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BOUNDARY LAYER PHENOMENON FOR THREE
–POINT BOUNDARY VALUE PROBLEM FOR THE
NONLINEAR SINGULARLY PERTURBED SYSTEMS

Robert Vrabel

This paper deals with the three–point boundary value problem for the nonlinear singu-
larly perturbed second-order systems. Especially, we focus on an analysis of the solutions
in the right endpoint of considered interval from an appearance of the boundary layer point
of view. We use the method of lower and upper solutions combined with analysis of the
integral equation associated with the class of nonlinear systems considered here.

Keywords: singularly perturbed systems, three–point boundary value problem, method of
lower and upper solutions, controller

Classification: 93C10, 34E15, 34A34, 34A40, 34B10

1. MOTIVATION AND INTRODUCTION

We will consider the nonlinear singularly perturbed systems described by differential
equation of the form

εy′′ + ky = f(x, y), x ∈ 〈a, b〉, k < 0 (1)

with three–point boundary value conditions

y′(a) = 0, y(b) = y(c), a < c < b (2)

where ε is a small perturbation parameter (0 < ε � 1). The dependence upon the
variable x of the continuous function f represents the effects of outer disturbances.

Singularly perturbed systems (SPSs) normally occur due to the presence of small
“parasitic” parameters, armature inductance in a common model for most DC mo-
tors, small time constants, etc.

Boundary value problems (1), (2) can arise in the study of the steady–states of a
heated bar with a thermostat described by partial differential equation

∂y

∂t
= ε

∂2y

∂x2
+ ky − f(x, y)

with stationary condition ∂y/∂t = 0, where a controller at x = b maintains a fixed
temperature according to the temperature detected by a sensor at x = c, while
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the rate of temperature change at the left end of the bar is zero. In this case, we
consider a uniform bar of length b − a with non-uniform temperature lying on the
x-axis from x = a to x = b. The parameter ε represents the thermal diffusivity.
Thus, the singular perturbation problems are of common occurrence in modeling
the heat-transport problems with large Peclet number [5, 10, 13]. One of the typical
behaviors of SPSs is the boundary layer phenomenon: the solutions vary rapidly
within very thin layer regions near the boundary. The goal of this paper is to
analyze the thermal boundary layer phenomena arising in such singularly perturbed
systems. We give an accurate estimate for determining the rate of boundary layer
growth.

The literature on control of nonlinear SPSs is extensive, at least starting with the
pioneering work of P. Kokotovic et al. nearly 30 years ago [12] and continuing to
the present including authors such as Z. Artstein [1, 2], V. Gaitsgory [3, 4, 6], etc.

In the past few years the multi–point boundary value problem (BVP) has received
a wide attention see e. g. [8, 11] and the references therein. For example, Khan
[11] have studied a four-point boundary value problem of type y(c) − ν1y(a) =
0, y(b) − ν2y(d) = 0 where the constants ν1, ν2 are not simultaneously equal to 1
and ε = 1.

Recently in [14], we have shown that for every ε > 0 sufficiently small (ε ∈ (0, ε0〉)
there is a unique solution yε of BVP (1), (2) such that [x, yε(x)] ⊂ D(u) and yε

converges uniformly to the solution u of reduced problem ku = f(x, u) for ε → 0+

on every compact subset K ⊂ 〈a, b). Consequently, yε(b) = yε(c) → u(c) for ε → 0+.
For definition of the set D(u) see below.

In this paper we focus our attention on the detailed analysis of the behavior of
the solutions yε for (1), (2) in the point x = b when a small parameter ε tends to
zero. We show that the solutions yε of (1), (2) remain close to u on K with an arising
fast transient of yε to yε(b) (|y′ε(b)| → ∞ for u(b) 6= u(c) and ε → 0+), which is the
so-called boundary layer phenomenon [7, 12]. Boundary layers are formed due to
the nonuniform convergence of the exact solution yε to the solution u of reduced
problem in the neighborhood of the right end b.

We will assume that the following conditions are satisfied throughout this paper:

(H1) The solution u of a reduced problem ku = f(x, u) is a C3 function defined on
the interval 〈a, b〉.

Denote D(u) = {(x, y)| a ≤ x ≤ b, |y − u(x)| ≤ d(x)} , where d(x) is the positive
continuous function on 〈a, b〉,

d(x) =


δ for a ≤ x ≤ b− δ
2
δ |u(b)− u(c)|(x− b) + 2|u(b)− u(c)|+ δ for b− δ ≤ x ≤ b− δ

2

|u(b)− u(c)|+ δ for b− δ
2 ≤ x ≤ b,

where δ is a small positive constant.

