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Abstract. The paper deals with a difference equation arising from the scalar pantograph
equation via the backward Euler discretization. A case when the solution tends to zero but
after reaching a certain index it loses this tendency is discussed. We analyse this problem
and estimate the value of such an index. Furthermore, we show that the utilized proof
technique enables us to investigate some other numerical formulae, too.
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1. Introduction

In the paper we analyse a change of the qualitative behaviour of the numerical

solution of the scalar pantograph equation

(1.1) y′(t) = ay(t) + by(λt), 0 < λ < 1

which is based on the backward Euler discretization in the form

(1.2) yn+1 −
1

1 − ah
yn +

−bh

1 − ah
y⌊λ(n+1)⌋ = 0, n = 0, 1, 2, . . . ,

where h > 0 is the stepsize and ⌊ ⌋means the floor function. If we add the assumption
|a| + b < 0 then some calculations indicate that the numerical solution of (1.1) has

a tendency to approach the zero solution, but after reaching a certain critical index

this tendency vanishes and the solution is “blowing up”. Our investigation is inspired

by the paper [10], where this phenomenon (familiarly referred to as the numerical

nightmare) has been investigated using the forward Euler method. In connection

with the problem studied we can mention other useful sources [1]–[8].
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The structure of the paper is the following: In Section 2 we formulate the Schur-

Cohn criterion of the asymptotic stability for linear difference equations and apply

it to the investigation of stability properties of (1.2). The analysis performed in

this section essentially presents the proof of the main result of this paper. Section 3

summarizes the discussions from the previous section and formulates this main result.

Several remarks conclude the paper.

2. Stability analysis of the equation (1.2)

The difference equation (1.2) is of an increasing order, but for

n ∈ Im :=
(m + λ − 1

1 − λ
,
m + λ

1 − λ

]
, m ∈ Z

+

the order is fixed to the value m + 1. Then we can rewrite the equation (1.2) as

a three-term difference equation

(2.1) yn+1 − αyn + βyn−m = 0, n ∈ Im,

where

(2.2) α :=
1

1 − ah
, β :=

−bh

1 − ah
.

Our aim is to estimate the maximal order m⋆ of the difference equation (2.1) for

which the condition for the asymptotic stability of all its solutions is still guaranteed,

but starting from m = m⋆ + 1 it is no more valid.

It is well-known that the solution of the linear difference equation (2.1) is asymp-

totically stable if and only if all zeros of the corresponding characteristic polynomial

lie inside the unit disk. Therefore we recall the Schur-Cohn criterion (see e.g. [5,

p. 247]) which plays a key role in our investigation. For our purposes it is sufficient

to reformulate this criterion directly to the three-term difference equation (2.1).

Theorem 2.1. The zeros of the characteristic polynomial

(2.3) P (µ) = µm+1 − αµm + β

of the difference equation (2.1) lie inside the unit disk if and only if the following

conditions hold:

(i) P (1) > 0,

(ii) (−1)m+1P (−1) > 0,
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(iii) the m × m matrices

M±
m =




1 0 . . . . . . 0

−α 1
. . . 0

0
. . .

. . .
. . .

...
...
. . .

. . . 1 0

0 . . . 0 −α 1




±




0 0 . . . 0 β

0 β 0
... 0

0 β
...

β 0 0 . . . 0




are positive innerwise (i.e. the determinants of all of its inners are positive).

In the sequel, we derive an auxiliary difference equation arising from the applica-

tion of the Schur-Cohn criterion to the equation (2.1). The analysis of this auxiliary

equation (in particular, the discussion of the sign of its solutions with respect to the

assumptions (i)–(iii) of Theorem 2.1) enables us to investigate the problem when the

discretization (1.2) admits a sudden change of the stability behaviour.

We start our analysis with discussions of the assumptions of Theorem 2.1 in con-

nection with our problem. Under the assumption |a| + b < 0 we can rewrite the

condition (i) as 1 − α + β > 0, which is equivalent to

−(a + b)
h

1 − ah
> 0,

i.e.

