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SOLVABILITY OF A CLASS OF ELASTIC BEAM EQUATIONS

WITH STRONG CARATHÉODORY NONLINEARITY

Qingliu Yao, Nanjing

(Received January 26, 2009)

Abstract. We study the existence of a solution to the nonlinear fourth-order elastic beam
equation with nonhomogeneous boundary conditions

{

u(4)(t) = f
(

t, u(t), u′(t), u′′(t), u′′′(t)
)

, a.e. t ∈ [0, 1],

u(0) = a, u′(0) = b, u(1) = c, u′′(1) = d,

where the nonlinear term f(t, u0, u1, u2, u3) is a strong Carathéodory function. By con-
structing suitable height functions of the nonlinear term f(t, u0, u1, u2, u3) on bounded sets
and applying the Leray-Schauder fixed point theorem, we prove that the equation has a
solution provided that the integration of some height function has an appropriate value.

Keywords: nonlinear ordinary differential equation, boundary value problem, existence,
fixed point theorem

MSC 2010 : 34B15, 34B16

1. Introduction

In this paper we consider the nonlinear elastic beam equation with nonhomoge-
neous Dirichlet boundary conditions on the left and nonhomogeneous Navier bound-
ary conditions on the right

(P)

{

u(4)(t) = f
(

t, u(t), u′(t), u′′(t), u′′′(t)
)

, a.e. t ∈ [0, 1],

u(0) = a, u′(0) = b, u(1) = c, u′′(1) = d.

In the homogeneous case, (P) corresponds to the elastic beam equation rigidly fixed
at the left and simply supported at the right.
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Throughout this paper, ‖u‖ = max
06t61

|u(t)| for u ∈ C[0, 1] and

p(t) =
1

4
(2a + 2b − 2c + d)t3 +

1

4
(6c − 6a − 6b − d)t2 + bt + a.

Thus, p(0) = a, p′(0) = b, p(1) = c, p′′(1) = d, p′′′(t) ≡ 3a + 3b − 3c + 3
2d.

Denote γi = max
06t61

|p(i)(t)|, i = 0, 1, 2, 3, and

µ0 = max
06t61

p(t), ν0 = min
06t61

p(t), µ1 = max
06t61

p′(t), ν1 = min
06t61

p′(t),

µ2 = max
06t61

p′′(t), ν2 = min
06t61

p′′(t), µ3 = ν3 = 3a + 3b − 3c +
3

2
d.

Let us introduce constants

K =
65536

39 + 55
√

33
≈ 184.6340, M =

3

17 − 12
√

2
≈ 101.9117,

k0 = 1, k1 =
65536

45(39 + 55
√

33)
≈ 4.1030, k2 =

8192

39 + 55
√

33
≈ 23.0793,

k3 =
40960

39 + 55
√

33
≈ 115.3963,

m0 = 1, m1 =
1

9[17 − 12
√

2]
≈ 3.7745, m2 =

√
3

3[17 − 12
√

2]
≈ 19.6129,

m3 =
3

17 − 12
√

2
≈ 101.9117.

In addition, let G(t, s) be the Green function of the linear homogeneous boundary
value problem u(4)(t) = 0, 0 6 t 6 1, u(0) = u′(0) = u(1) = u′′(1) = 0, that is,

G(t, s) =

{

1
12 (1 − t)s2[3(1 − s) − (1 − t)2(3 − s)], 0 6 s 6 t 6 1,

1
12 t2(1 − s)[3(1 − t) − (1 − s)2(3 − t)], 0 6 t 6 s 6 1.

Clearly, G(t, s) > 0, 0 < t, s < 1.
The nonlinear beam equation (P) has been studied by some authors when f :

[0, 1] × R
4 → R is continuous, for example, see [1], [4], [5], [7], [9], [10], [11], [14].

