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SPECTRUM OF THE WEIGHTED LAPLACE OPERATOR

IN UNBOUNDED DOMAINS

Alexey Filinovskiy, Moskva

(Received October 15, 2009)

Abstract. We investigate the spectral properties of the differential operator −r
s∆, s > 0

with the Dirichlet boundary condition in unbounded domains whose boundaries satisfy some
geometrical condition. Considering this operator as a self-adjoint operator in the space with
the norm ‖u‖2L2,s(Ω)

=
∫
Ω r

−s|u|2 dx, we study the structure of the spectrum with respect

to the parameter s. Further we give an estimate of the rate of condensation of discrete
spectra when it changes to continuous.

Keywords: Laplace operator, multiplicative perturbation, Dirichlet problem, Friedrichs
extension, purely discrete spectra, purely continuous spectra
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1. Introduction and main results

Let Ω ⊂ R
n, n > 2, be an unbounded domain whose closure does not contain the

origin, with a boundary Γ. Let us consider the differential expression

(1) lu = −rs∆u, r = |x|, s > 0.

We shall treat the differential operator (1) in the Hilbert space L2,s(Ω) with the

norm ‖u‖2
L2,s(Ω) =

∫

Ω r−s|u|2 dx. Let L be the self-adjoint Friedrichs extension in

L2,s(Ω) of the minimal operator generated by the differential expression (1). Then,

L is a non-negative self-adjoint operator in L2,s(Ω) that is an operator of the first

boundary value problem for the differential expression (1).

We will study spectral properties of the operator L (location of spectrum on the

real axis, density of spectrum on some sets, structure of the spectrum) with respect
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to the parameter s. For the operator (1) we know conditions on s and the domain Ω,

guaranteeing the discreteness of the spectrum of the operator L ([1]). In particular,

in [1] it was proved that the spectrum of the operator L is discrete at s > 2. On

the other side, as follows from the results of [2], in the case Ω = R
n with 0 6 s 6 2

the spectrum of the operator with coefficients equal to (1) in the neighborhood of

infinity is continuous and for 0 6 s < 2 fills the complete positive semi-axis.

Let Sη = Ω ∩ {r = η}, η > 0, and Ση be the set of points x belonging to the unit

sphere Σ and satisfying ηx ∈ Sη. In the sequel we will consider domains Ω such that

(2) Ση1 ⊂ Ση2 , η1 < η2,

(it is the star-shapeness condition for the set Rn \ Ω with respect to the origin).

Denote by λ̂(η) the modulus of the first eigenvalue of the Laplace-Beltrami operator

in Ση with zero Dirichlet data on ∂Ση. By our supposition λ̂(η) is a decreasing

nonnegative function on [infx∈Ω r, +∞). Denote Λ = lim
η→∞

λ̂(η). We will also suppose

without loss of generality that ln r > 1 in Ω.

Our first statement localizes the spectrum set σ(L) of the operator L on the real

axis.

Theorem 1. The spectrum of L has the following properties:

i) if 0 6 s < 2, then σ(L) = [0, +∞);

ii) if s = 2, then σ(L) = [14 (n − 2)2 + Λ, +∞);

iii) if s > 2, then σ(L) ⊂ (1
4 (n − 2)2 + Λ, +∞).

The next statement declares that there exists a critical value of s for which the

spectrum of L becomes discrete.

Theorem 2. The spectrum of L has the following properties:

i) if 0 6 s 6 2 and Γ ∈ C2, then the spectrum of the operator L is continuous;

ii) if s > 2, then the spectrum of the operator L is discrete.

It is natural to expect that the discrete spectrum condenses on the semi-axis

[ 14 (n− 2)2 + Λ, +∞) at s → 2 +0. In the next statement we establish an estimate of

the rate of this condensation.

Theorem 3. For any λ ∈ [ 14 (n − 2)2 + Λ, +∞) there exist a constant C > 0 and

a number s0 > 2 such that for any s ∈ (2, s0] the following relation holds:

(3) σ(L) ∩ (λ − δ(s), λ + δ(s)) 6= ∅,
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where

δ(s) = λ̂(ln ln(1/(s − 2))) − Λ + C
ln ln ln(1/(s − 2))

ln ln(1/(s − 2))
.

