) = hM (fA) with fA ∈ TM , and Λξ(A) = hR

M ◦f−1
A : B([0, 1]) → Sh(M) ⊆

Sh(E) is a sharp real observable on E. Let us write ξ̃ for the map A 7→ Λξ(A). Then ξ̃
mapsA to the set of sharp real observables onM with the value space ([0, 1],B([0, 1]).
For every A ∈ A, ξ̃(A) = Λξ(A) can be considered as a real observable on the σ-OML
Sh(E) of all sharp elements on E.

Let L be a σ-OML. Observables (ui)i∈I associated with L are compatible iff their
ranges are contained in the same block B of L. We recall some basic facts about
compatible observables on σ-OMLs and their functional calculus, see [31, Th. 1.4,
Th. 1.6].

Let ξ1, ξ2, . . . , ξn be compatible sharp real observables on E. Then their ranges
are contained in Sh(M) for a block M . Put L = Sh(M), S = Sh(TM ). Then
hR

M maps S onto L. By Theorem 4.1, there are measurable functions fi : XM →
[0, 1] such that ξi = hR

M ◦ f−1
i . Starting with (XM , Sh(TM ), hR

M ) as (X,S, h), we
will follow the construction in the proof of [31, Th. 1.6 (ii)]. Let L0 denote the
smallest sub-σ-algebra of Sh(M) containing the ranges of ξi, i = 1, 2, . . . , n. Define
f̄ : XM → Rn by f̄(x) = (f1(x), f2(x), . . . , fn(x)). Then f̄ is Sh(T )-measurable.
Let u := hR

M ◦ f̄−1. Then u : B(Rn) → Sh(M) is a σ-homomorphism (of boolean
σ-algebras) and ξi(B) = u(p−1

i (B)), i = 1, 2, . . . , n for all B ∈ B(Rn), where pi is
the projection from Rn to R. Since B(Rn) is the smallest σ-algebra of subsets of Rn

containing all the sets p−1
i (B), i = 1, 2, . . . , n, the range of u is L0. For any Borel

function φ : Rn → R, the mapping u ◦ φ−1 is an observable on Sh(M) whose range
is contained in L0. Conversely, if η is any sharp real observable with range in L0,
there exists a Borel function φ : Rn → R such that η(B) = u(φ−1(B)), for all B.

By [31, Remark p. 17], u ◦ φ−1 is interpreted as the function φ of the observables
ξi, i = 1, 2, . . . , n, in symbols φ(ξi, ξ2, . . . , ξn). Notice that the function of observables
does not depend on the choice of (X,S, h), see [31, Remark on p. 17].
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Thus for every B ∈ B(R),

φ(ξ1, ξ2, . . . , ξn)(B) = hR
M ◦ f̄−1(φ−1(B)) = hR

M (φ ◦ (f1, . . . , fn))−1(B). (2)

We will also need the following definition. Let ηn, η(n ∈ N) be real observables on
L with ranges in a block B. We say that the sequence ηn converges to η everywhere
if for every ε > 0 we have lim inf((ηn − η)(−ε,+ε)) = 1, [22, Def. 6.1.2]. Assume
that for some observable z and measurable functions fn, f we have ηn = z ◦f−1

n , η =
z ◦ f−1. Then the sequence ηn converges to η everywhere iff there is a subset
Z ∈ B(R) such that z(Z) = 1 and fn → f everywhere on Z, [22, Th. 6.1.3].

Lemma 4.2. (i) Let a1, a2, . . . , an be orthogonal elements contained in a block M
of E. Then Λa1⊕a2···⊕an = φ(Λa1 , . . . ,Λan), where φ(t1, . . . , tn) = t1 + t2 + · · ·+ tn.
(ii) Let a, b ∈M , b ≤ a. Then Λa	b = φ(Λa,Λb), where φ(t1, t2) = t1 − t2.