Particularly, Agarwal [1] introduced the maximum height

Φ(r0−3) = max{|f(t, u0, u1, u2, u3)| : 0 6 t 6 1, |ui| 6 2ri, i = 0, 1, 2, 3}

of the nonlinear term f(u0, u1, u2, u3) on the bounded set [0, 1] × [−2r0, 2r0] ×
[−2r1, 2r1]×[−2r2, 2r2]×[−2r3, 2r3] and proved the following local existence theorem.
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Theorem 1.1. Suppose that f : [0, 1] × R
4 → R is continuous and there exist

four positive numbers ri > 0, i = 0, 1, 2, 3, such that ri > γi and

Φ(r0−3) 6 K min{k−1
i ri, i = 0, 1, 2, 3}.

Then equation (P) has at least one solution u∗ ∈ C3[0, 1] and ‖(u∗)(i)‖ 6 2ri,

i = 0, 1, 2, 3.

Theorem 1.1 shows that the equation (P) has a solution if there exist four pos-
itive numbers ri > 0, i = 0, 1, 2, 3, such that the maximum height Φ(r0−3) has an
appropriate value.
The aim of this paper is to study the existence of a solution to the equation (P)

when f : [0, 1]×R
4 → R is a strong Carathéodory function. Here, f : [0, 1]×R

4 → R

is referred to as a strong Carathéodory function if

(C1) for a.e. t ∈ [0, 1], f(t, ·, ·, ·, ·) : R
4 → R is continuous;

(C2) for all (u0, u1, u2, u3) ∈ R
4, f(·, u0, u1, u2, u3) : [0, 1] → R is measurable;

(C3) for every r > 0 there exists a nonnegative function jr ∈ L1[0, 1], such that

|f(t, u0, u1, u2, u3)| 6 jr(t), (t, u0, u1, u2, u3) ∈ [0, 1]× [−r, r]4.

In the ordinary way, f(t, u0, u1, u2, u3) is called a Carathéodory function if f : [0, 1]×
R

4 → R only satisfies the conditions (C1) and (C2).
If f : (0, 1)×R

4 → R is continuous and satisfies the assumption (C3), then it is a
strong Carathéodory function. In this case, the function f(t, u0, u1, u2, u3) may be
singular at t = 0, t = 1.
Therefore, we allow that there exists a zero measure set E ⊂ [0, 1] such that the

nonlinear term f(t, u0, u1, u2, u3) is discontinuous or singular at t ∈ E.
It is impossible to describe the growth change of a singular function on a bounded

set by the maximum height Φ(r0−3). Therefore, we must introduce new tool in order
to deal with the singular equation (P).
In this paper, we introduce a height function ϕ(t, r0−3) to estimate the growth

change of the nonlinear term f(t, u0, u1, u2, u3) on bounded set. Here, the height
function is

ϕ(t, r0−3) = max{|f(t, u0, u1, u2, u3)| : −ri + νi 6 ui 6 ri + µi, i = 0, 1, 2, 3}.

When f : [0, 1] × R
4 → R is a strong Carathéodory function, the height function

ϕ(·, r0−3) is integrable on [0, 1].
In geometry, the height function ϕ(t, r0−3) is the maximum height of the nonlinear

term f(t, u0, u1, u2, u3) on the set {t} × [−r0 + ν0, r0 + µ0] × [−r1 + ν1, r1 + µ1] ×
[−r2 + ν2, r2 + µ2] × [−r3 + ν3, r3 + µ3].
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By applying the height function, we obtain a new result. More precisely, we prove
the following local existence theorem.

Theorem 1.2. Suppose that f : [0, 1]×R
4 → R is a strong Carathéodory function

and there exist four positive numbers ri > 0, i = 0, 1, 2, 3, such that one of the

following conditions is satisfied:

(1) max
06t61

∫ 1

0 |(∂i/∂ti)G(t, s)|ϕ(s, r0−3) ds 6 ri, i = 0, 1, 2, 3,

(2)
∫ 1

0
ϕ(t, r0−3) dt 6 M min{m−1

i ri, i = 0, 1, 2, 3}.

Then the equation (P) has at least one solution u∗ ∈ C3[0, 1] and ‖(u∗)(i)−p(i)‖ 6 ri,

i = 0, 1, 2, 3. In addition, the solution u∗ is nontrivial if a2 + b2 + c2 + d2 > 0 or
∫ 1

0
|f(t, 0, 0, 0, 0)| dt > 0.