The constant C depends on λ.

2. Energy space and domain

Let us define the space of functions

H1
s (Ω) = {u : u ∈ L2,s(Ω) ∩ H1(ΩR), R > 0, uxj ∈ L2(Ω), j = 1, . . . , n},

where ΩR = Ω ∩ {r < R}, with the norm ‖u‖2
H1

s(Ω) =
∫

Ω
(|∇u|2 + r−s|u|2) dx. By

◦

H1
s(Ω) denote the subspace of H1

s (Ω) which is the closure of the set of functions

u ∈ H1
s (Ω) vanishing in a neighborhood of Γ. Consider the quadratic form A[u] =

∫

Ω |∇u|2 dx on the set of functions
◦

C∞(Ω) ⊂ L2,s(Ω).

Lemma 1. The form A[u] is closeable.

P r o o f. Let {uj} ⊂
◦

C∞(Ω), j = 1, 2, . . . be a sequence of functions such that

A[uj − ul] → 0, j, l → ∞ and ‖uj‖L2,s(Ω) → 0, j → ∞. Now, by ‖uj‖2
H1

s (Ω) =

A[uj ]+‖uj‖2
L2,s(Ω) we have that the sequence uj is fundamental in the space H1

s (Ω).

By û ∈ H1
s (Ω) denote the limit function: lim

j→∞
‖û − uj‖H1

s (Ω) = 0. Then lim
j→∞

‖uj −
û‖L2,s(Ω) = 0, i.e. ‖û‖L2,s(Ω) 6 lim

j→∞
‖uj‖L2,s(Ω) + lim

j→∞
‖û − uj‖L2,s(Ω) = 0. Hence,

û = 0 and lim
j→∞

‖uj‖L2,s(Ω) = 0. So, the possibility to close the form A[u] is proved.

By Lemma 1 the energy space HA of the operator L is the closure of the set of

functions
◦

C∞(Ω) in the norm ‖u‖2
H1

s(Ω) = A[u] + ‖uj‖2
L2,s(Ω).

Lemma 2. The energy space of the operator L is

(4) HA =

{

u : u ∈
◦

H1
s(Ω),

∫

Ω

r−2 ln−2q r|u|2 dx < ∞
}

,

where q = 0 for n > 3 and q = 1 for n = 2.

P r o o f. It is sufficient to prove that for any function u ∈
◦

H1
s(Ω) such that

∫

Ω r−2 ln−2q r|u|2 dx < ∞ and for any ε > 0 there exists a function ũ ∈
◦

C∞(Ω), such

that A[u − ũ] < ε.
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First let us prove that for any function u ∈ HA the integral
∫

Ω
r−2 ln−2q r|u|2 dx

converges. We use the inequalities

∫

ΩR

r−2 ln−2 r|u|2 dx 6 4

∫

ΩR

|ur|2 dx, n = 2,(5)

∫

ΩR

r−2|u|2 dx 6
2

(n − 2)R

∫

SR

|u|2 ds +
4

(n − 2)2

∫

ΩR

|ur|2 dx, n > 3,(6)

which are valid for all R > 1 for functions u ∈ H1(ΩR) such that u|Γ = 0.

For any function u ∈ HA there exists a sequence of functions {uj} ⊂
◦

C∞(Ω),

j = 1, 2, . . . such that A[u − uj ] → 0, ‖u − uj‖L2,s(Ω) → 0, j → ∞. Apply (5) (6) to
uj with sufficiently large R. Since the term on the right hand side containing (uj)r

is bounded for all j and R, we obtain
∫

Ω r−2 ln−2q r|uj |2 dx 6 C1. Since r−1 ln−q ruj

must converge in L2(Ω) weakly to r−1 ln−q ru, we obtain

(7)

∫

Ω

r−2 ln−2q r|u|2 dx 6 C1.

Conversely, let us suppose that u ∈
◦

H1
s(Ω) and

∫

Ω r−2 ln−2q r|u|2 dx < ∞. Let n > 3.

