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Abstract. The Weinstein transform satisfies some uncertainty principles similar to the
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1. INTRODUCTION
We consider the Weinstein operator defined on R? x |0, 4+-o0] by:

Ly 28+1 9
83:12 Ta+1 OTdy1

Ag =
i=1

1
:Ad-i—fﬁ, 5>—§

where Ag is the Laplacian for the d-first variables and .3 the Bessel operator for
the last variable, given by

g O WAl o
p dx3. Tgr1 Oxgyr’ 2

For d > 2, the operator Ag is the Laplace-Beltrami operator on the Riemanian space
R? x 10, +00| equipped with the metric (cf. [1])

d+1
ds? = xiflﬁﬂ)/(d*l) Z da:?.

i=1
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The Weinstein operator Ag has several applications in pure and applied Mathe-
matics especially in Fluid Mechanics (cf. [5]).

The harmonic analysis associated with the Weinstein operator is studied by Ben
Nahia and Ben Salem (cf. [1], [2]). In particular the authors have introduced and
studied the generalized Fourier transform associated with the Weinstein operator.
This transform is called the Weinstein transform. In this work we are interested in
the principles of uncertainty associated with the transformation of Weinstein.

There are many theorems known which state that a function and its classical
Fourier transform on R cannot both be sharply localized. That is, it is impossible
for a nonzero function and its Fourier transform to be simultaneously small. Here
the concept of the smallness has taken different interpretations in different contexts.
Hardy [10], Morgan [18], Cowling and Price [7], Beurling [4], Miyachi [17] and [8] for
example interpreted the smallness as sharp pointwise estimates or integrable decay
of functions. Slepian and Pollak [22], Slepian [23], Benedicks [3] and Donoho and
Stark [9] paid attention to the supports of functions and gave qualitative uncertainty
principles for the Fourier transforms.

Hardy’s theorem [10] for the usual Fourier transform .%# on R asserts that f and
its Fourier transform f = .Z(f) can not both be very small. More precisely, let a
and b be positive constants and assume that f is a measurable function on R such
that

[f(z)] < Ce " ae. and If(y)] < Cetv’

for some positive constant C. Then f = 0 a.e. if ab > i, f is a constant multiple
of e=9” if qb = %, and there are infinitely many nonzero functions satisfying the
assumptions if ab < i. Considerable attention has been devoted to discovering
generalizations to new contexts for the Hardy’s theorem. In particular, Cowling and
Price [7] have studied an L? version of Hardy’s theorem which states that for p, ¢ in
[1, +00], at least one of them is finite, if ||e‘””2f||LP(R) < 400 and ||eby2f||Lq(R) < 400,
then f = 0 a.e. if ab > i. Another generalization of Hardy’s theorem is given by
Miyachi [17] where it is proved that, if f is a measurable function on R such that

™ f € LY(R) + L®(R)

and .
. .
e1e &
/ log™ M d¢ < oo
R A
for some positive constants a and A, then f is a constant multiple of e—az”, Beurling’s

theorem for the classical Fourier transform on R, which was recovered by Hérman-
der [11], says that for any non trivial function f in L?(R), the product f(x).Z(f)(y)
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is never integrable on R? with respect to the measure el*/l¥ldzdy. A far reach-
ing generalization of this result has been recently proved by Bonami, Demange and
Jaming [6]. They proved that a square-integrable function f on R? satisfying for an

DINFEHOD ey
z dzdy < 400,
/R/R (1+ [zl + [ly DN

integer N,

has the form f(z) = P(Jt:)e_ﬁ”’””2 where P is a polynomial of degree strictly lower
than 1(N — d) and § is a positive constant.

g

As a generalization of these Euclidean uncertainty principles for %, in this pa-
per we want to prove Hardy’s theorem, Cowling-Price’s theorem, Beurling’s theo-
rem, Miyachi’s theorem, and Donoho-Stark’s uncertainty principles for the Weinstein
transform Fy, .

The structure of this paper is the following. In § 2 we recall some results associated
with the Weinstein operator which we need in the sequel. § 3 is devoted to generalized
Cowling-Price’s theorem for #y,. In §4 and §5 we give variants of the theorem.
In § 6 we generalize Miyachi’s theorem and in § 7 Beurling’s theorem for .Zy,. §8 is
devoted to Donoho-Stark’s uncertainty principle for %y . Finally in the last section
we give some applications.

Throughout this paper, the letter C indicates a positive constant not necessarily

the same in each occurrence.

2. PRELIMINARIES

In order to set up basic and standard notation we briefly overview the Weinstein
operator and related harmonic analysis. Main references are [1], [2].

2.1. Harmonic analysis associated with the Weinstein operator

In this subsection we collect some notation and results on the Weinstein kernel,
the Weinstein intertwining operator and its dual, the Weinstein transform, and the
Weinstein convolution.

In the following we denote by

o R =R? x [0, +00].

o v = (1,...,%4,Z4+1) = (@', x411) € R‘fl.

o S ={re R ||z =1}.
C.(R%*1) the space of continuous functions on R?T! even with respect to the

last variable.
CZ(R9*+1) the space of functions of class C? on R*! even with respect to the
last variable.
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&(RI*1) the space of C™-functions on R?*!) even with respect to the last
variable.

Z(R41) the Schwartz space of rapidly decreasing functions on R4*! even
with respect to the last variable.

D, (R4*+1) the space of C*°-functions on R?*! which are of compact support,
even with respect to the last variable.

&!(R9H1) the space of distributions with compact support on R¥*!, even with
respect to the last variable. It is the topological dual of &, (R*1).

Z!(RI*1) the space of temperate distributions on R¥*!, even with respect to
the last variable. It is the topological dual of .7, (R4t1).

P+ the set of polynomials on R even with respect to the last variable.
ﬂfﬁ@l the set of homogeneous polynomials on R%*! of degree m, even with
respect to the last variable.

We consider the Weinstein operator Ag defined by

(2.1)

Va = (2/,2441) € R? x]0, 400,
Aﬁf(fﬂ) = Ax/f(xlvderl) +$5,zd+1f($/7$d+1), fe Cf(RdH),

where A, is the Laplace operator on R?, and 2,24, the Bessel operator on ]0, 4+-o0|

given by

(2.2)

d? 26+1 d 1

ﬁ>—§.

gg T =
yTd+1 ° 2 )
dxd—i—l Td+1 dxd+1

The Weinstein kernel A is given by

(2.3)

Az, z) = ei<x"zl>j5(xd+1zd+1), for all (z,z) € R x ¢4,

where jg(Z4+124+1) is the normalized Bessel function. The Weinstein kernel satisfies

the following properties:

i)
(2.4)
ii)

(2.5)

(2.6)
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For all z,t € C**!, we have
Az, t) = A(t,2); A(z,00)=1 and A(Az,t) = A(z,At), forall A eC.
For all v € N¥t1 2 € R and z € C!, we have
|DYA(z, 2)| < ]| exp(fl|||Im z]]),
where DY = 9V /(921" ... 82;’?;’11) and |v| =v1 + ... + Vg41. In particular

|A(z,y)| <1, forall z,y € R,



The Weinstein intertwining operator is the operator %5 defined on C,(R41) by

A(B+1) g5 [0+ .
Rl (& vas1) ﬁr((6+ )l) R LU e
B yLd+1) = 2

f(',0), ZTg+1 = 0.