Theorem 1.2 shows that the equation (P) has a solution if there exist four posi-
tive numbers ri > 0, i = 0, 1, 2, 3, such that the integration of the height function
ϕ(t, r0−3) has an appropriate value.

Obviously, Theorem 1.2 can deal with more complex cases than Theorem 1.1. We
will verify that Theorem 1.2 extends Theorem 1.1 and illustrate that the extension
is true by an example. The localization idea of this work comes from the papers [2],
[8], [12], [13], [14], [15].

2. Preliminaries

After direct computations, we get

max
06t,s61

G(t, s) = G(2 −
√

2, 2 −
√

2) =
1

3
[17 − 12

√
2].

Computing the partial derivatives of G(t, s) in t, we have

∂

∂t
G(t, s) =

{

1
4 t(1 − s)[2 − 3t − (2 − t)(1 − s)2], 0 6 t 6 s 6 1,

1
4s2[(1 − t)2(3 − s) − (1 − s)], 0 6 s 6 t 6 1;

∂2

∂t2
G(t, s) =

{

1
2 (1 − s)[1 − 3t − (1 − t)(1 − s)2], 0 6 t 6 s 6 1,

1
2s2(1 − t)(s − 3), 0 6 s 6 t 6 1;

∂3

∂t3
G(t, s) =

{

1
2 (1 − s)(s2 − 2s − 2), 0 6 t < s 6 1,

1
2s2(3 − s), 0 6 s < t 6 1.
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This yields

max
06t,s61

∣

∣

∣

∂

∂t
G(t, s)

∣

∣

∣
=

∣

∣

∣

∂

∂t
G

(

1,
2

3

)∣

∣

∣
=

1

27
,

max
06t,s61

∣

∣

∣

∂2

∂t2
G(t, s)

∣

∣

∣
=

∣

∣

∣

∂2

∂t2
G

(

0,
3 −

√
3

3

)
∣

∣

∣
=

√
3

9
,

sup
06t,s61

∣

∣

∣

∂3

∂t3
G(t, s)

∣

∣

∣
= lim

s→1

∣

∣

∣

∂3

∂t3
G(1, s)

∣

∣

∣
= 1.

Therefore,

M =
3

17 − 12
√

2
=

[

max
06t,s61

G(t, s)
]−1

,

m1 =
1

9[17 − 12
√

2]
= M max

06t,s61

∣

∣

∣

∂

∂t
G(t, s)

∣

∣

∣
,

m2 =

√
3

3[17 − 12
√

2]
= M max

06t,s61

∣

∣

∣

∂2

∂t2
G(t, s)

∣

∣

∣
,

m3 =
3

17 − 12
√

2
= M max

06t,s61

∣

∣

∣

∂3

∂t3
G(t, s)

∣

∣

∣
.

In this paper, C3[0, 1] is the Banach space with the norm

‖|u|‖ = max{‖u‖, ‖u′‖, ‖u′′‖, ‖u′′′‖}.

If u ∈ C3[0, 1] and the assumption (C3) holds, then there exists a nonnegative
function j‖|u|‖+1 ∈ L1[0, 1] such that

|f(t, u(t), u′(t), u′′(t), u′′′(t))| 6 j‖|u|‖+1(t), 0 6 t 6 1.

Define an operator T as follows, for u ∈ C3[0, 1] and 0 6 t 6 1:

(Tu)(t) =

∫ 1

0

G(t, s)f
(

s, u(s) + p(s), u′(s) + p′(s), u′′(s) + p′′(s),

u′′′(s) + p′′′(s)
)

ds.

For convenience, we use the abbreviation

F (t, u(t) + p(t)) = f
(

t, u(t) + p(t), u′(t) + p′(t), u′′(t) + p′′(t), u′′′(t) + p′′′(t)
)

.