Consider functions ξm(x) = η(ln(r/m)+1), m = 1, 2, . . ., where η(t) ∈
◦

C∞([0, +∞))

is a nonnegative function satisfying the condition 0 6 η 6 1 and such that η = 1 for

0 < t < 1, η = 0 for t > 2. Hence ξm = 1, x ∈ Ωm, ξm = 0, x ∈ Ω \ Ωme. We have

an estimate

(8) |∇ξm| =
∣

∣

∣

d

dr
ξm

∣

∣

∣
= |η′(ln(r/m) + 1)|r−1

6 C2r
−1, x ∈ Ω.

The function uξm belongs to the space HA. Let us prove that ‖u − uξm‖H1
s (Ω) → 0,

m → ∞. We get

(9) ‖u − uξm‖2
H1

s (Ω) 6 2(I1,m + I2,m),

where

I1,m =

∫

Ω\Ωm

(|∇u|2 + r−s|u|2)(1 − ξm)2 dx, I2,m =

∫

Ωme\Ωm

|u|2|∇ξm|2 dx.

Since u ∈
◦

H1
s(Ω), we obtain I1,m → 0, m → ∞. Furthermore, it follows from (7),

(8) that

I2,m 6 C2
2

∫

Ωme\Ωm

r−2|u|2 dx → 0, m → ∞.

418



Thus, ‖u − uξm‖H1
s (Ω) → 0, m → ∞. Now, by virtue of uξm ∈

◦

H1
s(Ωme) there

exist functions ũm ∈
◦

C∞(Ωme), such that A[ũm − uξm] 6 ‖ũm − uξm‖2
H1

s (Ωme) → 0,

m → ∞. Consider the zero continuation of the function ũm to the set Ω \ Ωme and

denote the continued function also by ũm. Therefore ũm ∈
◦

C∞(Ω) and A[u− ũm] 6

2(A[u− uξm] + A[uξm − ũm]) → 0, m → ∞. The existence of a function ũ ∈
◦

C∞(Ω)

such that A[u − ũ] < ε in the case n > 3 is proved.

Let us consider the case n = 2. Put ξm(x) = η(ln(ln r/ lnm)) where the function

η is the same as for n > 3. Then ξm = 1 for x ∈ Ωme and ξm = 0 for x ∈ Ω \ Ωme2 .

For the function ξm we obtain

(10) |∇ξm| =
∣

∣

∣

d

dr
ξm

∣

∣

∣
= |η′(ln(ln r/ lnm))|(r ln r)−1

6 C2(r ln r)−1, x ∈ Ω.

The estimate (9) with

I1,m =

∫

Ω\Ωme

(|∇u|2 + r−s|u|2)(1 − ξm)2 dx, I2,m =

∫

Ω
me2 \Ωme

|u|2|∇ξm|2 dx

holds. As in the case n > 3, we obtain that I1,m → 0, m → ∞. It follows from the
estimate (7) with q = 1 and (10) that

I2,m 6 C2
2

∫

Ω
me2 \Ωme

r−2 ln−2 r|u|2 dx → 0, m → ∞.

Thus, A[u − uξm] → 0, m → ∞. Now, we get the existence of a sequence ũm ∈
◦

C∞(Ω), supp ũm ⊂ Ωme2 such that A[ũm − uξm] 6 ‖ũm − uξm‖2
H1

s (Ω
me2 ) → 0,

m → ∞. Hence the existence of a function ũ ∈
◦

C∞(Ω) such that A[u − ũ] < ε for

n = 2 is proved. This completes the proof of Lemma 2.

Lemma 3. The domain of the operator L is

D(L) =

{

u : u ∈
◦

H1
s(Ω) ∩ H2

loc(Ω), lu ∈ L2,s(Ω),

∫

Ω

r−2 ln−2q r|u|2 dx < ∞
}

.

In the case Γ ∈ C2 the domain of the operator L is

D(L) =

{

u : u ∈
◦

H1
s(Ω)∩H2(ΩR), R > 0, lu ∈ L2,s(Ω),

∫

Ω

r−2 ln−2q r|u|2 dx < ∞
}

.

