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ON THE PROBLEM Ax = λBx IN MAX ALGEBRA:
EVERY SYSTEM OF INTERVALS IS A SPECTRUM

Sergĕı Sergeev

We consider the two-sided eigenproblem A ⊗ x = λ ⊗ B ⊗ x over max algebra. It is
shown that any finite system of real intervals and points can be represented as spectrum
of this eigenproblem.
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1. INTRODUCTION

Max algebra is the analogue of linear algebra developed over the max-plus semiring,
which is the set R = R∪{−∞} equipped with the operations of “addition” a⊕ b :=
max(a, b) and “multiplication” a ⊗ b := a + b. This basic arithmetics is naturally
extended to matrices and vectors. In particular, for matrices A = (aij) ∈ Rn×m

and B = (bij) ∈ Rm×k
, their “product” A ⊗ B is defined by the rule (A ⊗ B)ij =⊕m

l=1 ail ⊗ blj , for all i = 1, . . . , n and j = 1, . . . , k.

One of the best studied problems in max algebra is the “eigenproblem”: for
given A ∈ Rn×n

find λ ∈ R and x ∈ Rn
with at least one finite entry, such that

A⊗x = λ⊗x. This problem is very important for max-algebra and its applications [1,
2, 6, 7, 9, 15]. The theory of this problem has much in common with its counterpart
in the nonnegative matrix algebra. In particular, there is exactly one eigenvalue
(“max-algebraic Perron root”) in the irreducible case, and in general, there may
be several eigenvalues which correspond to diagonal blocks of the Frobenius normal
form. There are efficient algorithms for computing both eigenvalues and eigenvectors
[8, 12, 15].

We will consider the following generalization of the max algebraic eigenproblem:

A⊗ x = λ⊗B ⊗ x, (1)

where A,B ∈ Rn×m
. The set of λ ∈ R such that there exists x satisfying (1), with

at least one finite entry, will be called the spectrum of (1) and denoted by σ(A,B).
This problem is of interest as an analogue of matrix pencils in nonnegative matrix

algebra, as studied in McDonald et al. [16], Mehrmann et al. [17]. Note that matrix
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pencils in linear algebra are very well-known, see Gantmacher [13] for basic reference,
and their applications in control go back to Brunovsky [4].

Problem (1) can also be considered as a parametric extension of two-sided sys-
tems A ⊗ x = B ⊗ x. Importantly, such systems can be solved algorithmically, see
Cuninghame Green and Butkovič [10].

Unlike the eigenproblem A ⊗ x = λ ⊗ x, the two-sided version does not seem to
be well-known. Some results have been obtained by Binding and Volkmer [3], and
Cuninghame-Green and Butkovič[11], mostly for special cases when both matrices
are square, or when A = B ⊗ Q. See also Butkovič [7]. In the latter case, it may
be possible to reduce (1) to Q ⊗ x = λ ⊗ x. In general, however, it is nontrivial to
decide whether the spectrum is nonempty, and some particular conditions have been
studied by topological methods [3].

Further, the spectrum of (1) can be much richer, it may include intervals. Gaubert
and Sergeev [14] came up with a general approach to the problem representing it
in terms of parametric min-max functions and mean-payoff games, which allows to
identify the whole spectrum in pseudo-polynomial time. The purpose of this note is
more modest, it is to provide an example showing that any system of intervals and
points can be realized as the spectrum of (1).

Let us note a possible application of (1) in scheduling in the spirit of Cuninghame-
Green [9]. See also Burns [5]. Suppose that the products P1, . . . , Pn are prepared
using m machines (or, say, processors), where every machine contributes to the
completion of each product by producing a partial product. Let aij be the duration
of the work of the jth machine needed to complete the partial product for Pi. Let
us denote by xj the starting time of the jth machine, then all partial products for Pi

will be ready by the time max(x1 + ai1, . . . , xm + aim). Now suppose that m other
machines prepare partial products for products Q1, . . . , Qn, and the duration and
starting times are bij and yj respectively. If the machines are linked then it may be
required that yj −xj is a constant time λ. Now consider a synchronization problem:
to find λ and starting times of all 2m machines so that each pair Pi, Qi is completed
at the same time. Algebraically, we have to solve

max(x1 + ai1, . . . , xm + aim) = max(λ + x1 + bi1, . . . , λ + xm + bim),
∀ i = 1, . . . , n,

(2)

which is clearly the same as (1).