(H2) f(c, u(c)) 6= f(b, u(c)).

It is instructive for the future to keep in mind that this assumption implies that
u(c) 6= u(b) and f (c, yε(c)) 6= f (b, yε(b)) for every sufficiently small ε, say 0 < ε < ε0.
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(H3) f ∈ C1(D(u)) and there exists a positive constant w such that∣∣∣∣∂f(x, y)
∂y

∣∣∣∣ ≤ w < −k for every (x, y) ∈ D(u).

Notation.

g1,ε(x) = k − ∂f(x,yε(x))
∂y

g2,ε(x) = ∂f(x,yε(x))
∂x

m = −k − w

γε(x) = 1
m |εu′′′(x) + g1,ε(x)u′(x)− g2,ε(x)| .

Obviously, γε(x) ≥ 0 and limε→0+ γε(x) = 0 for x ∈ 〈a, b) and limε→0+ γε(b) 6= 0 for

u′(b) 6= ∂f(b,u(c))
∂x

(
k−∂f(b,u(c))

∂y

)−1

. The equality u(b) = u(c) implies limε→0+ γε(b) = 0.

2. BOUNDARY LAYER PHENOMENON AT x = b

For an illustrative example we consider (1), (2) with f(x, y) = x2, a = 0, b = 2, c = 1
and its solution

yε(x) =−3
k
· e2

√
− k

ε

e4
√
− k

ε − e3
√
− k

ε − e
√
− k

ε + 1
· e
√
− k

ε x

− 3
k
· e2

√
− k

ε

e4
√
− k

ε − e3
√
− k

ε − e
√
− k

ε + 1
· e−

√
− k

ε x +
x2

k
− 2ε

k2
.

Hence we have

1. lim
ε→0+

yε (x0) = f(x0)
k = u (x0) for every x0 ∈ 〈0, 2)

2. lim
ε→0+

yε (2) = f(1)
k = u (1)

3. lim
ε→0+

|y′ε (2)| = ∞ (a boundary layer phenomenon).

We precede the main result of this article with the following important lemmas.

Lemma 2.1. Let the assumptions (H1) and (H3) hold. Let [x, yε(x)] ⊂ D(u) for
ε ∈ (0, ε0〉 and x ∈ 〈a, b〉 where yε is the solution of (1), (2). Then we have on 〈a, b〉
the estimate

|y′ε(x)− u′(x)| ≤ vL,ε(x) + vR,ε(x) + γε,max (3)

where

vL,ε(x) = |u′(a)| e
√

m
ε (a−x)

vR,ε(x) = |u′(b)− y′ε(b)| e
√

m
ε (x−b)

γε,max = max {γε(x); x ∈ 〈a, b〉} .
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P r o o f . Differentiating (1) with respect to the variable x we obtain for y′ε, ε ∈ (0, ε0〉
linear differential equation

εz′′ + g1,ε(x)z = g2,ε(x) (4)

with the Dirichlet boundary condition

z(a) = 0, z(b) = y′ε(b). (5)

First we show that zε = y′ε is an unique solution of Dirichlet BVP (4), (5) for yε,
ε ∈ (0, ε0〉 . Assume to the contrary, that Z1, Z2 are two solutions of (4), (5) for ε ∈
(0, ε0〉 fixed. Denote Z(x) = Z1(x)−Z2(x). Then Z is a solution of the homogeneous
Dirichlet problem

εz′′ + g1,ε(x)z = 0,

z(a) = 0, z(b) = 0.

Thus there is x0 ∈ (a, b) such that Z (x0) 6= 0, Z ′ (x0) = 0 and Z (x0) Z ′′ (x0) ≤ 0
which contradicts to the assumption (H3). To prove Lemma 2.1 it is sufficient to
show that for every yε, ε ∈ (0, ε0〉 there is a solution zε of (4), (5) satisfying (3). We
apply the method of lower and upper solutions [9]. As usual, a function αε is called
a lower solution of the Dirichlet BVP (4), (5) if αε ∈ C2(〈a, b〉) and satisfies

εα′′ε (x) + g1,ε(x)αε ≥ g2,ε(x) (6)

αε(a) ≤ 0, αε(b) ≤ y′ε(b).

An upper solution βε ∈ C2(〈a, b〉) of the problem (4), (5) is defined similarly by
reversing the inequalities. If αε ≤ βε on 〈a, b〉 then there exists a solution zε with
αε ≤ zε ≤ βε on 〈a, b〉.