% is a topological isomorphism from &, (R41) onto itself satisfying the following

transmutation relation

(2.7) As(R5f) = Bp(Danaf), for all f € & (RT),

d+1
where Ay = Y 07 is the Laplacian on R4,
j=1

We put
2.8 bi(r) = o forallr >0
() ](T)*d‘y(ﬁ), orallr =
with
221 jIT(6 + j + 1
(2.9) 4(p) = 2L+ D)

L(B+1)

Proposition 1 ([2]). Let f be in & (R41). Suppose that for all compact K
of R4+ there is C > 0 such that:
sup [D3.L5 ., f(@)] < ClI¥al),

xEK »Ld+1
where D® is the operator D* = 07" 0 03% o ... 003", with 0;, i = 1,2,...,d, the
partial derivatives operators. Then

(2.10) Vi e R f(x):i > mu(e)D3g],,  F0),

n=0|v|=|a| +2j=n

where m,, is the moment function defined by

v

(2.11) Vo e R™ my(z):= %ﬁ(%) =bj(wa+1)

()"

ol v = (a,2j).
The dual of the Weinstein intertwining operator % is the operator ‘%3 defined
on D,(R+1) by

212) BN = T [ =) s
2 Yd+1
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%5 is a topological isomorphism from .7, (R?*1) onto itself satisfying the following
transmutation relation

(2.13) ' B5(Apf) = Agir(‘Baf), for all f € .7, (RIH).

It satisfies for f in D,(R4*1) and g in &, (R?*!) the following relation

(2.14) [ asnwstds= [ 1750w dusto)

where dug is the measure on [Rffrl given by
28+1
dug(z’,zq11) = xdf_Jlr dz’ dzgyq.

We denote by Lg(R‘fl) the space of measurable functions on R‘fl such that

1/p
iy = ([, V@Pduse)ar) < oc, if1<p< o
+

Il ;oo gy = esssup|f(x)] < +oo.
( )
B AT+ QfGRiJrl

Proposition 2 ([12]). Let f in L},(Rf‘l). Then for almost all y, the function

Lt _ 28B4+ [T i
v Fs D0 = rny | i) s

is defined almost everywhere on Ri"’l and belongs to Ll(Rf’l). Moreover for all
bounded function g in C,(R**1) we have the formula

(2.15) L. @nwemay= [ 1@ dus().

Remark 1. Let f be in Lé(R‘fl). By taking g = 1 in the relation (2.15) we
deduce that

(2.16) /d "%3(f)(y) dy =/ f(@)dpp ().
R +1 [Rd+1
+ +
The Weinstein transform is given for f in L}B(R‘frl) by

217  Fw) = [ F@A(-2,y)dus(e), forall y € R

d+1
Ry
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Some basic properties of this transform are the following:
i) For f in LL(RT™),

(2.18) 1Fw (Pl e arry < NN Ly massy-
ii) For f in .7 (R4*1) we have
(2.19) Fw(BsF)w) = P Fw (g, forall y € R
iii) For all f € . (R%*!), we have
(2.20) Fw (D)) = Fo o' Be()(y), for all y € R,

where % is the transform defined by: Vy € [Rffrl,

(2:21) Fo(f)y) :/ f@)e W) cos(zaq1yart) dz,  f € Do(RUH).

d+1
Ry

iv) For all f in LL(RT™), if Fw (f) belongs to LE(RY™), then

(2.22) fly)=CB) i Fw ()(@)A(z,y) dps(x), ae.
where
(2.23) c(p) = L

nd4P+d/2(T(3 4 1))2°
v) For f € 7. (R¥*1), if we define

then

(2.24) FwFw = FwFw =C(B)1d.

Proposition 3.

i) The Weinstein transform Fy is a topological isomorphism from .7, (R**1) onto
itself and for all f in Y*([Rd"'l),

(2.25) L @R dnsta) = @) [ 15w dua(o)

it) In particular, the renormalized Weinstein transform f — C(8)Y/2.%w (f) can
be uniquely extended to an isometric isomorphism from L%( [Rf‘l) onto itself.
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The generalized translation operator 7., z € Ri"’l, associated with the opera-
tor Ag is defined by

d+1
Vy e R,

F(ﬂ + 1) ‘/TE / / 2 2 : 203
© =i , 2 0 0)=" do
2f(y) NGRS f(x +y \/$d+1 +Yg41 T 2Td1Yd41 cos )(Sm )

where f € C,(RI*1).

By using the Weinstein kernel, we can also define a generalized translation. For
a function f € .7, (R%*1) and y € Ri"’l the generalized translation 7, f is defined by
the following relation:

Fw (ry f)(x) = Mz, y) Fw () ().
For example, for ¢t > 0, we see that
(2.26) Ty(e*tllflﬁ)(x) - e*t(l\x|\2+llyll2)A(_Qit%x).

By using the generalized translation, we define the generalized convolution prod-
uct f *w g of functions f,g € L};([Ri“) as follows:

(227) fowale) = [ med (oo o) dus(s)

+

This convolution is commutative and associative and satisfies the following:

i) For all f,g € L}B(R‘fl), f *w g belongs to L}a([RiH) and
(2.28) Fw(f xw 9) = Fw(f)Fw(9).

ii) Let 1 < p,q,r < oo such that 1/p+1/q—1/r = 1. If f € L’ﬁ’([RiH) and
g € LY(R), then fxw g € Ly(RT™) and

(2:29) ILf *w QHL;(Rfl) < HfHLg(Ri“)||9HL%(RT1)-

2.2. Heat functions related to the Weinstein operator
The generalized heat kernel Ng(s,z), x € [Rf‘l, s > 0, associated with the Wein-
stein operator Ag is given by

2

o~ llzll?/(4s)
/2T (B + 1)(ds)PT1+d/2 ’

(2.30) Ng(s,x) :==
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which is a solution of the generalized heat equation:
0]
55 V8(s:2) — AgNp(s,z) = 0.

Some basic properties of Ng(s,z) are the following:

i) For all z € RY™, s > 0,
(2.31) Fw (Np(s,))(x) = eI,

ii) For all A > 0,
Np(As, \V/2z) = \=BHIH2D Ny (s 1),

iii) For s > 0,
(2.32) V35, Mgy ey = 1.
iv) For all t,s > 0,

Ng(t, ) 37,74 NB(S, )(.23) = Ng(t + 5,13).