P r o o f. Applying interior estimates for the derivatives of solutions of elliptic

equations ([3], p. 204, Lemma 7.1) to u ∈
◦

H1
s(Ω), lu ∈ L2,s(Ω) and any domain
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Ω′ ⋐ Ω, we get u ∈ H2(Ω′). If, furthermore, Γ ∈ C2, applying the boundary

estimates for derivatives of solutions of elliptic equations ([3], p. 224, Theorem 9.2),

for all R > 0 we obtain u ∈ H2(ΩR). This completes the proof of Lemma 3.

3. Localization of spectrum

It follows from the inequalities (5), (6) that for functions u ∈ HA we have the

lower estimate

A[u] =

∫

Ω

|ur|2 dx +

∫

Ω

r−2|∇Θu|2 dx

>
(n − 2 − q)2

4

∫

Ω

r−2 ln−2q r|u|2 dx +

∫

Ω

r−2|∇Θu|2 dx, u(x) = u(r, Θ).

Since λ̂(r) is the modulus of the first eigenvalue of the Dirichlet problem for the

Laplace-Beltrami operator in Σr, we get

(11)

∫

Σr

|∇Θu|2 dΘ > λ̂(r)

∫

Σr

|u|2 dΘ > Λ

∫

Σr

|u|2 dΘ, r > 0.

Therefore,

A[u] >
(n − 2 − q)2

4

∫

Ω

r−2 ln−2q r|u|2 dx(12)

+ Λ

∫

Ω

r−2|u|2 dx >

( (n − 2)2

4
+ Λ

)

∫

Ω

r−2|u|2 dx,

and for s > 2 we have an estimate A[u] > (1
4 (n−2)2+Λ)‖u‖2

L2,s(Ω) and, consequently,

σ(L) ⊂ [ 14 (n − 2)2 + Λ, +∞), s > 2.

Let us prove that for s > 2 the number 1
4 (n − 2)2 + Λ does not belong to the

spectrum of the operator L. Assume the converse, let s > 2 and 1
4 (n−2)2+Λ ∈ σ(L).

We show that there exists a non-zero function û ∈ HA such that

(13)

∫

Ω

|∇û|2 dx =
((n − 2)2

4
+ Λ

)

∫

Ω

r−s|û|2 dx.

If 1
4 (n − 2)2 + Λ is an eigenvalue of the operator L, the relation (13) holds for the

corresponding eigenfunction û. If 1
4 (n−2)2 +Λ is the continuous spectrum point, let

us use I.M.Glazman lemma for quadratic forms ([5], Supplement 1, Lemma 3.1′),

which is a modification of the corresponding operator statement ([4], Chapter 1,

Section 1, Theorem 9bis). By this lemma

(14) N(λ − 0) = sup
{F⊂HA,A[u]<λ‖u‖2

H ,u∈F\{0}}

dimF,
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where H is the main space (H = L2,s(Ω) in our case), F is a linear subspace of HA,

N(λ) = dim(EλH) where Eλ denotes the spectral projector of the spectral family

corresponding to the self-adjoint operator L. As follows from this lemma, if λ is a

continuous spectrum point, for any δ > 0 the relation N(λ + δ) − N(λ − δ) = ∞
holds. Thus for any δ > 0 there exists a function u ∈ HA, u 6= 0, such that

A[u] 6 (1
4 (n − 2)2 + Λ + δ)‖u‖2

L2,s(Ω).

Let us choose a sequence δj > 0, δj → 0, j → ∞. Then there exists a non-zero
sequence uj ∈ HA such that

(15)

∫

Ω

|∇uj|2 dx 6

((n − 2)2

4
+ Λ + δj

)

∫

Ω

r−s|uj|2 dx.

Let ‖uj‖L2,s(Ω) = 1. Then
∫

Ω
|∇uj|2 dx 6 1

4 (n − 2)2 + Λ + δj and, clearly, the

inequalities (5), (6) imply

(16)

∫

Ω

r−2 ln−2q r|uj |2 dx 6 C3.