Define
αε(x) = u′(x)− vL,ε(x)− vR,ε(x)− γε,max

and
βε(x) = u′(x) + vL,ε(x) + vR,ε(x) + γε,max.

It is easy to check that αε(a) ≤ 0 ≤ βε(a), αε(b) ≤ y′ε(b) ≤ βε(b) and αε(x) ≤ βε(x)
for x ∈ 〈a, b〉. Now we show that the inequality (6) holds. For βε we proceed
analogously.

εα′′ε (x) + g1,ε(x)αε(x)− g2,ε(x)
= εu′′′(x)− εv′′L,ε(x)− εv′′R,ε(x)
+ g1,ε(x) (u′(x)− vL,ε(x)− vR,ε(x)− γε,max)− g2,ε(x)
≥ εu′′′(x)− εv′′L,ε(x)− εv′′R,ε(x)
+ g1,ε(x)u′(x) + mvL,ε(x) + mvR,ε(x) + mγε,max − g2,ε(x)
= εu′′′(x) + g1,ε(x)u′(x)− g2,ε(x) + mγε,max ≥ 0.

The Lemma 2.1 is proven. �
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Lemma 2.2. Let the assumptions (H1) and (H3) hold. Then the set

{ε |y′ε(b)| ; ε ∈ (0, ε0〉}

is bounded.

P r o o f . By Lagrange’s Theorem and from Diff. Eq. (1) we obtain

|y′ε(b)− y′ε(a)| = |y′′ε (θε)| (b− a) =
1
ε
|f (θε, yε(θε))− kyε(θε)| (b− a) ≤ C∗

δ

ε
(b− a)

where θε ∈ (a, b) and C∗
δ = max {|f(x, y)− ky|; (x, y) ∈ D(u)} .

Hence ε |y′ε(b)| ≤ C∗
δ (b− a) for ε ∈ (0, ε0〉 . �

3. MAIN RESULT

Our main result is the following.

Theorem 3.1. Under the assumptions (H1)-(H3) the problem (1), (2) has for every
ε, ε ∈ (0, ε0〉 the unique solution yε in D(u) which converges uniformly to the solution
u of reduced problem for ε → 0+ on an arbitrary compact subset K of 〈a, b) and the
set

{|y′ε(x)| ; x ∈ 〈a, b〉, ε ∈ (0, ε0〉}

is unbounded.
More precisely,

|y′ε(b)| = O

(
1√
−kε

)
i. e. |y′ε(b)| → ∞ for ε → 0+. (7)

P r o o f . The existence, uniqueness in D(u) and asymptotic behavior of the solutions
for (1), (2) on the compact subset K ⊂ 〈a, b) has been proven in [14]. It remains to
prove (7), a boundary layer phenomenon at x = b.

Assume to the contrary that the set

{|y′ε(x)| ; x ∈ 〈a, b〉, ε ∈ (0, ε0〉}

is bounded. Consequently,∣∣∣∣df (x, yε(x))
dx

∣∣∣∣ = ∣∣∣∣∂f (x, yε(x))
∂x

+
∂f (x, yε(x))

∂y
y′ε

∣∣∣∣ ≤ C̃δ, (8)

on 〈a, b〉, C̃δ > 0 is constant. The problem (1), (2) is equivalent to the nonlinear
integral equation

yε(x) =
I

Λ
e
√
− k

ε (x−a) +
I

Λ
e
√
− k

ε (a−x)

+

x∫
a

e
√
− k

ε (x−s) − e
√
− k

ε (s−x)

2
√
−k

ε

· f (s, yε(s))
ε

ds, (9)
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where

I =

c∫
a

e
√
− k

ε (c−s) − e
√
− k

ε (s−c)

2
√
−k

ε

· f (s, yε(s))
ε

ds

−
b∫

a

e
√
− k

ε (b−s) − e
√
− k

ε (s−b)

2
√
−k

ε

· f (s, yε(s))
ε

ds,

Λ = e
√
− k

ε (b−a) + e
√
− k

ε (a−b) − e
√
− k

ε (c−a) − e
√
− k

ε (a−c).

Differentiating the integral equation (9) with respect to the variable x we obtain

y′ε(x) =
I
√
−k

ε

Λ
e
√
− k

ε (x−a) −
I
√
−k

ε

Λ
e
√
− k

ε (a−x)

+

x∫
a

e
√
− k

ε (x−s) + e
√
− k

ε (s−x)

2
· f (s, yε(s))

ε
ds.