For r > 0, j € N and a € N, we define the generalized heat functions Wf ()
related to the Weinstein operator Ag by:

(2.33) WS (ra) = (D&.Z],,, Nalr.))(@), =eREL

a,]

where D® is the operator D% = 07" 005> o...0 03¢, with 0;, i = 1,2,...,d, the
partial derivatives operators.
For j € N, a € N we have

o i« j —r 2
(2.34)  VyeRT Fw (W (r,)(y) =ilol(=1)7y > ygry eI

Proposition 4 ([12]). Let ¢ be in 21!, Then for all § > 0, there exists a poly-
nomial Q € P11 such that

*

(2.35) Vy e R Zy (e 1o (y) = Q(y)e= 10 W7,

949



3. COWLING-PRICE’S THEOREM FOR THE WEINSTEIN TRANSFORM

We shall prove a generalization of the Cowling-Price theorem for the Weinstein
transform.

Theorem 1. Let f be a measurable function on R(j_"’l such that

ap||z||? D
(3.1) /u;ed“ % dug(z) < oo
and
ebalel” | 7y (£)()]
(32) / (T

for some constants a >0, b > 0, 1 < p,q < 400, and for any
neld+26+2,d+28+2+p] and meld+1,d+1+q|.

i) If ab > i, then f = 0 almost everywhere.
ii) If ab = %, we have f = CNg(b, ).

E)
iii) If ab < %, then for all § € ]b, a='[, all functions of the form f(z) = P(z) x
N3(d,x), P € P, satisty (3.1) and (3.2).

Proof. We shall show that Zw (f)(z) exists and is an entire function in z €
C4*+1 and

(3.3) |Fw () (2)] < Ceto 1m=I®(1 4 |[Im 2))°,

for all z € C4*1,  for some s > 0.

The first assertion follows from the hypothesis on the function f and Hoélder’s in-
equality using (2.5) and the theorem on derivation under the integral sign. We want
to prove (3.3). Actually, it follows from (2.17) and (2.5) that for all z = £+in € C4+1

[Fw (1) +in)
< [, @A+ in)l dus(a)
[R+

el f (@) 2
< |In||2/(4a)/ R VA COA e n/pg—alllzl—In/2al)* 4 ,
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Then by using the Holder’s inequality and (3.1) we can obtain that

| Fw (f)(§ +in)]

1/p
< Collnl*/(a) (/ (1 + (2] /re-av' Qall=ln/2al)? dﬂﬁ(x)>

d+1
Ry

’

’

< Colnl*/(a) ( / (1 4 ) 28 g ap! (/2] dr)l/p
< Cellnll*/(a) (1 i |||/ Pt @B+d+ /"
If ab = i, then
[Fw (F)(E +in)| < O (1 g/ GotD/
Therefore, if we let g(z) = ebzzﬁw(f)(z), then
l9(2)] < e (14 [[Tm 2|/ COTHED /Y,

On the other hand it follows from (3.2) that

917
/ T+ ey ¢ <>

Here we use the following lemma.
Lemma 1 ([21]). Let h be an entire function on C?*! such that
[h(2)] < et (1 + [lm 2]

for some m > 0, a > 0 and

O
/ (0 + ) @4 <

for some ¢ > 1, s > 1 and @ € @f}} Then h is a polynomial with degh <

min{m, (s — M —d —1)/q} and, if s < ¢+ M +d+ 1, then h is a constant.

Hence by this lemma, g is a polynomial, we say P,, with

2 1 —d-1
denggmin{E—f— B+fl+ ,m d }
p D q

Thus, Zw (f)(z) = Py(z)e™’, for all z € CI+1,
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If m < ¢+ d+ 1, then clearly P, is constant. This proves ii).

If ab > i, then we can choose positive constants, a1,b1: a > a1 = ibfl > ib_l.
Then f and Zw (f) also satisfy (3.1) and (3.2) with a and b replaced by a; and
by respectively. Therefore, it follows that Fy (f)(z) = B, (z)e " l=I*. But then
Fw (f) cannot satisfy (3.2) unless P,, = 0, which implies f = 0. This proves i).

If ab < %, then for all § € ]b, 1a™![, the functions of the form f(z) = P(z)Ng(4, z),
where P € Z,, satisfy (3.1) and (3.2). This proves iii). O

The following is an immediate consequence of Theorem 1.

Corollary 1. Let f be a measurable function on [Rff:r1 such that
(3.4) f(2)] < Me~ Il (1 4 |lz])" ace.
and for all £ € Ri"’l,
(3.5) [Fw (£)©)] < Me 1T

for some constants a,b > 0, r > 0 and M > 0.

i) If ab > i, then f = 0 almost everywhere.
ii) If ab= 1, then f is of the form f(z) = CNg(b, ).
iii) Ifab < i, then there are infinity many nonzero f satisfying (3.4) and (3.5).

Remark 2. When r = 0, we obtain Hardy’s theorem for the Weinstein transform
on RI*!
i

4. COWLING-PRICE’S THEOREM VIA THE GENERALIZED SPHERICAL
HARMONICS COEFFICIENTS

We replace the assumption (3.2) by one involving the generalized spherical har-
monics coefficients of f, which will be defined as follows. In this section we suppose
that d > 1 and A > 0. For a non-negative integer [, we put

%’iﬁ ={P € P,;: P is homogeneous and AgP = 0},

which is called the space of generalized spherical harmonics of degree [. We fix
a P ¢ %ﬁﬁ and define the Weinstein coefficients of f € Lé(Ri‘H) in the angular
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variable by
(11) fis) = [ 10RO dos(e),

with dog(t) := ti’f{ldadﬂ(t). Then the Weinstein spherical harmonic coefficients of
fe L};([Rffrl) are given by

(42) Ao =X [ Fw (0B doste)

where

(4.3) FwOD = [ A0z -0 () dua(o)
R+

fort e Sjir. The relation between f; g and F} g is given by the following.

Proposition 5. Let notation be as above. Then for z € Si”l_l,

(4.4) Fp(A) = C/RML Szl = Ay Az, —2) dps(z)
= CFwalfrp(l- DI - 1I7H(A2),

where %y, and A; are the Weinstein transform and the Weinstein kernel on [Ri”l
respectively.

Proof. From (2.4), (4.3), and (4.2) it follows that

ra =3[ (f

Here we recall the generalized Funk-Hecke identity.