From the sequence {uj} let us choose a subsequence which is weakly convergent in
the space L2,s(Ω) and show that it is pre-compact in L2,s(Ω). In the same way as in

Rellich’s theorem about the compact imbedding of
◦

H1(Ω′) into L2(Ω
′) in a bounded

domain Ω′, we can prove that for any R > 0 the space H1
s (ΩR) imbeds compactly

into L2,s(ΩR). Hence, there exists a function û ∈ L2,s(Ω) such that for any R > 0

we have lim
j→∞

‖û − uj‖L2,s(ΩR) = 0. It means that for any sequence {Rj}, Rj → ∞,
j → ∞, it is possible to choose a subsequence {uj} (denoted also by {uj}) such that
‖û − uj‖L2,s(ΩRj

) < j−1. Therefore by (16) we have

‖û − uj‖2
L2,s(Ω) = ‖û − uj‖2

L2,s(ΩRj
) + ‖û − uj‖2

L2,s(Ω\ΩRj
)

< j−2 + 2
(

‖û‖2
L2,s(Ω\ΩRj

) + ‖uj‖2
L2,s(Ω\ΩRj

)

)

6 j−2 + C4R
2−s
j ln2q Rj → 0, j → ∞.

So, the convergence of the sequence {uj} to û in the space L2,s(Ω) is proved. This,

in particular, yields that ‖û‖L2,s(Ω) = 1. It implies that

(17)

∫

Ω

|∇û|2 dx 6 lim infj→∞

∫

Ω

|∇uj |2 dx =
( (n − 2)2

4
+ Λ

)

∫

Ω

r−s|û|2 dx.

The relation (13) is proved.

421



For the proof of the relation 1
4 (n − 2)2 + Λ /∈ σ(L) let us first consider the case

1
4 (n − 2)2 + Λ > 0. In this case

(18) A[û] =
((n − 2)2

4
+ Λ

)

∫

Ω

r−s|û|2 dx <
( (n − 2)2

4
+ Λ

)

∫

Ω

r−2|û|2 dx,

which contradicts (12).

In the case 1
4 (n− 2)2 +Λ = 0 we have by (13) the equality

∫

Ω
|∇û|2 dx = 0. Thus,

∇û = 0 and û = const. But then û = 0, which contradicts ‖û‖L2,s(Ω) = 1. So,
1
4 (n−2)2 +Λ /∈ σ(L) and the relation σ(L) ⊂ (1

4 (n−2)2 +Λ, +∞) holds true. Proof

of the point iii) of Theorem 1 is now complete.

Finally, for s > 2 we have that any sequence bounded in the space HA is pre-

compact in L2,s(Ω). By F.Rellich criterion ([5], Supplement 1, Par. 3), the spectrum

of the operator L is discrete at s > 2. This completes the proof of the point ii) of

Theorem 2.

4. Density of spectrum on the semi-axis

First consider the case 0 6 s < 2. Let us use the relation (14). By this relation

the number of points of the spectrum for the operator L in the interval (λ− δ, λ+ δ)

with account of multiplicity is equal to the maximal dimension of the linear manifolds

F ⊂ HA for which the following inequality is valid:

(19)
∣

∣A[u] − λ‖u‖2
H

∣

∣ < δ‖u‖2
H, u 6= 0.

In our case the relation (19) can be written as

(20)

∣

∣

∣

∣

∫

Ω

(|∇u|2 − λr−s|u|2) dx

∣

∣

∣

∣

< δ

∫

Ω

r−s|u|2 dx.

Denote by v̺(Θ) ∈
◦

H1(Σ̺), ̺ > 0, the first eigenfunction of the Laplace-Beltrami

operator in the domain Σ̺. Hence
∫

Σ̺
|∇Θv̺|2 dΘ = λ̂(̺)

∫

Σ̺
v2

̺ dΘ. Let us continue

the function v̺ by zero to the set Σ. Therefore v̺ ∈ H1(Σ) and
∫

Σ |∇Θv̺|2 dΘ =

λ̂(̺)
∫

Σ
v2

̺ dΘ. We choose a nonzero real-valued function ϕ(t) ∈
◦

C∞(0, +∞) such

that suppϕ = [1, 2]. Consider functions

uε(r, Θ) =
√

εr1−n/2H
(1)
n−2
2−3

( 2
√

λ

2 − s
r1−s/2

)

ϕ(εr1−s/2)vε−2/(2−s)(Θ),(21)

ε > 0, λ > 0,
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where H
(1)
p (z) is a Hankel function. In this case we have suppuε ⊂ Ω, uε ∈

◦

H1
s(Ω)

and the inequality (20) has the form

(22)

∣

∣

∣

∣

∫

Rn

(|∇uε|2 − λr−s|uε|2) dx

∣

∣

∣

∣

< δ

∫

Rn

r−s|uε|2 dx.