Hence

y′ε(b) =
I
√
−k

ε

Λ

(
e
√
− k

ε (b−a) − e
√
− k

ε (a−b)
)

+
1
2

b∫
a

(
e
√
− k

ε (b−s) + e
√
− k

ε (s−b)
) f (s, yε(s))

ε
ds. (10)

Integrating all integrals in (10) by parts and after little algebraic arrangement we
obtain

y′ε(b) =

√
−k

ε

k

[
(f (c, yε(c))− f (b, yε(b)))σε

+
σε

2

( b∫
a

(
e
√
− k

ε (b−s) + e
√
− k

ε (s−b)
) df (s, yε(s))

ds
ds

−
c∫

a

(
e
√
− k

ε (c−s) + e
√
− k

ε (s−c)
) df (s, yε(s))

ds
ds

)

+
1
2

b∫
a

(
−e
√
− k

ε (b−s) + e
√
− k

ε (s−b)
) df (s, yε(s))

ds
ds

]

where

σε =
e
√
− k

ε (b−a) − e
√
− k

ε (a−b)

Λ
→ 1+ for ε → 0+. (11)
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Taking into consideration (8), the integrals

b∫
a

e
√
− k

ε (s−b) df (s, yε(s))
ds

ds,

c∫
a

e
√
− k

ε (s−c) df (s, yε(s))
ds

ds

are O (
√

ε) by the mean value theorem for integrals.
Thus we have

y′ε(b) =

√
−k

ε

k

[
(f (c, yε(c))− f (b, yε(b)))σε

+
1
2
(σε − 1)

b∫
a

e
√
− k

ε (b−s) df (s, yε(s))
ds

ds

− 1
2
σε

c∫
a

e
√
− k

ε (c−s) df (s, yε(s))
ds

ds + O
(√

ε
) ]

. (12)

From (11) we can write

σε − 1 = e
√
− k

ε (c−b)ωε → 0+ for ε → 0+

where

ωε =
1
Λ

(
e
√
− k

ε (b−a) + e
√
− k

ε (a+b−2c) − 2e
√
− k

ε (a−c)
)
→ 1+ for ε → 0+.

Thus from (12) we have

y′ε(b) =− 1√
−kε

[
(f (c, yε(c))− f (b, yε(b)))σε

+
1
2
(ωε − σε)

c∫
a

e
√
− k

ε (c−s) df (s, yε(s))
ds

ds

+
1
2
ωε

b∫
c

e
√
− k

ε (c−s) df (s, yε(s))
ds

ds + O
(√

ε
) ]

.

The integral
b∫

c

e
√
− k

ε (c−s) df (s, yε(s))
ds

ds

is O (
√

ε) by the analogous argument as above and

c∫
a

e
√
− k

ε (c−s)

∣∣∣∣df (s, yε(s))
ds

∣∣∣∣ ds ≤ (c− a)C̃δe
√
− k

ε (c−a). (13)



Boundary layer phenomenon for three–point BVP for nonlinear SPSs 651

Using (13), we have∣∣∣∣∣∣12(ωε − σε)

c∫
a

e
√
− k

ε (c−s) df (s, yε(s))
ds

ds

∣∣∣∣∣∣
≤ 1

2
(ωε − σε)(c− a)C̃δe

√
− k

ε (c−a)

=
1
2
(c− a)C̃δ

1
Λ

(
e
√
− k

ε
(b−c)

2 − e
√
− k

ε
(c−b)

2

)2

= O
(
e
√
− k

ε (a−c)
)

.

Hence

y′ε(b) = − 1√
−kε

[
(f (c, yε(c))− f (b, yε(b)))σε + O

(√
ε
) ]

(14)

which gives a contradiction.
Now we show that (7) holds. In Lemma 2.1 we have introduced the functions

vL,ε(x) and vR,ε(x). For these functions we obtain the estimates (for the second one
by using Lemma 2.2)

vL,ε(x) = |u′(a)|O (1) , vR,ε(x) = O
(
ε−1
)
e
√

m
ε (x−b) → 0+

uniformly for ε → 0+ on every compact subset K of the interval 〈a, b). Further,
γε,max = O(1) for ε → 0+ and u is a C3 function on 〈a, b〉 (the assumption (H1)).
Thus on the basis of Lemma 2.1, the set

{|y′ε(x)| ; x ∈ K, ε ∈ (0, ε0〉}

is bounded. Combining this with (14) we obtain (7). The proof of Theorem 3.1 is
complete. �

Remark 3.2. As we can see from (14) the assumption (H2) is essential for an
appearance the boundary layer phenomenon for singularly perturbed system (1), (2)
at the point x = b.
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