At~ X)) 1)) (o) s o),

d
+

Lemma 2 ([12]). Let H € %’iﬁ. Then for all z € R,
(45) [, Mt O dos(t) = CioH @ipsrarallel):
+
Therefore, we see that
FsN) = Cls [

d+
Ry

P@)isrirap (M2l f(2) dps ().
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Then by using (4.5) with d replaced by d + 2, we can obtain that for all z € Si“l,
(oo}
FusN) = Cu [ [ dsetaaOnr 4 R 1 (rt) o (0) dr
o Jsd
= Cz,,@/ frp(P)ipgajopAr)r?? T dr
0
[ee]
= C’/ (/ Ay(t, —/\rz)tiiirl dad+21+1(t)) fr.5(r)r?P T gy
0 s+
_ -1 _
—OAWMﬁMWMM|mu,mm%u»

This establishes the proposition. ([

Theorem 2. Let f be a measurable function on [Rffrl such that for p,q € [1, 0],
a,b > 0 and for each non-negative integer [,

earllel®| £ (z)|P
4.6 / ———dug(z) <
(1) e e | T
and

PN By g (M)
4.7 ——— " d) < o0,
(47) L =ar >

foranyn € |d+208+2,d+ 208+ 2+ p] and m > 1.

i) If ab > %, then f = 0 almost everywhere.
ii) If ab= 1, then f = CNy(b,").
iii) If ab < %, then for all § € b, a='[, all functions of the form f(z) = P(z) x
Ng3(6,x), where P € P, satisfy (4.6) and (4.7).

Proof. (4.6) implies that f € L}a(R‘fl), and thus each f 3 is well-defined.
Moreover, it follows from (4.1), (4.4) and the Holder inequality that

dpg(z) < oo.

~

00 2 2
Il — / ea;DT' |fl,5(r)|p r25+d+1 d?” < C eapl\xl\ |f(x)|p
0 (L+r)m it (1+lz])m

Here we used Holder’s inequality and the compactness of Sf‘ﬁ to obtain the last
inequality. Then, by applying this estimate in the polar coordinates in (4.4) and
using the same argument as in the proof of Theorem 1, we see that F; 5(\) has an
entire holomorphic extension on C and there exists NV > 0 such that

1

|Fip(u + iv)] < Cet® " (14 o)V,
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If ab > 1 then |Fg(u + iv)| < Cebv2(1 + [v])N. Therefore, if we put G (2) =
Fl,g(z)ebzz, then

bu? N Gup()
1GLs(2)] < Ce™ (1 + o)) and /Rmdx < oo
by (4.7). Applying Lemma 1 for d = 0 to Gig(z), we see that Fjg(A) =
Cl”ge*b)‘zP()\), where A € R and P is polynomial whose degree depends on N and
I. By noting (4.4) and (2.35), the injectivity of the Weinstein transform on R%"*
implies that for all 2 € RE™ f; 5(||=) = Ci5]2)|'Q(x) Ny 5(b, ), where Nj 5 is the
generalized heat kernel on [Ri”l.

If ab > i, then [; is finite provided f; 3 = 0 for all [. Therefore, f = 0 almost
everywhere. If ab = i, then I; is finite provided n —lp — (26 +d + 1) > 1, that is,
n > d+208+2+1p. Therefore, the assumption on n implies that [ = 0 and deg @ = 0.
Clearly, f = CNg(b, ) satisfy (4.6) and (4.7). If ab < i, then for a given family of
functions, we see that Fw (f)(y) = Q(y)e_‘s”y”2 for some ) € Z,. These functions

clearly satisfy (4.6) and (4.7) for all § € b, Ja™'[. O

5. A VARIANT OF COWLING-PRICE’S THEOREM
FOR THE WEINSTEIN TRANSFORM

The aim of this section is to give a variant of Cowling-Price’s theorem for the
Weinstein transform. Our approach is different from [14].

. d
Theorem 3. Let a,b > 0 and let f € .7, (R¥*1) satisfy for all ¢ € RT,

| Fw () (€)] < Ce el
and for all (a,j) € N% x N,

(5.1) 1DS.Z5 Fw (P2 arr, < Cal(25)!(2a)~1o1+20),
B LZ(RTT

sTd+1

If ab > % then f = 0.
If ab = §, then Fw (f)(€) = @(ﬁ)e_b”ﬂlz, where ¢ is a bounded function.

In order to prove Theorem 3 we need the following lemma.
Lemma 3. Let f € .7,(R?!) and assume that for all (o, j) € N4 x N,
10525 0, T3 sy < Cal(27)!(20) (172,

2 d+1
La(RY
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Then for all (o, j) € N4 x N,

d
|D3: L5, xd+1f(m)|2 < CH(%‘ + m)!(2] + m)!(2a)~ (1429
i=1

with m = [(208 + d)/2] + 2, where C is independent of («, j).

Proof. Let s € R. We define the Weinstein-Sobolev space HE([RiH) as the set
of distributions u € #/(R%") such that (1 + [|€[|?)*/%Fw (u) belongs to L%(Riﬂ),
equipped with the scalar product

(g etrty = [, (0 1612 T (€T TO0E) )

and the norm

2 p—
||u||Hg(Ri+1) = <U, U>H.§(Ri+1).

We proceed as in [16] to prove that if n € N and s € R satisfy s > %d +06+n+1,
then

(5.2) H5(RE) — C7(RH).

We note that |[Dg,.2%,  f(z)| < Cw|DgZg,, ., f]

Hy (REH) by (5.2) and

||Dg,.,sfgﬁmd+lf||25b(Ri+l)<Cm > ||Da+ﬁ.,sf[;’;j+lf|\L2(Rd+l
|Bl+i<m

by the definition of Hg@(Ri“). Hence the desired result follows. O

Let m = [(268 + d)/2] + 2. Then it follows from Lemma 3 that (5.1) implies that
for all x € Rf‘l

d
D8 L5 Fw (@) < CT (s +m)!(2n + m)!(2a) = 1+2m),

i=1

Therefore, Theorem 3 follows from the following.
Theorem 4. Let a,b > 0 and let f € .7, (R**1) satisfy for all € € R,

(5.3) [Zw ()] < Ce M
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and for all (o, j) € N% x N,

(5.4)  |D%.Z)

d
Bwan Tw( < O] (@i +m)!(2j +m)l(2a) =112
i=1
with m = [(28+ d)/2] + 2.
If ab > 1, then f = 0.
If ab = 3, then Fw (f)(€) = @(€)e~tlEI”  where ¢ is a bounded function.