Thus

(Tu)(t) =

∫ 1

0

G(t, s)F (s, u(s) + p(s)) ds, 0 6 t 6 1.
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For u ∈ C3[0, 1] and 0 6 t 6 1, let

(Au)(t) = f
(

t, u(t) + p(t), u′(t) + p′(t), u′′(t) + p′′(t), u′′′(t) + p′′′(t)
)

,

(Bu)(t) =

∫ 1

0

G(t, s)u(s) ds,

(Cu)(t) =

∫ 1

0

∂

∂t
G(t, s)u(s) ds,

(Du)(t) =

∫ 1

0

∂2

∂t2
G(t, s)u(s) ds,

(Eu)(t) =

∫ 1

0

∂3

∂t3
G(t, s)u(s) = ds.

Proposition 2.1. The operator A : C3[0, 1] → L1[0, 1] is continuous.

P r o o f. Let u ∈ C3[0, 1]. Since u + p ∈ C3[0, 1], there exist four sequences
{ξi

n}∞n=1, i = 0, 1, 2, 3, of simple functions such that

lim
n→∞

ξi
n(t) = u(i)(t) + p(i)(t), a.e. t ∈ [0, 1], i = 0, 1, 2, 3

(see (11.35), [6]). By the assumption (C2), f
(

t, ξ0
n(t), ξ1

n(t), ξ2
n(t), ξ3

n(t)
)

is a measur-
able function on [0, 1] for each n = 1, 2, . . .. By the assumption (C1),

lim
n→∞

f
(

t, ξ0
n(t), ξ1

n(t), ξ2
n(t), ξ3

n(t)
)

= (Au)(t), a.e. t ∈ [0, 1].

Since the limit of measurable functions is measurable (see (11.18), [6]), we assert
that (Au)(t) is a measurable function on [0, 1].

By making use of the above abbreviation, we have

(Au)(t) = F (t, u(t) + p(t)), 0 6 t 6 1.

Let ru = ‖|u|‖ + ‖|p|‖ + 1. Since

max{‖u + p‖, ‖u′ + p′‖, ‖u′′ + p′′‖, ‖u′′′ + p′′′‖} 6 ‖|u|‖ + ‖|p|‖ + 1

and (C3), there exists jru
∈ L1[0, 1] such that

|F (t, u(t) + p(t))| 6 jru
(t), 0 6 t 6 1.

Hence Au ∈ L1[0, 1]. It follows that A : C3[0, 1] → L1[0, 1].
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Let un ∈ C3[0, 1] and ‖|un − u|‖ → 0. Then lim
n→∞

u
(i)
n (t) = u(i)(t), 0 6 t 6 1,

i = 0, 1, 2, 3. By (C1),

lim
n→∞

F (t, un(t) + p(t)) = F (t, u(t) + p(t)), a.e. t ∈ [0, 1].

Since ‖|un−u|‖ → 0, there exists a positive integerN(u) such that, for any n > N(u),
‖|un + p|‖ 6 ‖|u|‖ + ‖|p|‖ + 1. So, for any n > N(u),

|F (t, un(t) + p(t))| 6 jru
(t), 0 6 t 6 1.

By the Lebesgue dominated convergence theorem (see (12.24), [6]), we have

lim
n→∞

∫ 1

0

|(Aun)(t) − (Au)(t)| dt

= lim
n→∞

∫ 1

0

|F (t, un(t) + p(t)) − F (t, u(t) + p(t))| ds

=

∫ 1

0

lim
n→∞

|F (t, un(t) + p(t)) − F (t, u(t) + p(t))| ds = 0.

It follows that A : C3[0, 1] → L1[0, 1] is continuous. �

Proposition 2.2. B, C, D, E : L1[0, 1] → C[0, 1] are completely continuous

operators.

P r o o f. Obviously, B, C, D, E : L1[0, 1] → C[0, 1] are bounded linear operators.
Applying the Arzela-Ascoli theorem, we prove easily that B, C, D, E are completely
continuous operators. �

Proposition 2.3. For any u ∈ L1[0, 1] and a.e. t ∈ [0, 1],

(Bu)′(t) = (Cu)(t), (Cu)′(t) = (Du)(t), (Du)′(t) = (Eu)(t).