Consider the behavior of the left hand and right hand parts of the inequality (22)

for ε → 0. Let us note that inf
x∈suppuε

r > ε−2/(2−s) → ∞, ε → 0. Now we use the

relations for derivatives of Hankel functions and the asymptotic expansions of Hankel

functions of large argument ([6], Chapter 9):

H(1)
p

′
(z) = pz−1H(1)

p (z) − H
(1)
p+1(z),(23)

H(1)
p (z) =

√

2(πz)−1 exp
(

i(z − π(p + 1
2 )/2)

)

(1 + O(|z|−1)), |z| → ∞.(24)

By (24) we have

∫

Rn

r−s|uε|2 dx =
ε(2 − s)

π

√
λ

∫ ∞

0

(r−s/2 + f1(r))ϕ
2(εr1−s/2) dr

∫

Σ

v2
ε−2/(2−s) dΘ,

where |f1(r)| 6 C5r
−1. Therefore,

∫

Rn

r−s|uε|2 dx =

(

2ε

π

√
λ

∫ ∞

0

ϕ2(εz) dz + J1(ε)

)
∫

Σ

v2
ε−2/(2−s) dΘ

=

(

2

π

√
λ

∫ ∞

0

ϕ2(t) dt + J1(ε)

)
∫

Σ

v2
ε−2/(2−s) dΘ,

where

|J1| 6
(2 − s)ε

π

√
λ

∫ ∞

0

|f1(r)|ϕ2(εr1−s/2) dr 6
2C5ε

π

√
λ

∫ ∞

0

t−1ϕ2(t) dt.

Thus,

(25)

∫

Rn

r−s|uε|2 dx = (C6 + O(ε))

∫

Σ

v2
ε−2/(2−s) dΘ, ε → 0, C6 > 0.

Consider now the left hand side of the relation (22). It follows from (23)–(24) that

(26)

∣

∣

∣

∣

∫

Rn

(|∇uε|2 − λr−s|uε|2) dx

∣

∣

∣

∣

=
ε(2 − s)

π

√
λ

∣

∣

∣

∣

∫ ∞

0

((f2(r) + λ̂(ε−2/(2−s))f3(r))ϕ
2(εr1−s/2)

+ ε((2 − s)(2 − 2n + s)(4r)−1 + f4(r))ϕ(εr1−s/2)ϕ′(εr1−s/2)

+ ε2((2 − s)2r−s/2/4 + f5(r))ϕ
′2(εr1−s/2)) dr

∣

∣

∣

∣

∫

Σ

v2
ε−2/(2−s) dΘ,
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where fj, j = 2, 3, 4, 5, are functions satisfying the inequalities |fj | 6 C7r
−1, j = 2, 5,

|fj | 6 C7r
s/2−2, j = 3, 4. Using equality (26), we get the estimate

∣

∣

∣

∣

∫

Rn

(|∇uε|2 − λr−s|uε|2) dx

∣

∣

∣

∣

6 C8ε

∫ ∞

0

r−1(ϕ2(εr1−s/2) + ϕ′2(εr1−s/2)) dr(27)

= C9ε

∫ ∞

0

t−1
(

ϕ2(t) + ϕ′2(t)
)

dt = C10ε.

It follows from (25) and (27) that for any δ > 0 there exists ε > 0 such that the

function uε satisfies inequality (20). This implies σ(L) ∩ (λ − δ, λ + δ) 6= ∅. Thus,
σ(L) = [0,∞). Point i) of Theorem 1 is proved.