In order to prove Theorem 4 we need the following lemmas.
Lemma 4. Let a > 0. We consider F in 7,(R%Y) satisfying for all (a,j) €
Ne x N:

d
F(2)* < C (e +m)(25 + m)!(2a)~(el+20),

i=1

(5.5) VzeR¥™, |DY%Z)

ByTa+1

Then the function F extends to C*t! as an entire function which satisfies for every
b > a_1 the relation

(5.6) VzeCH  |F(z)| < cetll”,
Proof. i) From Proposition 1, the function F satisfies the relation
(o]
(5.7 YeeR™, F@=3 > m(@)DpL,,, FO).
n=0 |u‘:|a‘+2j:n

Thus the function F can be extended to an entire function on Ct!, and we denote
also by F' the function given by

(5.8) V:eCH, F(zx)=> Y m(:)D8ZY,, F)
n=0 |v|=|a|+2j=n

ii) For b > %a™', the relations (5.8), (2.8), (2.9), (2.11) and Cauchy-Schwarz’s
inequality give that

Vz e CY

193 3 [S e, ro

n=0 |a|4+2j=

EARIETE
Z > g 1P SZI ()]

n=0|a|+2j=n
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< (L ")”2(2 > oo, rort)

= n=0la|+2j=n
= < (4ab)"n! '
Thus there exists a positive constant C(f3, a,b) such that
VzeCH, |F(z)] < C(B,a,b)el?I”.
This completes the proof of the lemma. O

Lemma 5 ([20]). Let ¢ > 0, d > 0. We consider F an entire function on C**!
which satisfies
VzeCll  |F(z)| < Ceclm=l”

and
Vz e R |F(z)] < Cem el

Then F =0 whenever ¢ < d and F(z) = Ce % for ¢ =d.

Lemma 6 ([20]). Let F' be an entire function on C of order p and type (3. Let

1 F i0
h(#) = lim sup w, 0eRs

T—00

be its indicator, and assume that

.
h(ﬂ) <—B, j=0,1,...,0—1.
0

Then F(z) = P(z)e’ﬁz2, where P is an entire function at most of minimal type and
of order p.

Proof of Theorem 4. First case: ab > 7. Choose b’ such that b > 0’ > 1 at.
We consider the function F defined on C4+! by

F(z) = e Zw(f)(2).
By Lemma 4 with ¥, we have

VzeCH, |F(z)| < Ce2'ltm=I?,
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But from (5.3) we have
Vo e R™,  |F(z)| < Ce™ G+l

as b’ < b, then by applying Lemma 5 we conclude that .Zy (f) = 0 and thus from
Proposition 3 we obtain f = 0.

Second case: ab = %. From Lemma 4 the function F(z411) = Zw (f)(2, z441) is
an entire function on C of order at most 2. It can not decay on R faster than its
order. So its order is 2. Since for all b’ > %a’l we have the estimate

Véi €R, |F(€as1)| < Ce Ve,
then its type is ia‘l. Now we apply Lemma 6 to conclude that
/2
F(8a1) = C(&', €ar)e " Sar,

But now the function C(&',&;.1) satisfies the same estimates as Fy (f) on R
By using induction we can obtain .Fy (f)(§) = <p(§)e_b”5”2, where ¢ is a bounded
function. O

As an application of Theorem 3, we can obtain the following.

Corollary 2. Let a,b > 0 and p € [1,+oo]. If f € .Z.(R%T) satisfies for all
e Rﬁf&

(5.9) |Fw ()(€)] < Ce el
and for all (o, j) € N% x N,

(5.10) 1D%. 2

Mﬂﬁw(f)nimiﬂ) < Cal(29)!(2a)~Io1+20)
with m = [(28 + d)/2] + 2, then f =0 if ab > 1.

Proof. We put F(z) = (Fi(f) sw Na(1b~1,))(x) where Ny(t, ) is the gen-
eralized heat kernel given by (2.30). Then by (2.29), it follows that for all z € [Rffrl,
D82 0y F @ < ID2 L, P (D) gt | Va0 My

where p’ is the conjugate exponent of p. (5.10) implies that

D825, F(@)]* < Cal (25)! (2a)~o+20),

sTd+1
On the other hand, it follows from (5.9) and (2.29) that for all x € [Rf‘l,
|F(2)] < Ce b=l

Therefore, by Theorem 4 F(z) = 0 and thus, Fw (F) = 0. (2.28) and (2.24) imply
thatf:Oforab>%. O
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6. MIYACHI’S THEOREM FOR THE WEINSTEIN TRANSFORM
Miyachi’s theorem is generalized for the Weinstein transform as follows.

Theorem 5. Let f be a measurable function on Ri"’l such that

(6.1) eal\xHZf c L%(Riﬂ) +L%(Ri+l)
and
o [ e Bt

) i g h £ < oo,

for some constants a,b,\ >0 and 1 < p,q < +o0.

i) If ab > i, then f = 0 almost everywhere.
ii) If ab= 1, then f = CNg(b,-) with |C| < \.

iii) If ab < %, then for all § € ]b,a™'[, all functions of the form f(z) =

P(z)Ng(,x), P € P, satisty (6.1) and (6.2).

To prove this result we need the following lemmas.

Lemma 7. Let h be an entire function on C%*' such that

(6.3) |h(z)| < AeBIRe=I" - 4ng /d+1 log™ |h(y)| dy < oo,
Ry

for some positive constants A, B. Then h is a constant.

Proof. (6.3)and the Fubini theorem yield that there is a set E C R4*! with E°
of Lebesgue measure zero such that for all (zs,...,2441) € E,

/ log* |h(x, 22 ..., xq41)] d2z < 4-00.
R

On the other hand, the function z; — h(z1,2,...,2411) is entire and O(eB(Re 21)2)
on C. Then by Lemma 4 in [17] this function is bounded on C. Therefore, by the
Liouville theorem we see that for all z; € C and all (zq,...,z411) € E,

h(zl,ﬁ:g, PN ,:Cd+1) = h(O,xQ, NN ,$d+1).

Since h is continuous, this relation holds for all 21, ..., zq+1 € C. Then, by induction,
we can deduce that h is a constant. O
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Lemma 8. Let r € [1,+00], a > 0. Then for g € LE(RT‘l), there exists C' > 0
such that

2 _ 2
Heal\xl\ t%’@(e allyll Q)HLT(Ri“) < (gl Ly (R

Proof. From the hypothesis it follows that e~%l¥I*g belongs to Lé([RiH).
2
Then by Proposition 2, t%g(e*“”y” g) is defined almost everywhere on R‘fl. Here

we consider two cases.
i) If r € [1, 00, then

, _ 2
HeaHxH t%g(e allyll g)||£7'(Ri+1)

o0 r
< /RLHl ear||:8||2 (/ (82 _ x3+1)6—1/26—a(|\x ”2+82)|g(l‘l,s)|5d8> dr
+ Td+1

< [ e g gl ) (ot ) @) da,
R

where 1’ is the conjugate exponent of 7. Since
(6.4) R (e I (z) = CetlII®

for t > 0 (cf. [12]), it follows from (2.16) that
2 _ 2
et =g sy < C [ o Flol @) 0o
= [ @l dus(o) < +oc.
R

ii) If » = oo, then it follows from (6.4) that

al|z||? —a 2 allz||? —a 2
eell=ll ' %(e llyll 9)(z)] <e ll=ll "R (e llyll )(x)”g”Lff([Ri“)