P r o o f. By the generalized mean value theorem in the nonsmooth analysis (see
Theorem 2.3.7, [3]), we have, for every i = 0, 1, 2,

∣

∣

∣

∂i

∂ti
G(t + ∆t, s) − ∂i

∂ti
G(t, s)

∣

∣

∣
6 max

06t,s61

∣

∣

∣

∂i+1

∂ti+1
G(t, s)

∣

∣

∣
|∆t| 6 |∆t|.

From this inequality we obtain the estimate, for i = 0, 1, 2,

∣

∣

∣

1

∆t

[ ∂i

∂ti
G(t + ∆t, s) − ∂i

∂ti
G(t, s)

]

u(s)
∣

∣

∣
6 |u(s)|, a.e. t ∈ [0, 1].
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Since u ∈ L1[0, 1], the Lebesgue dominated convergence theorem yields

(Bu)′(t) = lim
∆t→0

1

∆t
[(Bu)(t + ∆t) − (Bu)(t)]

= lim
∆t→0

1

∆t

∫ 1

0

[G(t + ∆t, s) − G(t, s)]u(s) ds

=

∫ 1

0

lim
∆t→0

1

∆t
[G(t + ∆t, s) − G(t, s)]u(s) ds

=

∫ 1

0

∂

∂t
G(t, s)u(s) ds = (Cu)(t).

Similarly, (Cu)′(t) = (Du)(t), (Du)′(t) = (Eu)(t). �

Lemma 2.4. T : C3[0, 1] → C3[0, 1] is a completely continuous operator.

P r o o f. By Proposition 2.3, we have the compositions

T = B ◦ A, (T (·))′ = C ◦ A, (T (·))′′ = D ◦ A, (T (·))′′′ = E ◦ A.

By Proposition 2.1 and 2.2, we assert that T, (T (·))′, (T (·))′′, (T (·))′′′ : C3[0, 1] →
C[0, 1] are completely continuous operators. Therefore, T : C3[0, 1] → C3[0, 1] is a
completely continuous operator. �

3. The proof of Theorem 1.2

Let Vr0−3
= {u ∈ C3[0, 1] : ‖u(i)‖ 6 ri, i = 0, 1, 2, 3}. We need to prove T :

Vr0−3
→ Vr0−3

.

If u ∈ Vr0−3
then ‖u(i)‖ 6 ri, i = 0, 1, 2, 3. This implies that, for 0 6 t 6 1,

−r0 + ν0 6 u(t) + p(t) 6 r0 + µ0,

−r1 + ν1 6 u′(t) + p′(t) 6 r1 + µ1,

−r2 + ν2 6 u′′(t) + p′′(t) 6 r2 + µ2,

−r3 + ν3 6 u′′′(t) + p′′′(t) 6 r3 + µ3.

By the definition of ϕ(t, r0−3), we have

|F (t, u(t) + p(t))| 6 ϕ(t, r0−3), t ∈ [0, 1].
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Applying this fact and the assumption (1), we get

‖Tu‖ 6 max
06t61

∫ 1

0

G(t, s)|F (s, u(s) + p(s))| ds

6 max
06t61

∫ 1

0

G(t, s)ϕ(s, r0−3) ds 6 r0,

‖(Tu)′‖ 6 max
06t61

∫ 1

0

∣

∣

∣

∂

∂t
G(t, s)

∣

∣

∣
|F (s, u(s) + p(s))| ds

6 max
06t61

∫ 1

0

∣

∣

∣

∂

∂t
G(t, s)

∣

∣

∣
ϕ(s, r0−3) ds 6 r1,

‖(Tu)′′‖ 6 max
06t61

∫ 1

0

∣

∣

∣

∂2

∂t2
G(t, s)

∣

∣

∣
|F (s, u(s) + p(s))| ds

6 max
06t61

∫ 1

0

∣

∣

∣

∂2

∂t2
G(t, s)

∣

∣

∣
ϕ(s, r0−3) ds 6 r2,

‖(Tu)′′′‖ 6 max
06t61

∫ 1

0

∣

∣

∣

∂3

∂t3
G(t, s)

∣

∣

∣
|F (s, u(s) + p(s))| ds

6 max
06t61

∫ 1

0

∣

∣

∣

∂3

∂t3
G(t, s)

∣

∣

∣
ϕ(s, r0−3) ds 6 r3.