P r o o f . (i) Let L0 be the smallest sub-σ-algebra of Sh(M) containing the ranges
of Λai , i = 1, 2, . . . , n. Put a := a1⊕a2⊕· · ·⊕an. For every x ∈ XM = Ext(S(M)),
x(a) =

∑
i≤n x(ai), hence â(x) =

∑
i≤n âi(x), and ai = hM (âi), i = 1, 2, . . . , n,

a = hM (â). Then for all B ∈ B(R), Λai
(B) = hM ◦ âi

−1(B), i = 1, 2, . . . , n,
Λa = hM ◦ â−1(B). Put φ(t1, . . . , tn) =

∑
i≤n ti, then by (2), Λa1 + · · · + Λan =

hR
M ◦ (

∑
i≤n âi)−1 = hR

M ◦ â−1 = Λa.
(ii) The proof follows the same pattern as the proof of (i) with φ(t1, t2) = t1 − t2

and taking into account that x(a	 b) = x(a)− x(b) for all x ∈ XM = ExtS(M). �

Theorem 4.3. For every observable ξ, the mapping ξ̃ : A 7→ Λξ(A) has the following
properties:

(GO1) ξ̃(Ω) = Λ1, where Λ1 is the (unique) observable on Sh(E) with Λ1({1}) = 1;

(GO2) if A1, . . . , An are pairwise disjoint elements of A, then ξ̃(A1 ∪ · · · ∪ An) =∑n
i=1 ξ̃(Ai), where the latter sum is given by the functional calculus for com-

patible observables;

(GO3) for any An, A ∈ A, n ∈ N such that An ↗ A, we have ξ̃(An) → ξ̃(A)
everywhere.

P r o o f . Write h = hM . (GO1): we have ξ(Ω) = 1 = h(1̂), where 1̂(x) =
x(1) = 1 for all x ∈ XM = ExtS(M). Then 1̂−1({1}) = XM , hence Λξ(Ω)({1}) =
h(1̂−1({1}) = h(XM ) = h(χXM

) = 1.

(GO2): As A1, . . . , An are disjoint, ξ(A1), ξ(A2), . . . , ξ(An) are orthogonal, and
ξ(∪n

i=1Ai) = ⊕n
i=1ξ(Ai). Put ai := ξ(Ai), i = 1, 2, . . . , n, a := ξ(∪n

i=1Ai) = ⊕n
i=1ai,

then ai = h(âi), a = h(â), i = 1, 2, . . . , n, and Λai = h ◦ âi
−1, Λa = h ◦ â−1.

The proof follows by Lemma 4.2 (i).

(GO3): If An ↗ A, then ξ(An) ↗ ξ(A). Let ξ(Ai) = ai = h(âi), ξ(A) = a =
h(â). Put fn := sup{âi : i ≤ n}, then (fn)n is a nondecreasing sequence of functions
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in TM with h(fn) =
∨

i≤n h(âi) = an for every n. Put Vn := {x ∈ XM : fn(x) 6=
ân(x)}, then h(Vn) = 0.

Let f = limn fn = supn fn be their pointwise limit. Then f ∈ TM , h(f) =
h(supn fn) =

∨
n h(fn) =

∨
n an = a. Put V = {x ∈ XM : f(x) 6= â(x)}, then

h(V ) = 0.
So we have ân → â pointwise on Z := XM \ (V ∪

⋃
n Vn), h(Z) = 1. This entails

that for every ε > 0,
⋃

n

⋂
k≥n(â− ân)−1(−ε,+ε) = Z.

By Lemma 4.2 (ii), Λa − Λan
= h ◦ (â− ân)−1. Thus

lim inf(Λa − Λan)(−ε,+ε) = lim inf h ◦ (â− ân)−1(−ε,+ε)
= h(

⋃
n

⋂
k≤n

(â− ân)−1(−ε,+ε))

= h(Z) = 1.

This concludes the proof that ξ̃(An) → ξ̃(A) everywhere. �

Definition 4.4. Let (Ω,A) be a measurable space. A mapping Ξ from A to a
compatible set of real observables on Sh(E) with properties (GO1), (GO2), (GO3)
will be called an (Ω,A)-generalized observable on E.

If Ξ = ξ̃ for an observable ξ, we say that Ξ is associated with ξ.