= CHg”Lg"(Ri“) < 0.
This completes the proof. ([
Lemma 9. Let p, q be in [1,+00] and f a measurable function on [Rff:r1 such that
(6.5) eolel’ f € LA(REFY) + LY (RETY)

for some a > 0. Then for all z € C?*!, the integral
Fwh)E) = [ H@M =) dusle)

961



is well-defined. Zw(f)(z) is entire and there exists C' > 0 such that for all £, n
in R‘fl,

(6.6) | P (F)(€ +in)| < Cellnl/de,

Proof. The first assertion easily follows from (2.5) and Holder’s inequality.
We shall prove (6.6). (6.5) implies that f belongs to Lé(Rf’l) and thus, *Zs(f)
to LY (R%!) by (2.16). Hence by (2.20), for all &, € R9H,

Fw(ferin = [ @p(pa)e e da

and then

[ Fw (£)(§ +1in)|
< elnl*/(a) /M o212 £) (@) e~z I+ = Il /(4a) g
R+

2 2 2
< ol /<4a>/d+1 71|t 525 () () [~ allz=n/201 Q.
R+

Since (6.5) implies that there exist u € Lg(ﬂ%iﬂ) and v € L%([Ri“) such that
F(@) = e =Py (z) 4+ eallely (),
it follows from Lemma 8 that
allz|?t —allz—n/2a||?
/Rd+1 e I'"%Z5(f)(z)le dz
+
< C(HUHLg(RiH) + HU”L%(R‘;’;“)) < oo.

Therefore, the desired result follows. O

Proof of Theorem 5. We will divide the proof in each case.
i) ab > 1. Let h be a function on C*™! defined by

d+1 ,
(6.7) h(z) = (H ezj/4a>yw(f)(z).

This function is entire on C?*! and by (6.6) we see that

(6.8) |h(€ +1in)| < CellsI*/(4a)
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for all £ € [Ri“ and n € [Rf‘l. On the other hand, we note that

Jr
L. ot 1wl ay

+

= [, Tt e S (1))
:

b 2
_ / 1Og+<e Iyl |yW(f)(y)|)\e(%a_lfb)HyHQ) dy
Re+1 A

b 2
< / log* © WI™.2w (f) (W) dy+/ Aelka T =DII? g
Re+1 A Re+1 ’

because log* (cd) < log™ (¢) + d for all ¢,d > 0. Since ab > 1, (6.2) implies that
(6.9) / log* [h(y)] dy < +o.
REH

Then it follows from (6.8) and (6.9) that h satisfies the assumptions in Lemma 7 and
thus, h is a constant and

Fw (f)(y) = Cem e IWI,

Since ab > 1, (6.2) holds whenever C' = 0 and the injectivity of .#y implies that
f =0 almost everywhere.

ii) ab = . As in the previous case, it follows that Fw (f)(§) = Ce~l€I/(4a),
Then (6.2) holds whenever |C| < A. Hence f = CNg(b,-) with |C] < A

iif) ab < 1. If f is of the given form, then Fy (f)(y) = Q(y)e_‘s”y”2 for some

Q € P,. Then f and Fw (f) satisfy (6.1) and (6.2) for all § € |b, 3a™![. O

The following is an immediate consequence of Theorem 5.

Corollary 3. Let f be a measurable function on [Rf'l such that

(6.10) eal\tzf c L%(Riﬂ) _‘_L,%([Ri-i-l)

and

. [ 1 Zw e de < o
R

for some constants a,b >0, 1 <p,q < +oo and 0 < r < oo.

i) If ab > %, then f = 0 almost everywhere.
ii) If ab < 1, then for all § € |b, 2a™"[, all functions of the form f(z) = P(z) x
Ng(0,z), P € P,, satisfy (6.10) and (6.11).
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7. BEURLING’S THEOREM FOR THE WEINSTEIN TRANSFORM

Beurling’s theorem and Bonami’s, Demange’s, and Jaming’s extension are gener-

alized for the Weinstein transform as follows.

Theorem 6. Let N € N, § >0 and f € L%(Rf‘l) satisfy

ST DOUEDE it g, (11 dy < +oc
= // (+ el + o)™ ol < o

where R is a polynomial of degree m. If N > d + md + 3, then

(7.2) fly) = > alWl(ry) ae,

[s|<%(N—d—1—md)
where r > 0, a? € C, s € N1 and W5(r,-) is given by (2.33). Otherwise, f(y) =0
almost everywhere.

Proof. We start with the following lemma.

Lemma 10. We suppose that f € L%(Rf‘l) satisfies (7.1). Then f € Lé(Rf’l).

Proof. We may suppose that f is not negligible. (7.1) and Fubini’s theorem
imply that for almost every y € [Rf‘l,

eIl () < +oc.

Iﬁw(f)(y)llR(y)l‘s/ /()]
T+ llylD¥ rett (1+[|z])N

Since f and thus, #yw (f) are not negligible, there exist yo € [Ri“’ yo # 0, such that
Fw(f)(o)R(yo) # 0. Therefore,

@] sl
/ Tty & dsle) < oo

Since ell#lllvoll /(14 ||z[)N > 1 for large ||z ||, it follows that [pat1 | f(2)|dug(z) < +oo.
+
([

This lemma and Proposition 2 imply that ‘%Zs(f) is well-defined almost everywhere
on [Ri“. By the same techniques as used in [13], we can deduce that

[.] el 8y (1) () |7 (D D@IBGE | 00
Ri+1 Ri—H

O+ llzll + ly DY
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According to Theorem 2.3 in [19], we conclude that for all = € [Rf‘l,

'Ry f) () = P(x)elell*/()

where > 0 and P a polynomial of degree strictly lower than %(N —d—1-—mb).
Then by (2.20),

Fw(F)y) = F o Bs(f)(y) = F(P(x)e” 117/ (y) = Q(y)e W7,

where @ is a polynomial of degree deg P. Then by using (2.34), we can find con-
stants aij such that

o =sv( X awlea)w.
la|+2j<(N—d—1—méd)/2
By the injectivity of %y, the desired result follows. O

As an application of Theorem 6, by using the same techniques as in [13], we can
deduce the following Gelfand-Shilov type theorem for the Weinstein transform.