(2.4)
1

h
> a.

Condition (ii) of Theorem 2.1 implies that we have to assume

1 + α + β > 0 and 1 + α − β > 0.

These inequalities are satisfied if and only if

(2.5) h <
2

a + |b| .

Note that relation (2.5) implies the previous condition (2.4).

Now let |a| + b < 0 and h < 2/(a + |b|) (ensuring that (i) and (ii) are valid). We
show that there exists m⋆ ∈ Z

+ such that the third condition (iii) holds provided

m = 1, . . . , m⋆ and is not valid for all integers m > m⋆. On this account we derive

a three-term difference equation for determinants Dm := det(M±
m), m = 1, 2, . . .
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(see Theorem 2.1). We introduce here β̃ := ±β to cover both sign cases in the

computations. Then we can express Dm+2 as

Dm+2 =

∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 β̃

−α 0
... M±

m

...

0 0

β̃ 0 . . . 0 −α 1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

0

M±
m

...

0

0 . . . 0 −α 1

∣∣∣∣∣∣∣∣∣

+ (−1)m+3β̃

∣∣∣∣∣∣∣∣∣

−α
... M±

m

0

β̃ 0 . . . 0 −α

∣∣∣∣∣∣∣∣∣

.

Now we apply the Laplace expansion along the last column in the first matrix and

along the first column in the second. Then we get

(2.6) Dm+2 = (1 − β̃2)Dm + (−1)mαβ̃

∣∣∣∣∣∣∣∣∣∣∣

−α 0
... M±

m−2

...

0 0

β̃ 0 . . . 0 −α 1

0 0 . . . 0 −α

∣∣∣∣∣∣∣∣∣∣∣

.

Analogously we can write

Dm+4 = (1 − β̃2)Dm+2 + (−1)mαβ̃

∣∣∣∣∣∣∣∣∣∣∣

−α 0
... M±

m

...

0 0

β̃ 0 . . . 0 −α 1

0 0 . . . 0 −α

∣∣∣∣∣∣∣∣∣∣∣

.

Using the Laplace expansion along the last row we obtain

Dm+4 = (1 − β̃2)Dm+2 − (−1)mα2β̃

∣∣∣∣∣∣∣∣∣

−α
... M±

m

0

β̃ 0 . . . 0 −α

∣∣∣∣∣∣∣∣∣

.

Now using the Laplace expansion along the first column we arrive at

Dm+4 = (1 − β̃2)Dm+2 + α3(−1)mβ̃

∣∣∣∣∣∣∣∣∣∣∣

−α 0
... M±

m−2

...

0 0

β̃ 0 . . . 0 −α 1

0 0 . . . 0 −α

∣∣∣∣∣∣∣∣∣∣∣

− α2β̃2Dm.
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The determinant in the matrix form on the righthand side is the same as the one

in (2.6). Hence, applying (2.6) to the last equation we obtain the linear difference

equation of the fourth order

(2.7) Dm+4 − (1 + α2 − β̃2)Dm+2 + α2Dm = 0

subject to the initial conditions

(2.8)

D1 = 1 + β̃,

D2 = 1 + β̃α − β̃2,

D3 = 1 + β̃ + α2β̃ − β̃2 − β̃3,

D4 = 1 + α3β̃ − α2β̃2 − αβ̃3 + αβ̃ + β̃4 − 2β̃2.

Let us emphasize that the difference equation (2.7) is the same for both cases β̃ = −β

and β̃ = β, but the sign of β̃ influences the initial conditions.

In the sequel we find the general solution of the difference equation (2.7). The

characteristic polynomial of (2.7) is

(2.9) η4 − (1 + α2 − β̃2)η2 + α2

and has the roots in the form

η2
1,2 =

1

2

(
1 + α2 − β̃2 ±

√
(1 + α2 − β̃2)2 − 4α2

)
,

where (1 + α2 − β̃2)2 − 4α2 < 0. Indeed, since

a2 − b2 < 0 and 4 − 4ah + (a2 − b2)h2 > 0 for 0 < h <
2

a + |b| ,

we have
h2(a2 − b2)

(1 − ah)2
· 4 − 4ah + (a2 − b2)h2

(1 − ah)2
< 0,

i.e.