Let Ξ be an (Ω,A)-generalized observable on E and letM be a block that contains
the range of Ξ(A), ∀A ∈ A. Define

Pm
Ξ (A) =

∫
R
tm ◦ Ξ(A)(dt), A ∈ A,m ∈ Sσ(M). (3)

Notice that if Ξ is a generalized observable associated with an (Ω,A)-observable ξ,
then Ξ(A) = ξ̃(A) = hR

M ◦ f−1
A , A ∈ A, where fA ∈ TM is such that ξ(A) = hM (fA).

Then we have

Pm
ξ̃

(A) =
∫

R
tm ◦ ξ̃(A)(dt) =

∫
R
tm ◦ hR

M (f−1
A (dt))

=
∫

XM

fA(x)m ◦ hR
M (dx),

By (1), the identity (3) can be equivalently written as

Pm
ξ̃

(A) = m(ξ(A)). (4)

Lemma 4.5. For every m ∈ Sσ(M), the mapping A 7→ Pm
Ξ (A) is a probability

measure on (Ω,A).

P r o o f . Recall that for all A ∈ A, Ξ(A) is a sharp real observable with range in
M . By Theorem 4.1, there is a measurable function fA : XM → [0, 1] such that

Ξ(A)(B) = hR
M (f−1

A (B)), B ∈ B(R).
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By (GO1), Ξ(Ω)(B) = 1 if 1 ∈ B, and Ξ(Ω)(B) = 0 otherwise. From this we obtain
that hR

M ({x ∈ XM : fΩ(x) 6= 1}) = 0, and

Pm
Ξ (Ω) =

∫
R
tm ◦ Ξ(Ω)(dt)

=
∫

R
tm ◦ hR

M (f−1
Ω (dt))

=
∫

XM

fΩ(x)m ◦ hR
M (dx) = 1.

Let Ai, i ∈ N, be a sequence of pairwise disjoint elements of A, and A =
⋃

i∈N Ai.
From (GO2) and (GO3) we get

Ξ(A) =
∑
i∈N

Ξ(Ai), (5)

where the series on the right converges everywhere. Now let Ξ(Ai) = hR
M ◦ f−1

Ai
,

Ξ(A) = hR
M ◦f−1

A (cf. Theorem 4.1). By the functional calculus, equation (5) entails
that

hR
M ({x ∈ XM :

∑
i∈N

fAi
(x) 6= fA(x)}) = 0.

Therefore for all m ∈ Sσ(M),

Pm
Ξ (A) =

∫
R
tm ◦ Ξ(A)(dt) =

∫
XM

fA(x)m ◦ hR
M (dx)

=
∫

XM

∑
i∈N

fAi(x)m ◦ hR
M (dx)

=
∑
i∈N

∫
XM

fAi(x)m ◦ hR
M (dx) =

∑
i∈N

Pm
Ξ (Ai).

�

We will use the notation P(Ξ) := {Pm
Ξ : m ∈ Sσ(M)}. Then P(Ξ) is a set of

probability measures on (Ω,A).

Definition 4.6. Let (Z,F) and (Y,G) be measurable spaces, Ξ be a (Z,F)-generalized
observable on E and let ν : Z × G → [0, 1] be a WMK with respect to P(Ξ). The
mapping ψ from P(Ξ) to the set of probability measures on (Y,G) defined by

ψ(Pm
Ξ )(G) :=

∫
Z

ν(z,G)Pm
Ξ (dz)

will be called the smearing of the generalized observable Ξ with respect to ν.
If, in addition, there is a (Y,G)-generalized observable Θ on E such that

Pm
Θ (G) = ψ(Pm

Ξ )(G), G ∈ G,

we say that Θ is defined by the smearing of Ξ with respect to ν.
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Lemma 4.7. The smearing of ξ̃ coincides with the smearing of ξ.

P r o o f . By Definition 4.6 and (4), ψ(Pm
ξ̃

(G)) =
∫

Z
ν(z,G)Pm

ξ̃
(dz) =

=
∫

Z
ν(z,G)m(ξ(dz)). �

Theorem 4.8. Every generalized observable Ξ is defined by a smearing of a basic
observable hR

M .