Corollary 4. Let NNm € N, § > 0, a,b > 0 with ab > %, and 1 < p,q < 400
with p~' +¢~' = 1. Let f € L3(R{™) satisfy

(2a)?||z||" /p
(7.3) /[Rd“ |f(f1)|j_ T dpg(x) < +oo

and

(7.4)

dy < +00

/ | Fw (F) () [ I/ 9| R(y)|°
R+ T+ lyDN

for some R € Pp,.
i) Ifab> 1 or (p,q) # (2,2), then f(x) =0 almost everywhere.
i) If ab = % and (p,q) = (2,2), then f is of the form (7.2) whenever N > %(d—l—
3+ md) and r = 2b2. Otherwise, f(x) = 0 almost everywhere.
Proof. Since
(2a)
p

2b
tabllz |yl < (20 )

ll]|” + 1yl

it follows from (7.3) and (7.4) that

DNZw DODIRGD saoin)
gtabliz dpg(z)dy < +oo.
/ / T Tl + P ol
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Then (7.1) is satisfied, because 4ab > 1. Therefore, according to the proof of Theo-
rem 6, we can deduce that

dy dz < +o0,

[.] A1 ' 25 () (@) F (* Z) (£) () | R)I?
Ny L+ 2l Iy M2™

and ‘Z%Zs(f) and f are of the forms
t — —[l=)1?/(4r) T — —rllyl®
Zp(f)(x) = P(x)e and  Fw(f)(y) = Qy)e ;
where 7 > 0 and P, ) are polynomials of the same degree strictly lower than %(ZN —

d — 1 —md). Therefore, substituting these forms, we can deduce that

1

/ / e*(\/FHnyaIIIII/\/?)Qe(ﬁlab*l)IIIIIIIyII|P(x)||Q(x)||R(y)|5
pat Jaan (T+ [lll + [y>N

dydz < 4o0.

When 4ab > 1, this integral is not finite unless f = 0 almost everywhere. Moreover,
it follows from (7.3) and (7.4) that

/ |P(x)]e= 7 Il g20)"p " o
R+ (L+ [lz)¥

dpg(z) < +o0

and

—rllyll®o(20)/a ||y ||9| R (/)|
[, RO Rt
+

T+ lyDN

One of these integrals is not finite unless (p, q) = (2, 2).
When 4ab = 1 and (p,q) = (2,2), the finiteness of above integrals implies that
r = 2b? and the rest follows from Theorem 6. O

8. DONOHO-STARK UNCERTAINTY PRINCIPLE FOR THE
WEINSTEIN TRANSFORM

We shall investigate the case where f and Zw (f) are close to zero outside mea-
surable sets. Here the notion of “close to zero” is formulated as follows.

A function f € L%([Ri“) is e-concentrated on a measurable set £ C R if
there is a measurable function g vanishing outside £ such that || f—g]|, - R4y S
plRy

EHfHLg(Ri“)'
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Therefore, if we introduce a projection operator Pg as

f(z) ifzxekFE,

PEf(x)_{o ito¢ B

then f is e-concentrated on E if and only if ||f — Pef| 12 gty < el fll 12 gatry-
: : BYTH B\T+
We define a projection operator Qg as

Qrf(z) = Fy' (Pe(Fw(f)))(@).

Then Fw (f) is e-concentrated on F if and only if ||f_QFf||L%(Rd+1) < €||f||L%(Rd+1).
+ +
We note that, for mesurable set E, F' C [Rf‘l,

QrPef(@) = / At ) () (),

where

(ta) = IF Az, &) dup(§) ifteE,
ahe= ift ¢ E.

Indeed, by the Fubini theorem we see that

QrPyf(e / Fw (Puf)(E)AE 2) dup(€)

/(/ FOA(E, —t) dps(t ))A(va)dug(f)
- /Ef(t)(/FA(f,—t)A(g,x)du5(§)> g ().

The Hilbert-Schmidt norm ||QrPg||us is given by

1/2
|QrPE|us = (/Rd+1 /{Rd+1 lq(s, )| dps(s) dw(ﬂ) :

We denote by ||T||2 the operator norm on L%(R‘fl). Since Pg and QF are projec-
tions, it is clear that | Pg|l2 = ||QF|l2 = 1. Moreover, it follows that

(8.1) 1QrPellus = |QrPEl2.

If F is a set of finite measure of RL™, we put pg(F) := [ dps(x).

Lemma 11. If F and F are sets of finite measure of R‘frl, then

|QrPrllus < /C(Bus(B)us(F),

where C(3) the constant defined by the relation (2.23).

967



Proof. Fort € E, let g:(s) = q(s,t). From (2.22) we have Zw(g:)(w) =
Pr(A(t, —w)). Then by Parseval’s identity (2.25) and (2.5) it follows that

/ ol 0P das) = | MCRILTE

=) [, 1Fwla @) duslu) < CBws ().

+

Hence, integrating over ¢ € E, we see that |QrPg|%s < C(8)us(E)ps(F). O

Proposition 6. Let E and F' be measurable sets and suppose that

HﬁW(f)”L%(R‘f'l) =1

Assume that eg + ep < /C(B), [ is eg-concentrated on E and Fw(f) Is ep-
concentrated on F'. Then

(1—ep—cp)?

c(B)

Proof. Since ”‘?W(f)HL%(Riﬂ) =1and eg +er < y/C(f), the measures of
E and F must both be non-zero. Indeed, if not, then the eg-concentration of f

pus(E)ps(F) =

implies that ||f — PEfHL%([Ri+1) = Hf”Lf,([Ri“) = +/C(B) < eg, which contradicts

with ep < /C(0), likewise for Fw (f). If at least one of pug(E) and pg(F') is infinity,
then the inequality is clear. Therefore, it is enough to consider the case where both E
and F have finite positive measures. Since ||Qr||2 = 1, it follows that

Hf - QFPEf”L%([Ri‘H) < ||f - QFfHLg([Ri‘“) + ||QFf - QFPEf”L%(Ri‘*'l)
< er+1Qelallf — Perll e <5 +er

and thus,
1QFPefll 2@ty 2 Ifllz@ary = IIf = QrPESl g @aty 2 1 —ep —er.

Hence |QrPEr|2 > 1—eg—ep. (8.1) and Lemma 11 yield the desired inequality. O

In the following we shall consider the case of f € L};(R‘fl). As in the L% case, we
say that f € L}B(Riﬂ) is e-concentrated to E if || f — PEfHLk(RcH—l) < €||f||Lé(Rd+1).

+ +
Let B4(F) denote the subspace of L},([Ri“) which consists of all g € Lé(Ri‘H) such
that Qrg = g. We say that f is e-bandlimited to F if there is a g € B}_,(F) with
If = gllps ga+ry < €llfllps(ga+ry. Here we denote by || Pgll1 the operator norm of
Ry sy

Pgr on L}a(R‘frl) and by ||Pg|[1,F the operator norm of Pg: Bj(F) — L%([Rffrl).
Corresponding to (8.1) and Lemma 11 in the L% case, we can obtain the following.
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Lemma 12. ||Pgllr < C(3)s (s (F)
Proof. For f € Bj(F) we see that

f(t) = C(B) /F At €) Fw (£)(€) duas(€)

=) [ Ao [, 1A -6 duste) us(e))

=) [, 1@ ( [ At OMw - dusl0)) duato).