2. PRELIMINARIES

We begin with some definitions and notation. The max algebraic column span of
A = (aij) ∈ Rn×m

is defined by

span⊕(A) =

{
m⊕

i=1

αiA·i | αi ∈ R

}
.

For y ∈ Rn
denote supp(y) = {i : yi 6= −∞}, and for y, z ∈ Rn

denote

T (y, z) := arg min{yi − zi | i ∈ supp(y) ∩ supp(z)}.
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In max algebra, one-sided systems A ⊗ x = b can be easily solved, and the
solvability criterion is as follows. By Ai· (resp. A·i) we denote the ith row (resp.
the ith column) of A ∈ Rn×m

.

Theorem 2.1. (Butkovič [6], Theorem 2.2) Let A ∈ Rn×m
and b ∈ Rn. The

following statements are equivalent.

1. b ∈ span⊕(A).

2. A⊗ x = b is solvable.

3.
⋃m

i=1 T (b, A·i) = {1, . . . , n}.

The author is not aware of any such criterion for two-sided systems A⊗x = B⊗x.
However, the following cancellation law can be useful in their analysis (a, b, c, d ∈ R):

if a < c then
a⊗ x⊕ b = c⊗ x⊕ d ⇔ b = c⊗ x⊕ d.

(3)

Consider a particular application of this law. In what follows we write x < y also
for two vectors x and y, if xi < yi holds for all their components.

Lemma 2.2. Let A,B ∈ Rn×m
and let Ai· < Bi· for some i. Then A⊗ x = B ⊗ x

does not have nontrivial solution.

P r o o f . Applying cancellation (3), we obtain that the ith equation of A⊗x = B⊗x
is equivalent to Bi·⊗x = −∞. Note that all entries of Bi· are finite, hence xj = −∞
for all j. �

When A,B have finite entries only, Lemma 2.2 can be used [11] to obtain bounds
for the spectrum of (1):

σ(A,B) ⊆
[
max

i
min

j
(aij − bij),min

i
max

j
(aij − bij)

]
. (4)

The cancellation law also allows to replace the finiteness restriction by requiring that
aij or bij is finite for all i and j.

It will be also useful that (1) is equivalent to the following system with separated
variables:

C(λ)⊗ x = D ⊗ y, where

C(λ) =
(

A
λ⊗B

)
, D =

(
I
I

)
,

(5)

and I = (δij) ∈ Rn×n
denotes the max-plus identity matrix with entries

δij =

{
0, if i = j,

−∞, if i 6= j.
(6)

The finite vectors belonging to span⊕(D) can be easily described.
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Lemma 2.3. z ∈ R2n belongs to span⊕(D) if and only if zi = zn+i for all i =
1, . . . , n.

3. MAIN RESULTS

Let {[ai, ci], i = 1, . . . ,m} be a finite system of intervals on the real line, where
ai ≤ ci < ai+1 for i = 1, . . . ,m − 1, with possibility that ai = ci. Define matrices
A ∈ R2×3m, B ∈ R2×3m:

A =
(

. . . ai bi ci . . .

. . . 2ai 2bi 2ci . . .

)
,

B =
(

. . . 0 0 0 . . .

. . . ai ci bi . . .

)
,

(7)

where bi := ai+ci

2 .

Theorem 3.1. With A,B defined by (7),

σ(A,B) =
m⋃

i=1

[ai, ci]. (8)

P r o o f . First we show that any λ outside the system of intervals is not an eigen-
value.

Case 1. λ < a1, resp. λ > cm. In these cases λ ⊗ B1· < A1·, resp. λ ⊗ B1· > A1·,
hence by Lemma 2.2 A⊗ x = λ⊗B ⊗ x cannot hold with nontrivial x.