P r o o f . Let Ξ be a (Ω,A)-generalized observable on E. There is a block M such
that for every A ∈ A, the range of Ξ(A) belongs to M . By Theorem 4.1, for every
A ∈ A, there is a measurable function fA : XM → [0, 1] such that Ξ(A)(B) =
hR

M (f−1
A (B)) for every B ∈ B(R). Then we have for every m ∈ Sσ(M),

Pm
Ξ (A) =

∫
R
tm ◦ Ξ(A)(dt)

=
∫

R
tm ◦ hR

M (f−1
A (dt))

=
∫

XM

fA(x)m ◦ hR
M (dx).

Defining ν(x,A) = fA(x), it is easy to check that ν is a WMK with respect to
{m ◦ hR

M : m ∈ Sσ(M)}, and we obtain that Ξ is defined by a smearing of hR
M

(equivalently, of h̃R
M ) with respect to the WMK ν. �

Our last theorem shows that if there is a faithful state on E, then the system of
generalized observables is closed under smearings.

Theorem 4.9. Let (Z,F) and (Y,G) be measurable spaces, Ξ be a (Z,F)-generalized
observable with ranges in M , and let µ : Z×G → [0, 1] be a WMK. If there is a faith-
ful state in Sσ(M), then the smearing of Ξ with respect to µ defines a generalized
observable.

P r o o f . By Theorem 4.8, Ξ is defined by a smearing of hR
M with respect to a WMK

ν : XM × F → [0, 1], so that Pm
Ξ (F ) =

∫
XM

ν(x, F )m ◦ hR
M (dx), m ∈ Sσ(M). Then

ψ(Pm
Ξ )(G) =

∫
Z
µ(z,G)Pm

Ξ (dz) =
∫

XM
λ(x,G)hR

M (dx), where λ : XM × G → [0, 1]
is a composition of µ and ν. Since λ is a WMK, the function fG : XM → [0, 1],
fG(x) := λ(x,G) is measurable for every G ∈ G, and it is easy to see that Θ(G) :=
hR

M ◦ f−1
G is a generalized observable.

Moreover,

Pm
Θ (G) =

∫
R
tm ◦ hR

M (f−1
G (dt)) =

∫
XM

fG(x)m ◦ hR
M (dt)

=
∫

Z

µ(z,G)Pm
Ξ (dz) = ψ(Pm

Ξ )(G).

�
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5. CONCLUDING REMARKS

We have proved that on a lattice effect algebra, every observable is defined by a
smearing of a sharp observable, but further conditions are needed to ensure that a
smearing of an observable defines an observable. In order to close the set of com-
patible observables under smearings, we need to introduce generalized observables.
It might be instructive to compare this situation with the algebra of Hilbert space
effects.

Let H be a complex, separable Hilbert space, and E(H) denote the effect algebra
of Hilbert space effects, i. e., operators between 0 and I in the usual ordering of
self-adjoint operators. The set E(H) can be organized into an effect algebra, and
the effect algebra ordering coincides with the original one. In this ordering, E(H) is
far from being a lattice (see, e. g., [8, § 1.11]).

Recall that observables on E(H) coincide with normalized positive operator-
valued measures (POVM). The sharp observables are projection valued measures
(PVM), which correspond to self-adjoint operators. If the range of a POVM consists
of commuting effects, it is contained in a maximal Abelian von Neumann subalgebra
R, which can be described as the set of all measurable functions of a sharp observ-
able (or the corresponding self-adjoint operator), and E(H) ∩ R can be organized
into a σ-MV-algebra. The corresponding tribe T in the LS-representation contains
all the Sh(T )-measurable functions. It follows that every generalized observable on
E(H)∩R is an observable and the set of observables with range in R is closed under
smearings.

In fact, the last statement is true for the set of all observables on E(H): every
smearing of an observable is again an observable. Moreover, the set of σ-additive
states on E(H) is rich enough so that every POVM is determined by the set of its
probability distributions in all states.

On the other hand, it is well known ([13, 15], that a POVM is defined by a
smearing of a sharp observable iff it has commutative range. But most of POVMs
have non-commutative ranges.
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[24] S. Pulmannová: Spectral resolutions in Dedekind σ-complete `-groups. J. Math.
Anal. Appl. 309 (2005), 322–335.
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