Therefore, ”f”Lgf’(Ri“) < C(mﬂﬁ(F)”f”Lg(Ri“) by (2.5) and then,

1Po gy = [ 1@ dip(o)
< BNl s sy < COa(E)s (B |y aery

Then, it follows that for f € B5(F),

1Pes @ity COmaEa (S s eer

< = C(B)up(E)ps(F),
||f||L;13(Ri+1)

||f||L;13(Ri+1)
which implies the desired inequality. O

Proposition 7. Let f € L}}(Rf’l). If f is eg-concentrated to E and ep-
bandlimited to F', then

1—EE—€F

C(B)us(E)up(F) = T

Proof. Without loss of generality, we may suppose that || f|| (ri+1y = 1. Since
s(Ry
f is eg-concentrated to E, it follows that

||PEf||L},([Ri+1) z Il (REFY) — If = PE“L}j(Rfrl) z1l-—ep.

1
B

Moreover, since f is € p-bandlimited, there is a g € B(F) with Hg_fHLE(RiH) <ep.
Therefore, it follows that

1Pagl s a2 1Sl mesy = 1Pe(g = £l e
> |

|PEf||L}a(RiH) —ecp2l—cp—ep
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and
gl @arry < NFllpyassy +er =1 +ep.

Then, we see that
HPEQHL},(Ri‘H) l—cg—c¢F

”gHL}a(Riﬂ) L+er
Hence | Pgll1,r > (1—eg—er)/(1+¢eF) and Lemma 12 yields the desired inequality.
(]

Proposition 8. Let f € L3(R{T)NLL(R™) with £l 2 ey = VC(B)- IF £ is
+
e g-concentrated to E in L}B—norm and Fw (f) is ep-concentrated to F' in L%—norm,
then

COs(E) > (L= enP Iy garny and ua(PISI, any > (1= )

In particular,
CBus(B)up(F) = (1 —ep)?(1 —ep)®.

Proof. Since || Fw (f)|l2ga+1) =1 and f is ep-concentrated to F' in L%—norm,
a(Ry
it follows that

82)  I1Pr(Fw ()l 2@
2 [ Fw (Dl 2 ey = 1Fw () = Pr(Fw (£l 2 @esry
>

1- er,
and thus,
(1-er)® < ; [ Fw (F)E) dus(€)
< ps(F)Fw (f )”Loo([RcH—l S MB(F)”JCHZL;}(MH)-
Similarly, since ||f||L%(Ri+1) = /C(B) and f is e p-concentrated to E in Lj-norm,

wwmm@mm<éummMmm< C(B)s ().

Here we used the Cauchy-Schwarz inequality and the fact that Hf”L%([Ri‘“) = /C(B).
(I
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9. APPLICATIONS

The last part of this paper is motivated by a different kind of uncertainty principles
written via the generalized Schrodinger and heat semigroups. Indeed, we proceed
as [15] to prove the following identity

(9.1) u(t, z) = e"oug(z)

_ 2 —i(d+2B+2) bnsgn  Gill-|12/(41)
nd/20(6 + 1) (4t)f+1+d/2

(Pt ) (2),

which tells us that this kind of results for the free solution of the Weinstein-

Schrodinger equation with data wug

02) {i&tu(t,x) + Agu(t,z) =0, (t,z) € R x R,

Ult=0 = U0

is related to uncertainty principles. In this regards we use uncertainty principles for
the Weinstein transform proved in previous sections to obtain the following.

Proposition 9.

i) Let ug be a mesurable function on [Rf'l and a,b > 0 such that
ug(z) = O(eall=l”y, eltBsyy(z) = O(ebl=l?).
If ab > 1—1615’2, then ug = 0. Moreover, if ab = %t”, then u is solution with
initial data Ce—(a+i/(4t)ll=]*
il) Let ug a mesurable function on R(fjl and a,b > 0 such that

allzl*yg(z) € LH(REY),  etlleleitAay,(z) € L(RIH)

with p,q € [1, 00|, with at least one of them finite. If ab > %t’z, then ug = 0.
i) If uy € L%(R‘fl), pe(1,2),1/p+1/qg =1, and a,b > 0 such that for some
t#0

/d 1|uO(x)|e<2a>P/pnznpdﬂﬁ(x)+/ |6it85 g ()2 0% alel 4y, (2) < oo,
R++ Rd

Ifab > %, then ug = 0.
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iv) Ifug € L%(Riﬂ) such that for some t # 0
/d+1 . |’LL0($)||eitA5u0(y)|e”x””y”/(Qt) dﬂﬁ(x) dy < oo,
[RJr ><[R{Jr

then ug = 0.
v) Let ug a mesurable function on R‘fl such that

eolel®yy € LE(REH) + LP(REF)

and

itAg bllgl?
/ 1ogJr le uoif)e | d¢ < oo,
REH

for some constants a >0, b > 0, A > 0.
If ab > %t_Q, then ug = 0 almost everywhere.
If ab = 172, then u is solution with initial data Ce~(ati/@)lz|*

Proof. We only prove the estimate (i), the proofs of (ii)—(v) being similar.
Set h(y) = ei(”y”Q/(“))uo(y). Then from (9.1) we get

2

ult,z) = =20(3 + 1)(4t)B+1+d/2

o—i(d+26+2)F sgnt ill1I?/(4) [Fw (h)] (2%)

From the hypothesis on ug, we have
Fw (5 ) < cetlel,
2t
Thus
[Fw ()l(z) < Cem 1o,
Clearly |h(y)| < Ce= VI’ Now we apply Hardy’s uncertainty principle for the
Weinstein transform (cf. [12]) for h to obtain the result. O

We conclude this section by the following results concerning application of uncer-
tainty principles to the generalized heat equation. Consider the initial value problem

(9.3)

Owu(t,x) — Agu(t,z) =0, (t,x) € Rx [Rf‘l7
U‘t:() = Uugp-.

Proposition 10. Let ug € L}B(Riﬂ) and let u(t,x) = (uo *w Ng(t,-))(x) be the
solution of the problem (9.3). If s < t and the following estimate

Ju(t, )| < C(L + ||z[|*)™ Np(s, x)
holds, then u = 0.
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Proof. We use the relations (2.28), (2.30) and (2.31) we obtain
[ Zw (u(t, ))(©)] < Ce 4T,
On the other hand the relations (2.29), (2.30) give
lu(t, )| < C(t)ext oI’

Now we apply Corollary 1 and we obtain u(t,x) = C(t)P(x)e*itA”””'P. But this is
not possible in view of the estimate on wu(¢,z) unless ¢t < s. (]

Proposition 11. Let ug € &'.(R4"1) and let u(t,z) = (ug *w Ng(t,))(x) be the
solution of the problem (9.3). If s < t and the estimate

Ju(t, 2)] < C(1 + [[]*)™ N(s, z)

holds, then u = 0.

Proof. We use the fact that the Weinstein transform of uy has polynomial
growth and so
2
| Fw (u(t, ) (€)] < C(L+ ||g|))re el

Therefore, in this case too the solution u cannot have the decay
[u(t, )| < C(L + [|z]*)" Np(s, x)

for any s < t. O
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