Case 2. ck < λ < ak+1. Using cancellation law (3), we obtain that the first equation
of A⊗ x = λ⊗B ⊗ x is equivalent to

m−1⊕
i=k

(ai+1 ⊗ x3i+1 ⊕ bi+1 ⊗ x3i+2 ⊕ ci+1 ⊗ x3i+3) = λ⊗
3k⊕
i=1

xi. (9)

For the second equation of A⊗x = λ⊗B⊗x, observe that 2ai > λ+ai, 2bi > λ+ ci

and 2ci > λ + bi for all i ≥ k + 1. After cancellation (3), the l.h.s. and the r.h.s. of
this equation turn into max-linear forms u(x) and v(x) respectively, such that

u(x) = v(x),

u(x) ≥
m−1⊕
i=k

(2ai+1 ⊗ x3i+1 ⊕ 2bi+1 ⊗ x3i+2 ⊕ 2ci+1 ⊗ x3i+3) ,

v(x) ≤ λ⊗
k−1⊕
i=0

(ai+1 ⊗ x3i+1 ⊕ ci+1 ⊗ x3i+2 ⊕ bi+1 ⊗ x3i+3) .

(10)

We claim that (9) and (10) cannot hold at the same time with a nontrivial x. Using
that λ < ai+1 ≤ bi+1 ≤ ci+1 for all i ≥ k, and that the l.h.s. of (9) attains maximum
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at a particular term, we deduce from (9) that

m−1⊕
i=k

(2ai+1 ⊗ x3i+1 ⊕ 2bi+1 ⊗ x3i+2 ⊕ 2ci+1 ⊗ x3i+3) > 2λ⊗
3k⊕
i=1

xi. (11)

(Note that both sides of (9) are finite, since all coefficients of A and B are finite and
x is nontrivial.) The l.h.s. of (11) is the same as the r.h.s. of the second statement
of (10). Therefore, combining (11) and the first two statements of (10), we obtain

v(x) = u(x) > 2λ⊗
3k⊕
i=1

xi. (12)

Now, since the coefficients ai+1, bi+1 and ci+1 on the r.h.s. of the last statement of
(10) do not exceed λ, the r.h.s. of that statement does not exceed the r.h.s. of (12).
But combining (12) with that last statement of (10) we obtain just the opposite.
This contradiction shows that A ⊗ x = λ ⊗ B ⊗ x cannot have nontrivial solutions
in case 2.

Now we prove that any λ in the intervals is an eigenvalue, by guessing a vector
that belongs to span⊕(C(λ)) ∩ span⊕(D). The columns of C(λ) will be denoted by

ui(λ) = (ai 2ai λ ai + λ)T ,
vi(λ) = (bi 2bi λ ci + λ)T ,
wi(λ) = (ci 2ci λ bi + λ)T .

(13)

Case 3. ai ≤ λ ≤ bi. We take

zλ = (0 λ + bi − ai 0 λ + bi − ai)T . (14)

By Lemma 2.3 zλ ∈ span⊕(D). It suffices to check that zλ ∈ span⊕(C(λ)). We
write

T (zλ, ui(λ)) = arg min(−ai, λ + bi − 3ai, −λ, bi − 2ai), (15)

T (zλ, vi(λ)) = arg min(−bi, λ− bi − ai, −λ, −bi), (16)

T (zλ, wi(λ)) = arg min(−ci, λ− bi − ci, −λ, −ai). (17)

In (16) and (17) we used that 2bi = ai + ci. The inequalities ai ≤ λ ≤ bi imply that

− λ ≤ −ai ≤ bi − 2ai ≤ λ + bi − 3ai, (18)

hence the minimum in (15) is attained by the 3rd component. Analogously, the
minimum in (16) is attained by the 4th and 1st components, and the minimum in
(17) is attained by the 2nd component. By Theorem 2.1 zλ ∈ span⊕(C(λ)).

Case 4. bi ≤ λ ≤ ci. We take

zλ = (0 ci 0 ci)T , (19)
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By Lemma 2.3 zλ ∈ span⊕(D), and we claim again that zλ ∈ span⊕(C(λ)). We
compute

T (zλ, vi(λ)) = arg min(−bi, ci − 2bi, −λ, −λ), (20)

T (zλ, wi(λ)) = arg min(−ci, −ci, −λ, ci − bi − λ). (21)

We observe that the minimum in (20) is attained by the 3rd and 4th components,
while the minimum in (21) is attained by the 1st and 2nd components. The claim
follows by Theorem 2.1. �
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