Consequently, T : Vr0−3
→ Vr0−3

.

If the assumption (2) holds, then

max
06t61

∫ 1

0

G(t, s)ϕ(s, r0−3) ds 6 max
06t,s61

G(t, s)

∫ 1

0

ϕ(s, r0−3) ds

6 m0M
−1 · Mm−1

0 r0 = r0,

max
06t61

∫ 1

0

∣

∣

∣

∂

∂t
G(t, s)

∣

∣

∣
ϕ(s, r0−3) ds 6 max

06t,s61

∣

∣

∣

∂

∂t
G(t, s)

∣

∣

∣

∫ 1

0

ϕ(s, r0−3) ds

6 m1M
−1 · Mm−1

1 r1 = r1,

max
06t61

∫ 1

0

∣

∣

∣

∂2

∂t2
G(t, s)

∣

∣

∣
ϕ(s, r0−3) ds 6 max

06t,s61

∣

∣

∣

∂2

∂t2
G(t, s)

∣

∣

∣

∫ 1

0

ϕ(s, r0−3) ds

6 m2M
−1 · Mm−1

2 r2 = r2,

max
06t61

∫ 1

0

∣

∣

∣

∂3

∂t3
G(t, s)

∣

∣

∣
ϕ(s, r0−3) ds 6 max

06t,s61

∣

∣

∣

∂3

∂t3
G(t, s)

∣

∣

∣

∫ 1

0

ϕ(s, r0−3) ds

6 m3M
−1 · Mm−1

3 r3 = r3.

Therefore, the assumption (1) holds and T : Vr0−3
→ Vr0−3

.

Now, we prove that the equation (P) has a solution.
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Since Vr0−3
is a bounded, closed and convex set, by Lemma 2.4 and the Leray-

Schauder fixed point theorem there exists ū ∈ Vr0−3
such that T ū = ū. Let u∗ = ū+p.

Then u∗ ∈ C3[0, 1], ‖(u∗)(i) − p(i)‖ 6 ri, i = 0, 1, 2, 3, and

u∗(t) − p(t) = ū(t) = (T ū)(t)

=

∫ 1

0

G(t, s)f
(

s, ū(s) + p(s), ū′(s) + p′(s), ū′′(s) + p′′(s), ū′′′(s) + p′′′(s)
)

ds

=

∫ 1

0

G(t, s)f
(

s, u∗(s), (u∗)′(s), (u∗)′′(s), (u∗)′′′(s)
)

ds.

Let e = p′′′(t) ≡ 3a + 3b − 3c + 3
2d. Then, for 0 6 t 6 1,

(u∗)′′′ = e +

∫ 1

0

∂3

∂t3
G(t, s)f

(

s, u∗(s), (u∗)′(s), (u∗)′′(s), (u∗)′′′(s)
)

ds

= e +
1

2

∫ t

0

s2(3 − s)F (s, u∗(s)) ds

+
1

2

∫ 1

t

(1 − s)(s2 − 2s − 2)F (s, u∗(s)) ds.

Applying the properties of the indefinite integral (see (18.3), [6]), we get

(u∗)(4)(t) = f
(

t, u∗(t), (u∗)′(t), (u∗)′′(t), (u∗)′′′(t)
)

, a.e. t ∈ [0, 1].

Noticing that G(0, s) = G(1, s) = (∂/∂t)G(0, s) = (∂2/∂t2)G(1, s) = 0, 0 6 s 6 1,
we have u∗(0) = p(0) = a, (u∗)′(0) = p′(0) = b, u∗(1) = p(1) = c, (u∗)′′(1) = p′′(1) =

d. Therefore, u∗ is a solution of the equation (P).
If a2 + b2 + c2 +d2 > 0 or

∫ 1

0
|f(t, 0, 0, 0, 0)| dt > 0, then u∗(t) 6≡ 0. In other words,

the solution u∗ is nontrivial.
The proof is completed. �

4. Remark and example

R em a r k 4.1. Theorem 1.1 is a special case of Theorem 1.2 (1).