(1 + α2 − β̃2 − 2α) · (1 + α2 − β̃2 + 2α) < 0.

Using the notation

A =
1

2
(1 + α2 − β̃2), B =

1

2

√
4α2 − (1 + α2 − β̃2)2,

the roots of (2.9) can be expressed as

η1,2,3,4 = (A ± Bi)1/2 =
[√

A2 + B2
( A√

A2 + B2
± i

B√
A2 + B2

)]1/2
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which implies

η1,2 = (A2 + B2)1/4(cos(ϕ/2) ± i sin(ϕ/2)),

η3,4 = (A2 + B2)1/4(cos(ϕ/2 + π) ± i sin(ϕ/2 + π)),

where ϕ is given by

ϕ = arcsin
B√

A2 + B2
.

To summarize this, the solution of (2.7) can be written in the form

(2.10)

Dm = (A2 + B2)m/4 [(C1 + (−1)mC3) cos(mϕ/2) + (C2 + (−1)mC4) sin(mϕ/2)] ,

where C1, . . . , C4 are general constants. In the sequel we specify a certain relation

among them. We emphasize that the next calculations are analogous for both cases

β̃ = ±β. Utilizing initial conditions (2.8) we arrive at

D2 = (C1 + C3)A + (C2 + C4)B,

D4 = (C1 + C3)(A
2 − B2) + (C2 + C4)2AB,

hence

C1 + C3 =
2AD2 − D4

A2 + B2
= 1,

C2 + C4 =
D2 − A

B
=

1 − β̃2 − α2 + 2αβ̃√
4α2 − (1 + α2 − β̃2)2

.

Analogously we can write

D1 = (C1 − C3)
1√
2

√
α + A + (C2 − C4)

1√
2

√
α − A,

D3 = (C1 − C3)
1√
2

√
α + A(2A − α) + (C2 − C4)

1√
2

√
α − A(2A + α),

hence

C1 − C3 =
D1

√
2(2A + α) − D3

√
2

2α
√

α + A
=

1 + α + β̃
√

2
√

α + (1 + α2 − β̃2)/2
,

C2 − C4 =
D1

√
2(2A − α) − D3

√
2

−2α
√

α − A
=

1 − α + β̃
√

2

√
α − (1 + α2 − β̃2)/2

.

Now we can observe that

C1 + C3

C2 + C4
=

√
4α2 − (1 + α2 − β̃2)2

1 − β̃2 − α2 + 2αβ̃
,
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i.e.

(2.11)
C1 − C3

C2 − C4
=

C1 + C3

C2 + C4
.

Using the property (2.11) we are going to analyse the sign of Dm. It follows from

(2.8) that the condition h < 1/(a + |b|) implies D1 > 0. To find whether

(2.12) Dm⋆Dm⋆+1 6 0

for a suitable m⋆ ∈ Z
+ we note that by the previous calculations, the condition

(2.12) is equivalent to

D̃m⋆D̃m⋆+1 6 0,

where

D̃m⋆ =
C1 + C3

C2 + C4
cos(m⋆ϕ/2) + sin(m⋆ϕ/2).

Viewing D̃m⋆ as a function D̃ = D̃(z) of a continuous argument z (instead of index

m⋆), we need to solve the equation D̃(z) = 0, i.e.

(2.13) −C1 + C3

C2 + C4
= tan(zϕ/2).

One can easily verify that the lefthand side of this equation is negative and positive

for β̃ = β > 0 and β̃ = −β < 0, respectively. Then the smallest positive root of

(2.13) is given by

(2.14) z =





2

ϕ

[
π + arctan

(
−C1 + C3

C2 + C4

)]
for β̃ = β > 0,

2

ϕ

[
arctan

(
−C1 + C3

C2 + C4

)]
for β̃ = −β < 0.