Let us investigate now the case s = 2. Consider the functions

uε(r, Θ) =
√

εr1−n/2ei
√

λ−(n−2)2/4−Λ ln rϕ(ε ln r)ve1/ε (Θ),(28)

λ > 1
4 (n − 2)2 + Λ, ε > 0,

where the function ϕ is the same as for 0 6 s < 2.

In this case we have suppuε ⊂ Ω, uε ∈
◦

H1
2(Ω), and the inequality (20) can be

written as

(29)

∣

∣

∣

∣

∫

Rn

(|∇uε|2 − λr−2|uε|2) dx

∣

∣

∣

∣

< δ

∫

Rn

r−2|uε|2 dx.

Let us study the behavior of the left hand and right hand sides of the inequality (29)

when ε → 0. We have
∫

Rn

r−2|uε|2 dx(30)

= ε

∫ ∞

0

r−1ϕ2(ε ln r) dr

∫

Σ

v2
e1/ε dΘ

=

∫ ∞

0

ϕ2(t) dt

∫

Σ

v2
e1/ε dΘ = C11

∫

Σ

v2
e1/ε dΘ,

∣

∣

∣

∣

∫

Rn

(|∇uε|2 − λr−2|uε|2) dx

∣

∣

∣

∣

(31)

=

∣

∣

∣

∣

ε2

∫ ∞

0

r−1((2 − n)ϕ(ε ln r)ϕ′(ε ln r) + εϕ′2(ε ln r)) dr

∫

Σ

v2
e1/ε dΘ

+ ε

∫ ∞

0

r−1ϕ2(ε ln r) dr

∫

Σ

(|∇Θve1/ε |2 − Λv2
e1/ε) dΘ

∣

∣

∣

∣

6

∫ ∞

0

(ε(n − 2)|ϕ(t)||ϕ′(t)|

+ ε2ϕ′2(t) + (λ̂(e1/ε) − Λ)ϕ2(t)) dt

∫

Σ

v2
e1/ε dΘ.
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From the relations (30), (31) we get that for any δ > 0 there exists ε > 0 such that the

function uε satisfies the inequality (29). This implies that σ(L) ∩ (λ − δ, λ + δ) 6= ∅.
Thus, σ(L) = [14 (n − 2)2 + Λ,∞). Point ii) of Theorem 1 is proved.

5. On the rate of condensation of the discrete spectrum

Let s > 2 and let the spectrum of the operator L be discrete. For any λ ∈
(1
4 (n − 2)2 + Λ,∞) consider functions

(32) us(r, Θ) = r1−n/2ei
√

λ−(n−2)2/4−Λ ln rηs(r)vln ln(1/(s−2))(Θ),

where ηs(r) = r/ ln ln(1/(s − 2)) − 1 for ln ln(1/(s − 2)) < r < 2 ln ln(1/(s − 2)),

ηs(r) = 1 for 2 ln ln(1/(s − 2)) < r < ln(1/(s − 2)), ηs(r) = 2 − r/ ln(1/(s − 2)) for

ln(1/(s − 2)) < r < 2 ln(1/(s − 2)) and ηs(r) = 0 in the other cases, the function

v̺(Θ) being the same as in the proof of point ii) of Theorem 1. Let us continue

the function v̺ by zero to Σ. As follows from (19), to prove the relation (3) it is

sufficient for some s0 > 2 and some constant C > 0 for all 2 < s < s0 establish

inequality

∣

∣

∣

∣

∫

Rn

(|∇us|2 − λr−s|us|2) dx

∣

∣

∣

∣

(33)

<

(

λ̂
(

ln ln
1

s − 2

)

− Λ + C
ln ln ln(1/(s − 2))

ln ln(1/(s − 2))

)
∫

Rn

r−s|us|2 dx.