Assume that the conditions of Theorem 1.1 are satisfied. Then f : [0, 1]×R
4 → R

is continuous and there exist four positive numbers ri > γi, i = 0, 1, 2, 3, such that
Φ(r0−3) 6 K min{k−1

i ri, i = 0, 1, 2, 3}.
By the definitions, |µi| 6 γi and |νi| 6 γi = 0, 1, 2, 3. So,

[−r0 + ν0, r0 + µ0] × [−r1 + ν1, r1 + µ1] × [−r2 + ν2, r2 + µ2] × [−r3 + ν3, r3 + µ3]

⊂ [−2r0, 2r0] × [−2r1, 2r1] × [−2r2, 2r2] × [−2r3, 2r3].
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Using this fact, we get

ϕ(t, r0−3) 6 Φ(r0−3) 6 K min{k−1
i ri, i = 0, 1, 2, 3}, 0 6 t 6 1.

From [1] we have max
06t61

∫ 1

0 |(∂i/∂ti)G(t, s)| ds 6 K−1ki, i = 0, 1, 2, 3. It follows

that, for i = 0, 1, 2, 3,

max
06t61

∫ 1

0

|(∂i/∂ti)G(t, s)|ϕ(s, r0−3) ds 6 Kk−1
i ri max

06t61

∫ 1

0

|(∂i/∂ti)G(t, s)| ds

6 Kk−1
i ri · K−1ki = ri.

By Theorem 1.2 (1), the equation (P) has one solution u∗ ∈ C3[0, 1] and ‖(u∗)(i)−
p(i)‖ 6 ri, i = 0, 1, 2, 3. So,

‖(u∗)(i)‖ 6 ‖(u∗)(i) − p(i)‖ + ‖p(i)‖ 6 ri + γi 6 2ri.

Theorem 1.1 is proved.

E x am p l e 4.2. Consider the nonlinear beam equation with homogeneous
boundary condition











u(4)(t) =
(u2(t) + 2)e

3

2
((u′′(t)+u′′′(t)) cos(u′(t) + πt)

180
√

|t − 1
2 |

, t ∈ [0, 1
2 ) ∪ (1

2 , 1],

u(0) = u′(0) = u(1) = u′′(1) = 0.

In this equation, p = 0 and the nonlinear term is

f(t, u0, u1, u2, u3) =
(u2

0 + 2)e
3

2
(u2+u3) cos(u1 + πt)

180
√

|t − 1
2 |

.

Thus, f(t, u0, u1, u2, u3) is a strong Carathéodory function and it is discontinuous on
the set { 1

2} × R.

Let r0 = r1 = r2 = r3 = 1. Since µi = νi = 0, i = 0, 1, 2, 3, we have

ϕ(t, r0−3) 6 sup







∣

∣

∣

∣

∣

∣

(u2
0 + 2)e

3

2
(u2+u3) cos(u1 + πt)

180
√

|t − 1
2 |

∣

∣

∣

∣

∣

∣

:
−1 6 u0 6 1, − 1 6 u1 6 1,

−1 6 u2 6 1, − 1 6 u3 6 1







6
e3

60
√

|t − 1
2 |

.

553



Further,

∫ 1

0

ϕ(t, r0−3) dt 6
e3

60

∫ 1

0

dt
√

|t − 1
2 |

=
e3

30

∫ 1/2

0

dt√
t

=

√
2e3

30

≈ 0.9468 < 1 = Mm−1
3 = M min{m−1

i ri, i = 0, 1, 2, 3}.

By Theorem 1.2 (2), the equation has one solution u∗ ∈ C3[0, 1] such that
‖(u∗)(i)‖ 6 1, i = 0, 1, 2, 3. Since f(t, 0, 0, 0, 0) = 2

180 |t − 1
2 |−1/2 cos πt 6= 0,

t ∈ [0, 1
2 ) ∪ (1

2 , 1], the solution u∗ is nontrivial.
The conclusion cannot be derived from Theorem 1.1 and the existing literature

because of the singularity of the nonlinear term.
The example illustrates that Theorem 1.2 is an effective and practical tool for the

discontinuous equation (P).
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