We recall that the condition (iii) has to be fulfilled for β̃ = β and β̃ = −β simulta-

neously, hence

z = 2 arctan

(
−

√
4α2 − (1 + α2 − β2)2

1 − β2 − α2 − 2αβ

)/
arcsin

B√
A2 + B2

,

i.e.

z = 2 arctan

(
−

√
4α2 − (1 + α2 − β2)2

1 − β2 − α2 − 2αβ

)/
arcsin

√
4α2 − (1 + α2 − β2)2

2α
.
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Now we can express the discussed critical order m⋆ as

m⋆ :=

{
⌊z⌋, z 6∈ Z

+,

z − 1, z ∈ Z
+.

To summarize all the previous calculations we can observe that considering any

positive integerm 6 m⋆, the polynomial (2.3) has all its roots in the unit disk, hence

the difference equation (2.1) is asymptotically stable. On the other hand, for any

m > m⋆ the polynomial (2.3) does not have this property. Indeed, it is obvious from

(2.14) that Dm⋆+1 6 0 and Dm⋆+2 < 0 provided β̃ = −β. Since either M±
m⋆+1 or

M±
m⋆+2 always appears as an inner in every M±

m, m > m⋆ + 2, the property (iii) of

Theorem 2.1 is not fulfilled for any m > m⋆.

3. Main result and final remarks

The previous analysis enables us to formulate the next result:

Theorem 3.1. Let |a| + b < 0, h < 1/(a + |b|) and let the values α, β be given

by (2.2). Then all roots of the polynomial (2.3) lie inside the unit disk if and only if

m 6 m⋆ :=

{
⌊z⌋, z 6∈ Z

+,

z − 1, z ∈ Z
+,

where

z = 2 arctan

(
−

√
4α2 − (1 + α2 − β2)2

1 − β2 − α2 − 2αβ

)/
arcsin

√
4α2 − (1 + α2 − β2)2

2α
.

P r o o f. The proof of the result is given in Section 2. �

Hence, under the assumptions introduced in Theorem 3.1 the solution of (1.2) has

a tendency to reach the zero solution for n 6 n⋆ = ⌊(m⋆ + λ)/(1 − λ)⌋. For n > n⋆

this tendency vanishes.

The presented procedures and results can be applied also to the forward Euler

discretization of (1.1) in the form

yn+1 − (1 + ah)yn − bhy⌊λn⌋ = 0.

In this case it is enough to consider α = 1 + ah and β = −bh in (2.1) We emphasize

that the above derived result improves the result derived in [10] for the forward
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Euler discretization of the pantograph equation. We emphasize that in our case the

expression for m⋆ does not depend on the sign of a. Moreover, since the paper [10]

was aimed at obtaining the final result for the exact pantograph equation, it was

enough to express the particular result for the forward Euler method with O(h).

This error term is eliminated by our result.

We can summarize that considering the numerical methods of the Euler type, our

technique for the determination of m⋆ leads to the investigation of the asymptotic

stability of the three-term difference equation (2.1). The stability analysis of (2.1)

leads to another auxiliary difference equation (2.7) for the determinantsDm occurring

in the assumptions of the Schur-Cohn criterion. We emphasize that our procedure is

applicable also in a more general situation. In particular, we can consider difference

equations arising from (1.1) via more advanced discretizations. E.g. the Θ-method

discretization leads to the recurrence in the form

(3.1) yn+1 −
1 + (1 − θ)ah

1 − θah
yn +

−bhθ

1 − θah
y⌊λ(n+1)⌋ +

−bh(1 − θ)

1 − θah
y⌊λn⌋ = 0.

Of course, then we have to analyse the four-term difference equation (3.1) instead

of the previously considered three-term equation (1.2). However, the advantage of

our approach consists in the fact that the previous analysis utilizes the Schur-Cohn

criterion which can be applied to any linear autonomous difference equation instead

of Kuruklis’ result [9] for three-term linear equations which is applied in [10]. This

extension of our previous results to more general discretizations of (1.1) is the subject

of further considerations.
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