By (32) we have

∫

Rn

r−s|us|2 dx(34)

=

∫ ∞

0

r1−sη2
s(r) dr

∫

Σ

v2
ln ln(1/(s−2)) dΘ

=

(

ln2−s ln(1/(s − 2)) − ln2−s(1/(s − 2))

s − 2
+ O(1)

)
∫

Σ

v2
ln ln(1/(s−2)) dΘ

=

(

ln ln
1

s − 2
+ O

(

ln ln ln
1

s − 2

)

)
∫

Σ

v2
ln ln(1/(s−2)) dΘ.
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Consider the behavior of the left hand side of the inequality (33) for s → 2 + 0:

∣

∣

∣

∣

∫

Rn

(|∇us|2 − λr−s|us|2) dx

∣

∣

∣

∣

(35)

=

∣

∣

∣

∣

∫ ∞

0

(

η′2
s + (2 − n)r−1η′

sηs + (λ(r−1 − r1−s) − Λr−1)η2
s

)

dr

×
∫

Σ

v2
ln ln(1/(s−2)) dΘ +

∫ ∞

0

r−1η2
s dr

∫

Σ

|∇Θvln ln(1/(s−2))|2 dΘ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0

(

η′2
s + (2 − n)r−1η′

sηs

+
(

λ(r−1 − r1−s) +
(

λ̂
(

ln ln
1

s − 2

)

− Λ
)

r−1
)

η2
s

)

dr

∣

∣

∣

∣

∫

Σ

v2
ln ln(1/(s−2)) dΘ

6

(

3(n − 1) + λ

∫ ∞

0

(r−1 − r1−s)η2
s dr +

(

λ̂
(

ln ln
1

s − 2

)

− Λ
)

∫ ∞

0

r−1η2
s dr

)

×
∫

Σ

v2
ln ln(1/(s−2)) dΘ

<

(

λ̂
(

ln ln
1

s − 2

)

− Λ + C12
ln ln ln(1/(s − 2))

ln ln(1/(s − 2))

)

× ln ln(1/(s − 2))

∫

Σ

v2
ln ln(1/(s−2)) dΘ, C12 > 0.

Hence, the inequality (33) follows from (34), (35). Proof of Theorem 3 is com-

plete.

6. Continuity of spectrum

Let us prove continuity of the spectrum of the operator L for 0 6 s 6 2. Let

λ > 0 and u ∈ D(L) be non-zero functions, satisfying the equation ∆u + λr−su = 0

and vanishing on Γ (we consider the function u to be real-valued). By Lemma 3 for

Γ ∈ C2 we have the inclusion u ∈ H2(ΩR), R > 0. We multiply the equation by

2rur and integrate over the domain ΩR. Thus we have the equality

R

∫

SR

(

2u2
r − |∇u|2 + λR−su2 +

n − 2

R
uur

)

dsx(36)

+

∫

ΓR

(ν, x)
(∂u

∂ν

)2

dsx − λ(2 − s)

∫

ΩR

r−su2 dx = 0,
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where ν is the outward unit normal vector to Γ. From (36) we get the inequalities:

R

2

∫

SR

(nu2
r + (2λ + (n − 2))R−su2) dsx(37)

> R

∫

SR

(u2
r + λR−su2 +

n − 2

2
(u2

r + R−2u2)) dsx

> R

∫

SR

(

u2
r + λR−su2 +

n − 2

R
uru

)

dsx > −
∫

ΓR

(ν, x)
(∂u

∂ν

)2

dsx.

Let us note that the star-shapeness condition for the set Rn \Ω for a smooth surface

Γ means that (ν, x) 6 0, x ∈ Γ. The surface Γ is not a cone, so there exists a

point x0 ∈ Γ such that (ν, x0) < 0. So, u|Γ = 0, and then by the uniqueness

theorem for the solution of the Cauchy problem for elliptic equations ([7]) there

exists a neighborhood U(x0) such that
∫

Γ∩U(x0)
(ν, x)(∂u/∂ν)2 dsx < 0. Therefore,

∫

SR
(u2

r + R−su2) dsx > C13R
−1, C13 > 0, R > R0 and ‖u‖2

H1
s (Ω) >

∫

Ω∩{r>R0}
(u2

r +

r−su2) dx =
∫ ∞

R0
dr

∫

SR
(u2

r + r−su2) dsx > C13

∫ ∞

R0
r−1 dr = +∞, i.e. u is not an

eigenfunction of the operator L. This completes the proof of point i) of Theorem 2.
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